A Universal Bijection for Catalan Families

R. Brak

School of Mathematics and Statistics University of Melbourne

October 25, 2018

Catalan Numbers

$$C_n = \frac{1}{n+1} \binom{2n}{n}$$

 $1, 2, 5, 14, 42, 132, 429, \cdots$

$$C_{n+1} = \sum_{i=0}^{n} C_i C_{n-i}$$

$$G(z) = \sum_{n \geq 0} C_n z^n, \qquad G = 1 + zG^2$$

A few Catalan families

Examples of C_3 objects

 \mathbb{F}_1 – Matching brackets and Dyck words

 \mathbb{F}_2 – Non-crossing chords the circular form of nested matchings

 \mathbb{F}_3 – Complete Binary trees and Binary trees

F₄ − Planar Trees

F₅ − Nested matchings or Link Diagrams

 \mathbb{F}_6 – Non-crossing partitions

 \mathbb{F}_7 – Dyck paths

F₈ − Polygon triangulations

 \mathbb{F}_9 – 321-avoiding permutations

123, 213, 132, 312, 231.

 \mathbb{F}_{10} – Staircase polygons

 \mathbb{F}_{11} – Pyramid of heaps of segments

 \mathbb{F}_{12} – Two row standard tableau

1	3	5	1	2	5	1	2	3	1	2	4	1	3	4
2	4	6	3	4	6	4	5	6	3	5	6	2	5	6

 \mathbb{F}_{13} – Non-nested matchings

 \mathbb{F}_{14} – Frieze Patterns: n-1 row periodic repeating rhombus

with

$$r$$
 s t and $st - ru = 1$
 u

12213, 22131, 21312, 13122, 31221.

The Catalan Problem

- Over 200 families of Catalan objects:
 Richard Stanley: "Catalan Numbers" (2015)
- Regular trickle of new families ...
- Alternative Tableau (2015) related to Weyl algebra

■ Floor plans (2018)

- How to prove Catalan: Focus on bijections
- Problem I: Too many bijections.
- Assume 200 families: F_1, F_2, F_3, \cdots
- \Rightarrow $\binom{200}{2}$ = 19 900 possible bijections

■ Better: Biject to a common family

- Which family F_s ?
- Even better:

■ **Problem II**: Proofs can be lengthy

Dyck words ↔ Staircase polygons (Delest & Viennot 1984)

■ Problem III: Uniqueness:

If
$$|A| = |B| = n$$
 then $n!$ possible bijections.

■ Why choose any one?

The Magma

- Solution to all three problems:
- Replace "bijection" by "isomorphism"
- What algebra?
- Magma

Definition (Magma – Bourbaki 1970)

A **magma** defined on $\mathcal M$ is a pair $(\mathcal M,\star)$ where \star is a map

$$\star:\mathcal{M}\times\mathcal{M}\to\mathcal{M}$$

called the **product map** and \mathcal{M} a non-empty set, called the **base** set.

No conditions on map.

Additional definitions

- Unique factorisation magma: if product map * is injective.
- Magma morphism: Two magmas, (\mathcal{M}, \star) and (\mathcal{N}, \bullet) and a map

$$\theta: \mathcal{M} \to \mathcal{N}$$

satisfying

$$\theta(m \star m') = \theta(m) \bullet \theta(m').$$

Irreducible elements: elements not in the image (range) of the product map.

Example magma

*	1	2	3	4	5	
1	5	7	10	3	16	22
2	6	9	4	3 15 20 26	21	. · ·
3	8	4	14	20	27	. · ·
4	11	13	19	26		.·'
5	12	18	25			.·'
÷	17	24			. · ·	

- ii) Not a unique factorisation magma: 4 = 2 * 3 = 3 * 2.
- iii) Two "irreducible" elements: 1, 2 absent.

Standard Free magma

Definition

Let X be a non-empty finite set. Define the sequence $W_n(X)$ of sets of nested 2-tuples recursively by:

$$W_1(X) = X$$

$$W_n(X) = \bigcup_{p=1}^{n-1} W_p(X) \times W_{n-p}(X), \qquad n > 1,$$

$$W_X = \bigcup_{p \ge 1} W_n(X).$$

Let
$$W_X = \bigcup_{n\geq 1} W_n(X)$$
.

Define the product map \bullet : $\mathcal{W}_X \times \mathcal{W}_X \to \mathcal{W}_X$ by

$$m_1 \bullet m_2 \mapsto (m_1, m_2)$$

The pair (W_X, \bullet) is called the **standard free magma** generated by X.

■ Elements of W_X for $X = \{\epsilon\}$:

$$\epsilon, \quad (\epsilon, \epsilon), \quad (\epsilon, (\epsilon, \epsilon)), \quad ((\epsilon, \epsilon), \epsilon),$$

$$(\epsilon, (\epsilon, (\epsilon, \epsilon))), \quad ((\epsilon, (\epsilon, \epsilon)), \epsilon), \quad (\epsilon, ((\epsilon, \epsilon), \epsilon)),$$

$$(((\epsilon, \epsilon), \epsilon), \epsilon), \quad ((\epsilon, \epsilon), (\epsilon, \epsilon)) \dots$$

■ Three ways to write products:

$$\epsilon\epsilon\epsilon\bullet\bullet$$
, $\bullet\epsilon\bullet\epsilon\epsilon$ and $(\epsilon\bullet(\epsilon\bullet\epsilon))$

all give

$$(\epsilon, (\epsilon, \epsilon))$$
.

Norm

We need one additional ingredient to make connection with Catalan numbers.

Definition (Norm)

Let (\mathcal{M},\star) be a magma. A **norm** is a super-additive map

$$\left\| \cdot \right\| : \mathcal{M} \to \mathbb{N}$$

- Super-additive: For all $m_1, m_2 \in \mathcal{M}$ $\|m_1 * m_2\| \ge \|m_1\| + \|m_2\|$.
- If (\mathcal{M}, \star) has a norm it will be called a **normed magma**.
- Standard Free magma norm: if $m \in W_n$ then ||m|| = n.
- \bullet eg. $\|(\epsilon, (\epsilon, \epsilon))\| = 3$.

With a norm we now get:

Proposition (Segner 1761)

Let $\mathcal{W}(X)$ be the standard free magma generated by the finite set X. If

$$W_{\ell} = \{ m \in \mathcal{W}_{\epsilon} : ||m|| = \ell \}, \qquad \ell \geq 1,$$

then

$$|W_{\ell}| = |X|^{\ell} C_{\ell-1} = |X|^{\ell} \frac{1}{\ell} {2\ell-2 \choose \ell-1}, \tag{2}$$

and for a single generator, $X = \{\varepsilon\}$, we get the Catalan numbers:

$$|W_{\ell}| = C_{\ell-1} = \frac{1}{\ell} {2\ell-2 \choose \ell-1}.$$
 (3)

Main theorem

Theorem (RB)

Let (\mathcal{M}, \star) be a unique factorisation normed magma. Then (\mathcal{M}, \star) is isomorphic to the standard free magma $\mathcal{W}(X)$ generated by the irreducible elements of \mathcal{M} .

Proof

- Use norm to prove reducible elements have finite recursive factorisation.
- Use injectivity to get bijective map to set of reducible elements.
- Morphism straightforward.

Definition (Catalan Magma)

A unique factorisation normed magma with only one irreducible element is called a **Catalan magma**.

Consequences...

If we can define a product

$$\star_i: \mathbb{F}_i \times \mathbb{F}_i \to \mathbb{F}_i$$

on a set \mathbb{F}_i and:

- show \star_i is injective,
- has one irreducible element
- and define a norm, then
- \mathbb{F}_i is a Catalan magma and \mathbb{F}_i isomorphic to $W(\varepsilon)$:

$$\Gamma_i: \mathbb{F}_i \to W(\varepsilon)$$

- and thus
 - Γ_i is in bijection,
 - norm partitions \mathbb{F}_i into Catalan number sized subsets,
 - the bijection is recursive,
 - and embedded bijections, Narayana statistic correspondence, ...

Universal Bijection

■ The proof is constructive and thus gives

$$\Gamma_i: \mathbb{F}_i \to W(\varepsilon)$$

explicitly.

■ Furthermore, the bijection is "universal" – same (meta) algorithm for all pairs of families.

$$\begin{array}{ccc}
\mathbb{F}_{i} & \xrightarrow{\pi} & W_{\varepsilon_{i}} \\
\downarrow \Gamma_{i,j} & \downarrow \theta_{i,j} \\
\mathbb{F}_{i} & \longleftarrow & W_{\varepsilon_{j}}
\end{array} \tag{4}$$

■ Morphism implies recursive: $\Gamma(m_1 \star m_2) = \Gamma(m_1) \bullet \Gamma(m_2)$.

Example: Dyck path Magma

Dyck Paths

Product

- Generator: $\varepsilon = \circ$ (a vertex).
- Examples

■ Norm = Number of up steps + 1

Example: Triangulation Magma

Polygon Triangulation's

Product:

- Generator $\epsilon = \int_{0}^{\epsilon}$
- Examples:

■ Norm = (Number of triangles) + 1

Example: Frieze pattern Magma (Conway and Coxeter 1973)

 \mathbb{F}_{14} – Frieze Patterns: n-1 row periodic repeating rhombus

 $12213, \quad 22131, \quad 21312, \quad 13122, \quad 31221 \, .$

■ Product: $a_1, a_2, ..., a_n * b_1, b_2, ..., b_m = c_1, c_2, ..., c_{n+m-1}$ where

$$c_{i} = \begin{cases} a_{1} + 1 & i = 1 \\ a_{i} & 1 < i < n \\ a_{n} + b_{1} + 1 & i = n \\ b_{i} & n < i < n + m - 1 \\ b_{m} + 1 & i = n + m - 1 \end{cases}$$

$$(5)$$

- Generator: ε = 00.
- Examples:

$$00 \star 00 = 111$$

 $00 \star 111 = 1212$
 $111 \star 00 = 2121$
 $111 \star 111 = 21312$

■ Norm = (Length of sequence) – 1

Bijections

First, factorise path to its generators

then change generators and product rules: *7 → *8:

$$(\circ \ \star_7 \ \circ) \ \star_7 (\circ \ \star_7 \ \circ) \quad \mapsto \qquad (\left(\begin{smallmatrix} \bullet \\ \bullet \\ \bullet \end{smallmatrix} \star_8 \begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}\right) \ \star_8 (\left(\begin{smallmatrix} \bullet \\ \bullet \\ \bullet \end{smallmatrix} \star_8 \begin{smallmatrix} \bullet \\ \bullet \end{smallmatrix}))$$

then re-multiply:

which gives the bijection

Similarly, if we perform the same multiplications for matching brackets:

$$(\varnothing \star_1 \varnothing) \star_1 (\varnothing \star_1 \varnothing) = \{\} \star_1 \{\} = \{\} \{\{\}\}\}$$

or for nested matchings,

$$(\bullet \multimap \star_{27} \bullet \multimap) \star_{27} (\bullet \multimap \star_{27} \bullet \multimap) = \bullet \multimap \multimap \star_{27} \bullet \multimap$$

■ Thus we have the bijections:

Conclusion

- Magmatisation of Catalan families gives "universal" recursive bijection.
- Also, embedded bijections, Narayanaya statistic etc.
- Adding a unary map gives Fibonacci, with binary map gives Motzkin, Schröder paths etc.
- Current projects:
 - Extending to coupled algebraic equations eg. pairs of ternary trees
 - Reformulating the "symbolic" method.
- Reference: arXiv:1808.09078 [math.CO]

- Thank You -