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A few Catalan families

Examples of C3 objects

F; — Matching brackets and Dyck words

Hy 00 oy {8 000

F» — Non-crossing chords the circular form of nested matchings

SISOl

F3 — Complete Binary trees and Binary trees

R N SN

IF4 — Planar Trees
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5 — Nested matchings or Link Diagrams

R = U = = o A = U
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Fg — Non-crossing partitions

QaQ da

IF7 — Dyck paths

AN AA AN SN

FAVEAVAN



Fg — Polygon triangulations

QPP

Fg — 321-avoiding permutations

123, 213, 132, 312, 231.

19 — Staircase polygons
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11 — Pyramid of heaps of segments

IF1o — Two row standard tableau
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F13 — Non-nested matchings
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F14 — Frieze Patterns: n—1 row periodic repeating rhombus
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21312, 13122, 31221.



The Catalan Problem

m Over 200 families of Catalan objects:
Richard Stanley: " Catalan Numbers” (2015)

m Regular trickle of new families ...
m Alternative Tableau (2015) — related to Weyl algebra
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m Floor plans (2018)




How to prove Catalan: Focus on bijections
Problem |: Too many bijections.

Assume 200 families: F1, F, F3,--

= (*%°) = 19900 possible bijections



m Better: Biject to a common family

Fy Fy F5
\\ /-
Fl/ 8
m Which family F¢?
m Even better:
Fy F, F;
Q v U Fs
F2Q O e

Fi D



m Problem Il: Proofs can be lengthy

Dyck words <> Staircase polygons (Delest & Viennot 1984)

AN NN aiill iy iﬁj

A A

m Problem IlI: Uniqueness:
If |A| = |B| = n then n! possible bijections.

m Why choose any one?



The Magma

m Solution to all three problems:
m Replace “bijection” by “isomorphism”
m What algebra?

m Magma

[] Definition (Magma — Bourbaki 1970)

A magma defined on M is a pair (M, ) where * is a map

* MxM->M

called the product map and M a non-empty set, called the base
set.

m No conditions on map.



Additional definitions
m Unique factorisation magma: if product map x is injective.
m Magma morphism: Two magmas, (M, ) and (N, e) and a
map

0: M—->N

satisfying
O(mm')=0(m)ed(m’).

m Irreducible elements: elements not in the image (range) of
the product map.



Example magma

10 3 16 22
15 21

O NN
o

14 20 27
11 13 19 26
12 18 25

17 24

Gl B W N
o O Ol

m ii) Not a unique factorisation magma: 4 =2x3=3*2.

m iii) Two “irreducible” elements: 1, 2 absent.



Standard Free magma

Let X be a non-empty finite set. Define the sequence W,(X) of
sets of nested 2-tuples recursively by:

Wi(X) =X
W, (X) :IQWP(X) x Wp_p(X), n>1,
Wx = LJ1W,,(X).

Let Wx = Ups1 Wa(X) .
Define the product map ¢ : Wx x Wx — Wx by

my & my — (my, my)

The pair (Wx, +) is called the standard free magma generated
by X.



m Elements of Wx for X = {¢}:

67 (67 6)7 (67 (676))7 ((676)76)7
(6,(e,(6,6)), ((6(6),6), (& ((e€),€)),
(((e,€),6),€), ((&€),(e€)) ...

m Three ways to write products:
€ecoe, ececc and (ce(cec))

all give

(€, (€,€))-



Norm

We need one additional ingredient to make connection with
Catalan numbers.

[ Definition (Norm)

Let (M, x) be a magma. A norm is a super-additive map

[ : M >N

Super-additive: For all my, my e M
|my * ma| > [my] + |m2].

If (M, ) has a norm it will be called a normed magma.

Standard Free magma norm: if m e W, then ||m|| = n.
eg. [|(e, (¢, )]l = 3.




With a norm we now get:

Proposition (Segner 1761)

Let W(X) be the standard free magma generated by the finite set
X. If

Wo={meW.:[ml=), (1,
then

1/20-2
Wl = IXI* G =X 5(%, )

P ()

and for a single generator, X = {c}, we get the Catalan numbers:

1(20-2
Wyl = Cp-1 = - .
W= Cex= 4%y ) ©



[] Theorem (RB)

Let (M, *) be a unique factorisation normed magma. Then
(M, *) is isomorphic to the standard free magma W(X)
generated by the irreducible elements of M.

m Proof
m Use norm to prove reducible elements have finite recursive
factorisation.
m Use injectivity to get bijective map to set of reducible elements.
m Morphism straightforward.

Definition (Catalan Magma)

A unique factorisation normed magma with only one irreducible
element is called a Catalan magma.



Consequences...

m If we can define a product
*jt IF,‘ X IF,' - F,‘

on a set IF; and:
m show x; is injective,
m has one irreducible element
m and define a norm, then

m [, is a Catalan magma and F; isomorphic to W(e):
I’,- : F,‘ - W(E)

m and thus

['; is in bijection,

norm partitions IF; into Catalan number sized subsets,

the bijection is recursive,

and embedded bijections, Narayana statistic correspondence, ...



Universal Bijection

The proof is constructive and thus gives

F,- : F,‘ id W(E)

explicitly.
m Furthermore, the bijection is “universal” — same (meta)
algorithm for all pairs of families.

F; — ng-
ri,j le,"j (4)

Fi +— W,

Morphism implies recursive: T'(my x mp) =T(my) e (my).



Example: Dyck path Magma

m Dyck Paths

AN AN

FAVAVAN

m Product
m Generator: ¢ = o (a vertex).
m Examples

N
NN
A A

AvA AN

® Norm = Number of up steps + 1



Example: Triangulation Magma

m Polygon Triangulation’s

2005
00 &

m Generator € = §
m Examples:

m Product:

! -1 -
Vel
! % -
V¥

m Norm = (Number of triangles) + 1

Rk«



Example: Frieze pattern Magma (Conway and Coxeter 1973)

14 — Frieze Patterns: n—1 row periodic repeating rhombus
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12213, 22131, 21312, 13122, 31221.



m Product: aj,as,...,a, * b1, by, ..., bjm=c1,C, ..., Chim-1
where
al+1 i=1
aj 1<i<n
Ci=San+bi+1 i=n (5)
b; n<i<n+m-1
b, +1 i=n+m-1

m Generator: € = 00.
m Examples:

00«00 =111
00 111 =1212
111 00 = 2121

111 %111 = 21312

m Norm = (Length of sequence) — 1



m First, factorise path to its generators

AN\

/ AN

=(0 % 0)%;(0 % o)

S\
S\

m then change generators and product rules: *7 — *g:
(0 %, 0) x;(0 %, 0) = (I*HI) *x(l *8I>

m then re-multiply:

8 I 2% SR N

m which gives the bijection

PVANERY



m Similarly, if we perform the same multiplications for matching
brackets:

(@x10)*x1(2*12) ={} =1 {} = {H{{}}

m or for nested matchings,

(o—o *o7 .—o) *o7 (.—o *o7 o—o) = O—Q—o *27 O—Q—o

= Q—Q)—@—o

m Thus we have the bijections:

/\/’/\H@HUHHH e LN




Conclusion

m Magmatisation of Catalan families gives “universal”’ recursive
bijection.
m Also, embedded bijections, Narayanaya statistic etc.

Adding a unary map gives Fibonacci, with binary map gives
Motzkin, Schroder paths etc.
Current projects:

m Extending to coupled algebraic equations eg. pairs of ternary
trees
m Reformulating the “symbolic” method.

m Reference: arXiv:1808.09078 [math.CO]



— Thank You —



	Introduction
	Catalan Problem

