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The original Erdős-Gallai Theorem

The Erdős-Gallai Theorem is a fundamental, classic result that tells you
when a sequence of integers occurs as the sequence of degrees of a simple
graph. Here, “simple” means no loops or repeated edges. A sequence d of
nonnegative integers is said to be graphic if it is the sequence of vertex
degrees of a simple graph. A simple graph with degree sequence d is a
realisation of d . There are several proofs of the Erdős-Gallai Theorem. A
recent one is given in [17]; see also the papers cited therein. We follow the
proof of Choudum [4].

Erdős-Gallai Theorem

A sequence d = (d1, . . . , dn) of nonnegative integers in decreasing order is
graphic iff its sum is even and, for each integer k with 1 ≤ k ≤ n,

k∑
i=1

di ≤ k(k − 1) +
n∑

i=k+1

min{k , di}. (∗)
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Outline of Proof

Necessity is easy:

First, there is an even number of half-edges, so
∑n

i=1 di must be even.
Then, consider the set S comprised of the first k vertices. The left hand
side of (∗) is the number of half-edges incident to S . On the right hand
side, k(k − 1) is the number of half-edges in the complete graph on S ,
while

∑n
i=k+1 min{k , di} is the maximum number of edges that could join

vertices in S to vertices outside S .
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And for the sufficiency..

Sufficiency is by induction on
∑n

i=1 di . It is obvious for
∑n

i=1 di = 2.
Suppose that d = (d1, . . . , dn) has even sum and satisfies (∗). Consider
the sequence d ′ obtained by reducing both d1 and dn by 1. It is not
difficult (but tiresome) to show that, when appropriately reordered so as to
be decreasing, d ′ still satisfies (∗). So, by the inductive hypothesis, there
is a simple graph G ′ that realises d ′; label its vertices v1, . . . , vn. We may
assume there is an edge in G ′ connecting v1 to vn (otherwise we just add
one). Applying the hypothesis to d , using k = 1 gives

d1 ≤
n∑

i=2

min{k , di} ≤ n − 1,

and so d1 − 1 < n − 1. Now in G ′, the degree of v1 is d1 − 1. So in G ′,
there is some vertex vi 6= v1, for which there is no edge from v1 to vi . [So
vi 6= vn]. Note that d ′i > d ′n. So there is a vertex vj such that there an
edge in G ′ from vi to vj , but there is no edge from vj to vn.

Grant Cairns (La Trobe) Variations on the Erdős-Gallai Theorem Monash Talk 18.5.2011 4 / 22



The trick

vi

v1 vn

vj

→

vi

v1 vn

vj

Figure: The Switcheroo
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Comments

Remark

Notice that if d is the degree sequence of a simple graph, then d satisfies
(∗) even if d isn’t in decreasing order; indeed, the above proof of the
necessity did not use the fact that the sequence is in decreasing order. The
converse however is false; the sequence (1, 3, 3, 3) satisfies (∗) but it is not
the degree sequence of a simple graph.

Remark

According to Wikipedia: Tibor Gallai (born Tibor Grünwald, July 15, 1912
January 2, 1992) was a Hungarian mathematician. He worked in
combinatorics, especially in graph theory, and was a lifelong friend and
collaborator of Paul Erdős. He was a student of Dénes König and an
advisor of László Lovász. For comments by Erdős on Gallai, see [5, 6, 7].
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Non-simple graphs

Theorem

If d = (d1, . . . , dn) is in decreasing order, then

(a) d is the sequence of vertex degrees of a graph iff its sum is even,

(b) d is the sequence of vertex degrees of a graph without loops iff its
sum is even and d1 ≤

∑n
i=2 di ,

(c) d is the sequence of vertex degrees of a graph without multiple edges
iff its sum is even and, for each integer k with 1 ≤ k ≤ n,

k∑
i=1

di ≤ k(k + 1) +
n∑

i=k+1

min{k , di}. (†)

Remark

Part (a) is obvious. Part (b) is well known [11].
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Proof of (a) and (b)

(a) really is obvious : at each vertex vi , attach bdi/2c loops. There are an
even number of vertices for which the degrees di are odd: group these into
pairs and join the vertices of each pair by an edge.

(b) We argue by induction on
∑n

i=1 di . Suppose the degree sum is even. If
d1 =

∑n
i=2 di , just put in di edges between v1 and vi , for each i . If

d1 <
∑n

i=2 di , notice that d1 is at least 2 less than the sum of the other
degrees, since d1 and

∑n
i=2 di are either both odd or both even. Drop off

1 from the degrees of the 2 vertices of lowest degree, vn−1 and vn. By the
inductive hypothesis, there is a realisation without loops of
(d1, . . . , dn−2, dn−1 − 1, dn − 1). Then add an edge between vn−1 and vn.

Conversely, if there is a realisation without loops of (d1, . . . , dn), then, as
before, the degree sum is even. Let (d ′1, . . . , d ′n) be the degree sequence of
the graph obtained by deleting all the edges not adjacent to v1. So
d ′1 = d1 and d ′i ≤ di for all i ≥ 2. Clearly d ′1 =

∑n
i=2 d ′i , so d1 ≤

∑n
i=2 di .

Grant Cairns (La Trobe) Variations on the Erdős-Gallai Theorem Monash Talk 18.5.2011 8 / 22



Proof of (a) and (b)

(a) really is obvious : at each vertex vi , attach bdi/2c loops. There are an
even number of vertices for which the degrees di are odd: group these into
pairs and join the vertices of each pair by an edge.

(b) We argue by induction on
∑n

i=1 di . Suppose the degree sum is even. If
d1 =

∑n
i=2 di , just put in di edges between v1 and vi , for each i . If

d1 <
∑n

i=2 di , notice that d1 is at least 2 less than the sum of the other
degrees, since d1 and

∑n
i=2 di are either both odd or both even. Drop off

1 from the degrees of the 2 vertices of lowest degree, vn−1 and vn. By the
inductive hypothesis, there is a realisation without loops of
(d1, . . . , dn−2, dn−1 − 1, dn − 1). Then add an edge between vn−1 and vn.

Conversely, if there is a realisation without loops of (d1, . . . , dn), then, as
before, the degree sum is even. Let (d ′1, . . . , d ′n) be the degree sequence of
the graph obtained by deleting all the edges not adjacent to v1. So
d ′1 = d1 and d ′i ≤ di for all i ≥ 2. Clearly d ′1 =

∑n
i=2 d ′i , so d1 ≤

∑n
i=2 di .

Grant Cairns (La Trobe) Variations on the Erdős-Gallai Theorem Monash Talk 18.5.2011 8 / 22
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Proof of (c)

The proof of sufficiency is by induction on
∑n

i=1 di . It is obvious for∑n
i=1 di = 2. Suppose a decreasing sequence d = (d1, . . . , dn) has even

sum and satisfies (†). As in Choudum’s proof of the Erdős-Gallai Theorem,
consider the sequence d ′ obtained by reducing both d1 and dn by 1. Let
d ′′ denote the sequence obtained by reordering d ′ so as to be decreasing.

One can show (again tiresome) that when reordered in decreasing order, d ′

satisfies (†) and hence by the inductive hypothesis, there is a graph G ′

without multiple edges that realises d ′. Let the vertices of G ′ be labelled
v1, . . . , vn. We may assume there is an edge in G ′ connecting v1 to vn

(otherwise we can just add one). If there is no loop at either v1 or vn,
remove the edge between v1 and vn, and add loops at both v1 and vn.

So we may assume there is a loop at either v1 or vn.

Grant Cairns (La Trobe) Variations on the Erdős-Gallai Theorem Monash Talk 18.5.2011 9 / 22



First assume there is a loop in G ′ at v1.

Applying the hypothesis to d , using k = 1 gives

d1 ≤ 2 +
n∑

i=2

min{k , di} ≤ n + 1,

and so d1 − 3 < n − 1. Now in G ′, the degree of v1 is d1 − 1 and so apart
from the loop at v1, there are a further d1 − 3 edges incident to v1. So in
G ′, there is some vertex vi 6= v1, for which there is no edge from v1 to vi .
[So vi 6= vn]. Note that d ′i > d ′n. If there is a loop in G ′ at vn, or if there is
no loop at vi nor at vn, then there is a vertex vj such that there an edge in
G ′ from vi to vj , but there is no edge from vj to vn. Then just do the
Switcheroo: remove the edge vivj , and put in edges v1vi and vjvn.

If there is no loop in G ′ at vn, but there is a loop at vi , we consider the
two cases according to whether or not there is an edge between vi and vn.
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If there is an edge between vi and vn, ...

If there is an edge between vi and vn, then remove this edge, add the edge
v1vi and add a loop at vn.

vi

v1 vn

→

vi

v1 vn
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If there is no edge between vi and vn, ...

If there is no edge between vi and vn, add the edges v1vi and vivn and
remove the loop at vi .

vi

v1 vn

→

vi

v1 vn
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If there is no edge between vi and vn, ...

If there is no edge between vi and vn, add the edges v1vi and vivn and
remove the loop at vi .

vi

v1 vn →

vi

v1 vn
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Finally, suppose there is a loop at vn, but not at v1.

Apart from the loop, there are a further dn − 3 edges incident to vn. Since
d1 ≥ dn, we have d1 − 1 > dn − 3, and so there is a vertex vi such that
there an edge in G ′ from v1 to vi , but there is no edge from vi to vn.
Remove v1vi , put in vivn and add a loop at v1.

vi

v1 vn

→

vi

v1 vn
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Connected graphs, Trees and Forests

Theorem

Let d = (d1, . . . , dn) be a sequence of positive integers in decreasing order.
Then d is the sequence of vertex degrees of a connected simple graph iff
the Erdős-Gallai condition (∗) is satisfied and furthermore∑n

i=1 di ≥ 2(n − 1).
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Proof of sufficiency

We induct on
∑n

i=1 di . The result is clearly true for
∑k

i=1 di = 2.

Suppose that d satisfies (∗) and
∑n

i=1 di ≥ 2(n − 1).

By the Erdős-Gallai Theorem, d is realised by a simple graph, and by
Choudum’s proof, so too can the sequence d ′ obtained from d by
decreasing both d1 and dn by 1. If dn > 1, then

∑n
i=1 di ≥ 2n and so∑n

i=1 d ′i ≥ 2(n − 1). If dn = 1, then the sequence d ′ has at most

n′ = n − 1 positive members and so
∑n′

i=1 d ′i =
∑n

i=1 di − 2 ≥ 2(n′ − 1).
Hence, in either case, by the inductive hypothesis, d ′ is realized by a
connected simple graph G ′.

Now conlude as in Choudum’s proof of the Erdős-Gallai Theorem; the key
point is that the Switcheroo won’t disconnect a connected graph.
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For the converse, ...

Suppose that d is the sequence of vertex degrees of a connected simple
graph G . So d satisfies (∗). If dn > 1, then

∑n
i=1 di ≥ 2n, which gives the

required result. If dn = 1, let G ′ be the connected simple graph obtained
by removing vertex vn and the single edge attached to it. So G ′ has
n′ = n− 1 vertices, and degree sequence d ′ where

∑n′

i=1 d ′i =
∑n

i=1 di − 2.

By induction,
∑n′

i=1 d ′i ≥ 2(n′ − 1), and hence
∑n

i=1 di ≥ 2(n − 1).

Recall that a forest is a simple graph having no cycle, and a tree is a
connected forest.

Theorem

Let d = (d1, . . . , dn) be a sequence of positive integers in decreasing order.
Then d = (d1, . . . , dn) can be realised by a forest (resp. tree) iff

∑k
i=1 di is

even and
∑k

i=1 di ≤ 2(n − 1) (resp.
∑k

i=1 di = 2(n − 1)).
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Bipartite graphs

First, notice that for multigraphs, the problem of realizing sequences as
bipartite graphs is trivial. Indeed, it is obvious that a sequence
d = (d1, . . . , dn) of nonnegative integers is the sequence of vertex degrees
of a bipartite graph (possibly with multiple edges) iff d can be written as
the union of two disjoint parts e = (e1, . . . , el) and f = (f1, . . . , fr ) having
the same sum. For simple bipartite graphs, the problem is more difficult.
The Gale–Ryser Theorem [10, 13] is a natural generalization of the
Erdős-Gallai Theorem.

Gale–Ryser Theorem

A pair e = (e1, . . . , el) and f = (f1, . . . , fr ) of sequences of positive
integers in decreasing order can be realized as the degree sequences of the
parts of a bipartite graph iff they have the same sum and for all 1 ≤ k ≤ l ,

k∑
i=1

ei ≤
r∑

i=1

min{k , fi}. (4)
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Manfred Schocker (1970-2006)

There is a direct proof of the Gale–Ryser Theorem, similar to, and a little
easier than Choudum’s proof of the Erdős-Gallai Theorem.

Manfred Schocker [15] proved that the Erdős-Gallai and Gale–Ryser
theorems are equivalent, in the sense that each one can be deduced from
the other. The original papers by Gale and Ryser were both formulated in
terms of matrices, rather than graphs, and their proofs were also matrix
based. This is also the case with Schocker’s proofs.
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There is another way

There is another way of deducing Gale–Ryser from Erdős-Gallai. Given
e = (e1, . . . , el) and f = (f1, . . . , fr ) satisfying the Gale–Ryser condition,
define d as follows: suppose l ≥ r , and set

d = (e1 + l − 1, e2 + l − 1, . . . , el + l − 1, f1, . . . , fr ).

A little (tiresome) work shows that d verifies the Erdős-Gallai condition,
and so d can be realized by a simple graph G ′, with respective vertices
v1, . . . , vl , w1, . . . , wr , say. The degree sequence d has been chosen so that
the restriction of G ′ to v1, . . . , vl is a complete graph; deleting these edges
we obtain the required realization of e, f .

For other proofs and related results, see [2, Chapter 7] and [18, Section
4.3].
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Other results

There are a number of results related to the Erdős-Gallai Theorem; see
[16] and [9, Theorem 5.1]. In fact, some of them predate the Erdős-Gallai
Theorem. Several of these are of the following form: if d ′ is obtained from
d by reducing certain degrees, then d ′ is graphic if d is graphic. For
example, there is the Kleitman–Wang theorem [12]:

Theorem

If d = (d1, . . . , dn) is graphic, then so is the sequence d ′ obtained by
deleting one of the di and subtracting 1 from each of the di largest terms
remaining.
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And questions

There are many papers sequences that can be realised by planar graphs. A
lot of things are known, but we are long way from having a complete
solution. In particular, there are specific concrete sequences for which it is
not known whether they are graphical. In [14], they write: “The great
variety of seemingly unrelated degree sequences which are not planar
graphical (... for example, that 6p−434 is planar graphical if and only if
p ≥ 8 and p is even) strongly suggests that the complete solution to the
above problem is out of reach.”

There are many other natural questions. Basically, given any property of
graphs, you can ask which degree sequences can be realised by graphs
having that property. There are lots of papers of this kind: on Hamiltonian
graphs, bipartite graphs, triangle free graphs, etc. For example, see [8].
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And a final, remarkable result

The Gale–Ryser Theorem is not the final word on the degree sequences of
bipartite graphs. In a recent paper, Alon, Ben-Shimon and Krivelevich
proved the following remarkable result [1, Corollary 2.2]:

Theorem

Let a ≥ 1 be a real. If d = (d1, . . . , dn) is a list of nonnegative integers in
decreasing order and

d1 ≤ min

{
a · dn,

4an

(a + 1)2

}
,

then there exists a simple bipartite graph with degree sequence d on each
side. In particular, this holds for d1 ≤ min{2dn,

8n
9 }.
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Paul Erdős, Personal reminiscences and remarks on the mathematical
work of Tibor Gallai, Combinatorica 2 (1982), no. 3, 207–212.

, In memory of Tibor Gallai, Combinatorica 12 (1992), no. 4,
373–374.

, Obituary of my friend and coauthor Tibor Gallai,
Geombinatorics 2 (1992), no. 1, 5–6.

Grant Cairns (La Trobe) Variations on the Erdős-Gallai Theorem Monash Talk 18.5.2011 22 / 22
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