Combinatorial representations

Peter J. Cameron December 2011

Joint work with Max Gadouleau and Søren Riis see arXiv 1109.1216

Matroids

As we have heard several times in the last week or so, a matroid is a structure for describing the linear independence and dependence of sets of vectors in a vector space.

Matroids

As we have heard several times in the last week or so, a matroid is a structure for describing the linear independence and dependence of sets of vectors in a vector space. Think of the elements of a matroid as being a family $(v_i : i \in E)$ of vectors in a vector space V. (It is a family rather than a set since we don't mind if vectors are repeated.)

Matroids

rank function ...

As we have heard several times in the last week or so, a matroid is a structure for describing the linear independence and dependence of sets of vectors in a vector space. Think of the elements of a matroid as being a family $(v_i : i \in E)$ of vectors in a vector space V. (It is a family rather than a set since we don't mind if vectors are repeated.) A matroid can be described in many different ways: by the

independent sets, the bases, the minimal dependent sets, the

Matroid representations

I will present a matroid by means of its bases.

Matroid representations

I will present a matroid by means of its bases. Let E be the ground set and B the family of bases of a matroid M of rank r. A vector representation of M is an assignment of a vector $v_i \in F^r$ to each $i \in E$, such that, for $i_1, \ldots, i_r \in E$,

 (v_{i_1},\ldots,v_{i_r}) is a basis for $F^r \Leftrightarrow \{i_1,\ldots,i_r\} \in \mathcal{B}$.

... in dual form

Now regard the representing vectors v_1, \ldots, v_r as lying in the dual space of F^r . To emphasise this I will write f_i instead of v_i ; thus f_i is a function from F^r to F.

... in dual form

Now regard the representing vectors v_1, \ldots, v_r as lying in the dual space of F^r . To emphasise this I will write f_i instead of v_i ; thus f_i is a function from F^r to F.

Notation: if $f_{i_1}, \ldots, f_{i_r} : F^r \to F$, then we regard the r-tuple $(f_{i_1}, \ldots, f_{i_r})$ as being a function from F^r to F^r .

... in dual form

Now regard the representing vectors v_1, \ldots, v_r as lying in the dual space of F^r . To emphasise this I will write f_i instead of v_i ; thus f_i is a function from F^r to F.

Notation: if $f_{i_1}, \ldots, f_{i_r} : F^r \to F$, then we regard the r-tuple $(f_{i_1}, \ldots, f_{i_r})$ as being a function from F^r to F^r .

Now a vector representation of the matroid M is an assignment of a linear map $f_i : F^r \to F$ to each $i \in E$, so that

$$(f_{i_1},\ldots,f_{i_r}):F^r\to F^r$$
 is a bijection $\Leftrightarrow \{i_1,\ldots,i_r\}\in\mathcal{B}$.

... generalised

Let \mathcal{B} be any family of r-subsets of a ground set E, and let A be an alphabet of size q. A combinatorial representation of (E, \mathcal{B}) over A is an assignment of a function $f_i : A^r \to A$ to each point $i \in E$ so that

$$(f_{i_1},\ldots,f_{i_r}):A^r\to A^r$$
 is a bijection $\Leftrightarrow \{i_1,\ldots,i_r\}\in\mathcal{B}$.

... generalised

Let \mathcal{B} be any family of r-subsets of a ground set E, and let A be an alphabet of size q. A combinatorial representation of (E, \mathcal{B}) over A is an assignment of a function $f_i : A^r \to A$ to each point $i \in E$ so that

$$(f_{i_1},\ldots,f_{i_r}):A^r\to A^r$$
 is a bijection $\Leftrightarrow \{i_1,\ldots,i_r\}\in\mathcal{B}$.

Thus any vector representation of a matroid, dualised, is a combinatorial representation.

... generalised

Let \mathcal{B} be any family of r-subsets of a ground set E, and let A be an alphabet of size q. A combinatorial representation of (E, \mathcal{B}) over A is an assignment of a function $f_i : A^r \to A$ to each point $i \in E$ so that

$$(f_{i_1},\ldots,f_{i_r}):A^r\to A^r$$
 is a bijection $\Leftrightarrow \{i_1,\ldots,i_r\}\in\mathcal{B}$.

Thus any vector representation of a matroid, dualised, is a combinatorial representation.

If
$$X = \{i_1, \ldots, i_r\}$$
, we denote $(f_{i_1}, \ldots, f_{i_r})$ by f_X .

An example

Let n = 4 and $\mathcal{B} = \{\{1,2\}, \{3,4\}\}$. A combinatorial representation over a 3-element set $\{a,b,c\}$ is given by taking f_1 and f_2 to be the two coordinate functions (that is, $f_1(x,y) = x$ and $f_2(x,y) = y$), and f_3 and f_4 by the tables

and

b	а	а
b	С	b
С	С	а

b	b	С
а	С	С
а	b	а

Note that (E, \mathcal{B}) is not a matroid.

A normalisation

Suppose that $b = \{i_1, ..., i_r\} \in \mathcal{B}$. Define functions g_i , for $i \in E$, by

$$g_i(x_1,\ldots,x_r)=f_i(y_1,\ldots,y_r),$$

where (y_1, \ldots, y_r) is the inverse image of (x_1, \ldots, x_r) under the bijection f_b . These functions also define a combinatorial representation, with the property that g_{ij} is the jth coordinate function. So, where necessary, we may suppose that the first r elements of E form a basis and the first r functions are the coordinate functions. This transformation can be viewed as a change of variables.

Linear representations

Before going to the general case, we observe the following:

Linear representations

Before going to the general case, we observe the following:

Theorem

A set family has a combinatorial representation by linear functions over a field F if and only if it consists of the bases of a matroid (representable over F).

Linear representations

Before going to the general case, we observe the following:

Theorem

A set family has a combinatorial representation by linear functions over a field F if and only if it consists of the bases of a matroid (representable over F).

Proof.

We verify the exchange axiom. Let $B_1, B_2 \in \mathcal{B}$; we may assume that the elements of B_1 are the coordinate functions. Now consider the r-1 functions f_i for $i \in B_2$, $i \neq k$, for some fixed $k \in B_2$. These define a surjective function from F^r to F^{r-1} . Take any non-zero vector in the kernel, and suppose that its lth coordinate is non-zero. Then it is readily checked that the functions with indices in $B_2 \setminus \{k\} \cup \{l\}$ give a bijection from F^r to F^r ; so this set is a basis.

After the last result, the answer is a bit surprising:

After the last result, the answer is a bit surprising:

Theorem

Every uniform set family has a combinatorial representation over some alphabet.

After the last result, the answer is a bit surprising:

Theorem

Every uniform set family has a combinatorial representation over some alphabet.

This depends on the following result:

After the last result, the answer is a bit surprising:

Theorem

Every uniform set family has a combinatorial representation over some alphabet.

This depends on the following result:

Theorem

Let (E, \mathcal{B}_1) and (E, \mathcal{B}_2) be families of r-sets, which have representations over alphabets of cardinalities q_1 and q_2 respectively. Then $(E, \mathcal{B}_1 \cap \mathcal{B}_2)$ has a representation over an alphabet of size q_1q_2 .

Now, to prove the theorem, we observe that

$$\mathcal{B} = \bigcap_{C \notin \mathcal{B}} \left(\binom{E}{r} \setminus \{C\} \right)$$

so it is enough to represent the family consisting of all but one of the *r*-sets; and it is straightforward to show that this family is indeed a representable matroid.

Now, to prove the theorem, we observe that

$$\mathcal{B} = \bigcap_{C \notin \mathcal{B}} \left(\binom{E}{r} \setminus \{C\} \right)$$

so it is enough to represent the family consisting of all but one of the *r*-sets; and it is straightforward to show that this family is indeed a representable matroid.

Note that our proof shows that in fact every set family has a representation by "matrix functions". More on this later.

Now, to prove the theorem, we observe that

$$\mathcal{B} = \bigcap_{C \notin \mathcal{B}} \left(\binom{E}{r} \setminus \{C\} \right)$$

so it is enough to represent the family consisting of all but one of the *r*-sets; and it is straightforward to show that this family is indeed a representable matroid.

Note that our proof shows that in fact every set family has a representation by "matrix functions". More on this later.

Question

Given a set family, what are the cardinalities of alphabets over which it has a combinatorial representation?

Graphs

In the case r = 2, our family is just the edge set of a graph.

Graphs

In the case r = 2, our family is just the edge set of a graph.

Theorem

A graph is representable over all sufficiently large alphabets.

Graphs

In the case r = 2, our family is just the edge set of a graph.

Theorem

A graph is representable over all sufficiently large alphabets.

As a warm-up, let us consider the complete graph. It is readily checked from the definitions that a representation of K_n over an alphabet of size q is the same thing as a set of n-2 mutually orthogonal Latin squares of order q; these are known to exist for all sufficiently large q.

Pairwise balanced designs

A pairwise balanced design, or PBD, consists of a set X and a collection \mathcal{L} of subsets of X (each of size greater than 1) such that every two points of X are contained in a unique "line" in \mathcal{L} . If the line sizes all belong to the set K of positive integers, we call it a PBD(K).

Pairwise balanced designs

A pairwise balanced design, or PBD, consists of a set X and a collection \mathcal{L} of subsets of X (each of size greater than 1) such that every two points of X are contained in a unique "line" in \mathcal{L} . If the line sizes all belong to the set K of positive integers, we call it a PBD(K).

A set K of positive integers is PBD-closed if, whenever there exists a PBD(K) on a set of size v, then $v \in K$.

Pairwise balanced designs

A pairwise balanced design, or PBD, consists of a set X and a collection \mathcal{L} of subsets of X (each of size greater than 1) such that every two points of X are contained in a unique "line" in \mathcal{L} . If the line sizes all belong to the set K of positive integers, we call it a PBD(K).

A set K of positive integers is PBD-closed if, whenever there exists a PBD(K) on a set of size v, then $v \in K$.

Given *K*, we define

$$\begin{array}{rcl} \alpha(K) & = & \gcd\{k-1: k \in K\}, \\ \beta(K) & = & \gcd\{k(k-1): k \in K\}. \end{array}$$

Wilson's Theorem

Wilson's Theorem is well known to design theorists, maybe less so to other combinatorialists.

Wilson's Theorem

Wilson's Theorem is well known to design theorists, maybe less so to other combinatorialists.

Theorem

If K is PBD-closed, then K contains all but finitely many integers v sucn that $\alpha(K) \mid v-1$ and $\beta(K) \mid v(v-1)$.

Wilson's Theorem

Wilson's Theorem is well known to design theorists, maybe less so to other combinatorialists.

Theorem

If K is PBD-closed, then K contains all but finitely many integers v sucn that $\alpha(K) \mid v-1$ and $\beta(K) \mid v(v-1)$.

This is the essential tool in the proof of our theorem.

Sketch proof

A combinatorial representation of a graph is idempotent if f(x,x) = x for all functions f in the representation and all alphabet symbols x.

Sketch proof

A combinatorial representation of a graph is idempotent if f(x,x) = x for all functions f in the representation and all alphabet symbols x.

We claim that the set K of alphabet sizes for which the given graph Γ has an idempotent representation is PBD-closed.

Sketch proof

A combinatorial representation of a graph is idempotent if f(x,x) = x for all functions f in the representation and all alphabet symbols x.

We claim that the set K of alphabet sizes for which the given graph Γ has an idempotent representation is PBD-closed. Let (X, \mathcal{L}) be a PBD, and suppose that Γ has a representation (f^L) with alphabet L, for every line $L \in \mathcal{L}$. Define a representation (f) of Γ over X by the rule that $f_i(x,x) = x$, while if $x \neq y$ then

$$f_i(x,y) = f_i^L(x,y),$$

where L is the unique line containing x and y. It is readily checked that this is a combinatorial representation.

Now it is straightforward to see that the set *K* of alphabet sizes over which Γ has a combinatorial representation satisfies

 $\alpha(K) = 1$ and $\beta(K) = 2$. (Using the proof of the first theorem, we see that *K* contains a sufficiently high power of any prime.) Now it is straightforward to see that the set K of alphabet sizes over which Γ has a combinatorial representation satisfies $\alpha(K)=1$ and $\beta(K)=2$. (Using the proof of the first theorem,

we see that *K* contains a sufficiently high power of any prime.) By Wilson's Theorem, *K* contains all sufficiently large integers, and we are done.

Now it is straightforward to see that the set K of alphabet sizes over which Γ has a combinatorial representation satisfies $\alpha(K)=1$ and $\beta(K)=2$. (Using the proof of the first theorem, we see that K contains a sufficiently high power of any prime.) By Wilson's Theorem, K contains all sufficiently large integers, and we are done.

Question

Does an analogous result hold for families of r-sets with r > 2?

Matrix representations

We saw that, if two families of sets have representations, then their intersection has a representation given by a "direct product" construction over the Cartesian product of the alphabets.

Matrix representations

We saw that, if two families of sets have representations, then their intersection has a representation given by a "direct product" construction over the Cartesian product of the alphabets.

In particular, if two families have linear representations over F, then their intersection has a "representation by two-rowed matrices", each point associated with a function from $(F^r)^2$ to F^2 .

A question

Question

Which set families have representations by two-rowed matrices?

A question

Question

Which set families have representations by two-rowed matrices?

This condition is strictly stronger than that of being the intersection of two representable matroids. An example is given by

$$E = \{1, \dots, 6\}, \mathcal{B} = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}.$$

A question

Question

Which set families have representations by two-rowed matrices?

This condition is strictly stronger than that of being the intersection of two representable matroids. An example is given by

$$E = \{1, \ldots, 6\}, \mathcal{B} = \{\{1, 2\}, \{3, 4\}, \{5, 6\}\}.$$

There are families which do not have representations by two-rowed matrices. An example is given by

$$E = \{1, ..., 7\}, \mathcal{B} = \{\{1, 2\}, \{3, 4\}, \{5, 6\}, \{5, 7\}, \{6, 7\}\}.$$

The proof of non-representability uses the Ingleton inequality.

A rank function for a set family (E, \mathcal{B}) is a function $\operatorname{rk}: 2^E \to [0, r]$ satisfying

▶ $0 \le \operatorname{rk}(X) \le |X|$ for all $X \subseteq E$.

A rank function for a set family (E, \mathcal{B}) is a function $\mathrm{rk}: 2^E \to [0, r]$ satisfying

- ▶ $0 \le \operatorname{rk}(X) \le |X|$ for all $X \subseteq E$.
- ▶ $X \subseteq Y$ implies $rk(X) \le rk(Y)$.

A rank function for a set family (E, \mathcal{B}) is a function $\operatorname{rk}: 2^E \to [0, r]$ satisfying

- ▶ $0 \le \operatorname{rk}(X) \le |X|$ for all $X \subseteq E$.
- ▶ $X \subseteq Y$ implies $rk(X) \le rk(Y)$.
- ▶ rk is submodular, that is, for any subsets *X*, *Y* of *E*,

$$rk(X \cap Y) + rk(X \cup Y) \le rk(X) + rk(Y).$$

A rank function for a set family (E, \mathcal{B}) is a function $\mathrm{rk}: 2^E \to [0, r]$ satisfying

- ▶ $0 \le \operatorname{rk}(X) \le |X|$ for all $X \subseteq E$.
- ▶ $X \subseteq Y$ implies $rk(X) \le rk(Y)$.
- ▶ rk is submodular, that is, for any subsets *X*, *Y* of *E*,

$$rk(X \cap Y) + rk(X \cup Y) \le rk(X) + rk(Y)$$
.

▶ If |X| = r, then $\operatorname{rk}(X) = r$ if and only if $X \in \mathcal{B}$.

A rank function for a set family (E, \mathcal{B}) is a function $\mathrm{rk}: 2^E \to [0, r]$ satisfying

- ▶ $0 \le \operatorname{rk}(X) \le |X|$ for all $X \subseteq E$.
- ▶ $X \subseteq Y$ implies $rk(X) \le rk(Y)$.
- ▶ rk is submodular, that is, for any subsets *X*, *Y* of *E*,

$$rk(X \cap Y) + rk(X \cup Y) \le rk(X) + rk(Y).$$

▶ If |X| = r, then $\operatorname{rk}(X) = r$ if and only if $X \in \mathcal{B}$.

The first three conditions are equivalent to the definition of a polymatroid.

Rank functions from representations

Theorem

Let $f = (f_i)$ be a representation of (E, \mathcal{B}) over an alphabet X of size q. Then the function r_f , defined by $r_f(S) = H(f_S)$, is a rank function for (E, \mathcal{B}) .

Rank functions from representations

Theorem

Let $f = (f_i)$ be a representation of (E, \mathcal{B}) over an alphabet X of size q. Then the function r_f , defined by $r_f(S) = H(f_S)$, is a rank function for (E, \mathcal{B}) .

Here *H* is the *q*-ary entropy function given by

$$H(f_S) = -\sum \frac{|f_S^{-1}(a)|}{q^r} \log_q \left(\frac{|f_S^{-1}(a)|}{q^r} \right).$$

Rank functions from representations

Theorem

Let $f = (f_i)$ be a representation of (E, \mathcal{B}) over an alphabet X of size q. Then the function r_f , defined by $r_f(S) = H(f_S)$, is a rank function for (E, \mathcal{B}) .

Here *H* is the *q*-ary entropy function given by

$$H(f_S) = -\sum \frac{|f_S^{-1}(a)|}{q^r} \log_q \left(\frac{|f_S^{-1}(a)|}{q^r} \right).$$

The converse is false; there are rank functions which do not arise from any combinatorial representation.

If we set $r_m(X) = \max_{B \in \mathcal{B}} |B \cap X|$ and $r_M(X) = \min\{r, |X|\}$, (so that r_M is the rank function for the uniform matroid of rank r), then it is easy to see that $r_m(X) \leq \operatorname{rk}(X) \leq r_M(X)$.

If we set $r_m(X) = \max_{B \in \mathcal{B}} |B \cap X|$ and $r_M(X) = \min\{r, |X|\}$, (so that r_M is the rank function for the uniform matroid of rank r), then it is easy to see that $r_m(X) \leq \operatorname{rk}(X) \leq r_M(X)$.

Hence (E, \mathcal{B}) is a matroid if and only if it has an integer-valued rank function.

If we set $r_m(X) = \max_{B \in \mathcal{B}} |B \cap X|$ and $r_M(X) = \min\{r, |X|\}$, (so that r_M is the rank function for the uniform matroid of rank r), then it is easy to see that $r_m(X) \le \operatorname{rk}(X) \le r_M(X)$.

Hence (E, \mathcal{B}) is a matroid if and only if it has an integer-valued rank function.

On the other hand, we have:

Theorem

Any family (E, \mathcal{B}) has a rank function which takes integer or half-integer values (or indeed, values in the rationals with denominator dividing p, for any p > 1).

If we set $r_m(X) = \max_{B \in \mathcal{B}} |B \cap X|$ and $r_M(X) = \min\{r, |X|\}$, (so that r_M is the rank function for the uniform matroid of rank r), then it is easy to see that $r_m(X) \le \operatorname{rk}(X) \le r_M(X)$.

Hence (E, \mathcal{B}) is a matroid if and only if it has an integer-valued rank function.

On the other hand, we have:

Theorem

Any family (E, \mathcal{B}) has a rank function which takes integer or half-integer values (or indeed, values in the rationals with denominator dividing p, for any p > 1).

An example of such a function is given by

$$\operatorname{rk}(X) = \begin{cases} |X| & \text{if } |X| \le r - 1 \text{ or } X \in \mathcal{B}, \\ r - 1/p & \text{if } |X| = r, X \notin \mathcal{B}, \\ r & \text{if } |X| \ge r + 1. \end{cases}$$

If we set $r_m(X) = \max_{B \in \mathcal{B}} |B \cap X|$ and $r_M(X) = \min\{r, |X|\}$, (so that r_M is the rank function for the uniform matroid of rank r), then it is easy to see that $r_m(X) \le \operatorname{rk}(X) \le r_M(X)$.

Hence (E, \mathcal{B}) is a matroid if and only if it has an integer-valued rank function.

On the other hand, we have:

Theorem

Any family (E, \mathcal{B}) has a rank function which takes integer or half-integer values (or indeed, values in the rationals with denominator dividing p, for any p > 1).

An example of such a function is given by

$$\operatorname{rk}(X) = \begin{cases} |X| & \text{if } |X| \le r - 1 \text{ or } X \in \mathcal{B}, \\ r - 1/p & \text{if } |X| = r, X \notin \mathcal{B}, \\ r & \text{if } |X| \ge r + 1. \end{cases}$$

We see that the function r_M is the supremum of all rank functions for (E, \mathcal{B}) , and can be approached arbitrarily closely.

In the other direction, we have:

Theorem

Let (E, \mathcal{B}) be a set family of rank r. Then there is a set X with |X| = r and $r_m(X) = (r + I)/2$, where

$$I = \min_{B \in \mathcal{B}} \max_{C \in \mathcal{B}, C \neq B} |B \cap C|.$$

Moreover, for any rank function rk, we have

$$\operatorname{rk}(X) - r_m(X) \ge (r - I)/4.$$

In the other direction, we have:

Theorem

Let (E, \mathcal{B}) be a set family of rank r. Then there is a set X with |X| = r and $r_m(X) = (r + I)/2$, where

$$I = \min_{B \in \mathcal{B}} \max_{C \in \mathcal{B}, C \neq B} |B \cap C|.$$

Moreover, for any rank function rk, we have

$$\operatorname{rk}(X) - r_m(X) \ge (r - I)/4.$$

So a basis disjoint from all other bases leads to large differences between any rank function and the lower bound r_m .

A rank function defines a closure operator cl, by

$$\operatorname{cl}(X) = \{e \in E : \operatorname{rk}(X \cup \{e\}) = \operatorname{rk}(X)\}.$$

A rank function defines a closure operator cl, by

$$\mathrm{cl}(X) = \{e \in E : \mathrm{rk}(X \cup \{e\}) = \mathrm{rk}(X)\}.$$

It has the properties

▶ $X \subseteq cl(X)$ for all $X \subseteq E$.

A rank function defines a closure operator cl, by

$$\mathrm{cl}(X) = \{e \in E : \mathrm{rk}(X \cup \{e\}) = \mathrm{rk}(X)\}.$$

- ▶ $X \subseteq cl(X)$ for all $X \subseteq E$.
- ▶ If $X \subseteq Y$, then $cl(X) \subseteq cl(Y)$.

A rank function defines a closure operator cl, by

$$\mathrm{cl}(X) = \{e \in E : \mathrm{rk}(X \cup \{e\}) = \mathrm{rk}(X)\}.$$

- ▶ $X \subseteq cl(X)$ for all $X \subseteq E$.
- ▶ If $X \subseteq Y$, then $cl(X) \subseteq cl(Y)$.
- $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}(X)$ for all $X \subseteq E$.

A rank function defines a closure operator cl, by

$$\mathrm{cl}(X) = \{e \in E : \mathrm{rk}(X \cup \{e\}) = \mathrm{rk}(X)\}.$$

- ▶ $X \subseteq cl(X)$ for all $X \subseteq E$.
- ▶ If $X \subseteq Y$, then $cl(X) \subseteq cl(Y)$.
- $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}(X)$ for all $X \subseteq E$.
- ▶ $\operatorname{rk}(\operatorname{cl}(X)) = \operatorname{rk}(X)$ for all $X \subseteq E$.

A rank function defines a closure operator cl, by

$$\mathrm{cl}(X) = \{e \in E : \mathrm{rk}(X \cup \{e\}) = \mathrm{rk}(X)\}.$$

- ▶ $X \subseteq cl(X)$ for all $X \subseteq E$.
- ▶ If $X \subseteq Y$, then $cl(X) \subseteq cl(Y)$.
- $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}(X)$ for all $X \subseteq E$.
- $ightharpoonup \operatorname{rk}(\operatorname{cl}(X)) = \operatorname{rk}(X) \text{ for all } X \subseteq E.$
- $ightharpoonup \operatorname{cl}(X) = E \text{ if and only if } \operatorname{rk}(X) = r.$

A rank function defines a closure operator cl, by

$$\operatorname{cl}(X) = \{ e \in E : \operatorname{rk}(X \cup \{e\}) = \operatorname{rk}(X) \}.$$

It has the properties

- ▶ $X \subseteq cl(X)$ for all $X \subseteq E$.
- ▶ If $X \subseteq Y$, then $cl(X) \subseteq cl(Y)$.
- $\operatorname{cl}(\operatorname{cl}(X)) = \operatorname{cl}(X)$ for all $X \subseteq E$.
- $ightharpoonup \operatorname{rk}(\operatorname{cl}(X)) = \operatorname{rk}(X) \text{ for all } X \subseteq E.$
- $ightharpoonup \operatorname{cl}(X) = E \text{ if and only if } \operatorname{rk}(X) = r.$

Not every closure operator (satisfying the first three conditions) comes from a rank function.

Closure in a representation

If the rank function arises from a combinatorial representation $f = (f_e : e \in E)$, then we have

$$\operatorname{cl}(X) = \{e \in E : f_X \text{ refines } f_e\}.$$

(We say that f_1 refines f_2 if $f_1(x) = f_1(y)$ implies $f_2(x) = f_2(y)$.)