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Matroids

As we have heard several times in the last week or so, a
matroid is a structure for describing the linear independence
and dependence of sets of vectors in a vector space.

Think of the elements of a matroid as being a family (vi : i ∈ E)
of vectors in a vector space V. (It is a family rather than a set
since we don’t mind if vectors are repeated.)
A matroid can be described in many different ways: by the
independent sets, the bases, the minimal dependent sets, the
rank function . . .
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Matroid representations

I will present a matroid by means of its bases.

Let E be the ground set and B the family of bases of a
matroid M of rank r. A vector representation of M is an
assignment of a vector vi ∈ Fr to each i ∈ E, such that, for
i1, . . . , ir ∈ E,

(vi1 , . . . , vir) is a basis for Fr ⇔ {i1, . . . , ir} ∈ B.
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. . . in dual form

Now regard the representing vectors v1, . . . , vr as lying in the
dual space of Fr. To emphasise this I will write fi instead of vi;
thus fi is a function from Fr to F.

Notation: if fi1 , . . . , fir : Fr → F, then we regard the r-tuple
(fi1 , . . . , fir) as being a function from Fr to Fr.
Now a vector representation of the matroid M is an assignment
of a linear map fi : Fr → F to each i ∈ E, so that

(fi1 , . . . , fir) : Fr → Fr is a bijection ⇔ {i1, . . . , ir} ∈ B.
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. . . generalised

Let B be any family of r-subsets of a ground set E, and let A be
an alphabet of size q. A combinatorial representation of (E,B)
over A is an assignment of a function fi : Ar → A to each point
i ∈ E so that

(fi1 , . . . , fir) : Ar → Ar is a bijection ⇔ {i1, . . . , ir} ∈ B.

Thus any vector representation of a matroid, dualised, is a
combinatorial representation.
If X = {i1, . . . , ir}, we denote (fi1 , . . . , fir) by fX.
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An example

Let n = 4 and B = {{1, 2}, {3, 4}}. A combinatorial
representation over a 3-element set {a, b, c} is given by taking f1
and f2 to be the two coordinate functions (that is, f1(x, y) = x
and f2(x, y) = y), and f3 and f4 by the tables

b a a
b c b
c c a

and
b b c
a c c
a b a

.

Note that (E,B) is not a matroid.



A normalisation

Suppose that b = {i1, . . . , ir} ∈ B. Define functions gi, for i ∈ E,
by

gi(x1, . . . , xr) = fi(y1, . . . , yr),

where (y1, . . . , yr) is the inverse image of (x1, . . . , xr) under the
bijection fb. These functions also define a combinatorial
representation, with the property that gij is the jth coordinate
function. So, where necessary, we may suppose that the first r
elements of E form a basis and the first r functions are the
coordinate functions. This transformation can be viewed as a
change of variables.



Linear representations

Before going to the general case, we observe the following:

Theorem
A set family has a combinatorial representation by linear functions
over a field F if and only if it consists of the bases of a matroid
(representable over F).

Proof.
We verify the exchange axiom. Let B1, B2 ∈ B; we may assume
that the elements of B1 are the coordinate functions. Now
consider the r− 1 functions fi for i ∈ B2, i 6= k, for some fixed
k ∈ B2. These define a surjective function from Fr to Fr−1. Take
any non-zero vector in the kernel, and suppose that its lth
coordinate is non-zero. Then it is readily checked that the
functions with indices in B2 \ {k} ∪ {l} give a bijection from Fr

to Fr; so this set is a basis.
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Which families are representable?

After the last result, the answer is a bit surprising:

Theorem
Every uniform set family has a combinatorial representation over
some alphabet.
This depends on the following result:

Theorem
Let (E,B1) and (E,B2) be families of r-sets, which have
representations over alphabets of cardinalities q1 and q2 respectively.
Then (E,B1 ∩ B2) has a representation over an alphabet of size q1q2.
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Now, to prove the theorem, we observe that

B =
⋂

C/∈B

((
E
r

)
\ {C}

)
so it is enough to represent the family consisting of all but one
of the r-sets; and it is straightforward to show that this family is
indeed a representable matroid.

Note that our proof shows that in fact every set family has a
representation by “matrix functions”. More on this later.

Question
Given a set family, what are the cardinalities of alphabets over which
it has a combinatorial representation?
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Graphs

In the case r = 2, our family is just the edge set of a graph.

Theorem
A graph is representable over all sufficiently large alphabets.
As a warm-up, let us consider the complete graph. It is readily
checked from the definitions that a representation of Kn over an
alphabet of size q is the same thing as a set of n− 2 mutually
orthogonal Latin squares of order q; these are known to exist
for all sufficiently large q.
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Pairwise balanced designs

A pairwise balanced design, or PBD, consists of a set X and a
collection L of subsets of X (each of size greater than 1) such
that every two points of X are contained in a unique “line” in
L. If the line sizes all belong to the set K of positive integers, we
call it a PBD(K).

A set K of positive integers is PBD-closed if, whenever there
exists a PBD(K) on a set of size v, then v ∈ K.
Given K, we define

α(K) = gcd{k− 1 : k ∈ K},
β(K) = gcd{k(k− 1) : k ∈ K}.
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Wilson’s Theorem

Wilson’s Theorem is well known to design theorists, maybe less
so to other combinatorialists.

Theorem
If K is PBD-closed, then K contains all but finitely many integers v
sucn that α(K) | v− 1 and β(K) | v(v− 1).
This is the essential tool in the proof of our theorem.
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Sketch proof

A combinatorial representation of a graph is idempotent if
f (x, x) = x for all functions f in the representation and all
alphabet symbols x.

We claim that the set K of alphabet sizes for which the given
graph Γ has an idempotent representation is PBD-closed.
Let (X,L) be a PBD, and suppose that Γ has a representation
(f L) with alphabet L, for every line L ∈ L. Define a
representation (f ) of Γ over X by the rule that fi(x, x) = x, while
if x 6= y then

fi(x, y) = f L
i (x, y),

where L is the unique line containing x and y. It is readily
checked that this is a combinatorial representation.
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Now it is straightforward to see that the set K of alphabet sizes
over which Γ has a combinatorial representation satisfies
α(K) = 1 and β(K) = 2. (Using the proof of the first theorem,
we see that K contains a sufficiently high power of any prime.)

By Wilson’s Theorem, K contains all sufficiently large integers,
and we are done.

Question
Does an analogous result hold for families of r-sets with r > 2?
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Matrix representations

We saw that, if two families of sets have representations, then
their intersection has a representation given by a “direct
product” construction over the Cartesian product of the
alphabets.

In particular, if two families have linear representations over F,
then their intersection has a “representation by two-rowed
matrices”, each point associated with a function from (Fr)2 to
F2.
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A question

Question
Which set families have representations by two-rowed matrices?

This condition is strictly stronger than that of being the
intersection of two representable matroids. An example is
given by

E = {1, . . . , 6},B = {{1, 2}, {3, 4}, {5, 6}}.

There are families which do not have representations by
two-rowed matrices. An example is given by

E = {1, . . . , 7},B = {{1, 2}, {3, 4}, {5, 6}, {5, 7}, {6, 7}}.

The proof of non-representability uses the Ingleton inequality.
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Rank functions

A rank function for a set family (E,B) is a function
rk : 2E → [0, r] satisfying

I 0 ≤ rk(X) ≤ |X| for all X ⊆ E.

I X ⊆ Y implies rk(X) ≤ rk(Y).
I rk is submodular, that is, for any subsets X, Y of E,

rk(X ∩ Y) + rk(X ∪ Y) ≤ rk(X) + rk(Y).

I If |X| = r, then rk(X) = r if and only if X ∈ B.
The first three conditions are equivalent to the definition of a
polymatroid.
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Rank functions from representations

Theorem
Let f = (fi) be a representation of (E,B) over an alphabet X of size q.
Then the function rf , defined by rf (S) = H(fS), is a rank function for
(E,B).

Here H is the q-ary entropy function given by

H(fS) = −∑
|f−1

S (a)|
qr logq

(
|f−1

S (a)|
qr

)
.

The converse is false; there are rank functions which do not
arise from any combinatorial representation.
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Bounds for rank functions
If we set rm(X) = maxB∈B |B∩X| and rM(X) = min{r, |X|}, (so
that rM is the rank function for the uniform matroid of rank r),
then it is easy to see that rm(X) ≤ rk(X) ≤ rM(X).

Hence (E,B) is a matroid if and only if it has an integer-valued
rank function.
On the other hand, we have:

Theorem
Any family (E,B) has a rank function which takes integer or
half-integer values (or indeed, values in the rationals with
denominator dividing p, for any p > 1).
An example of such a function is given by

rk(X) =


|X| if |X| ≤ r− 1 or X ∈ B,
r− 1/p if |X| = r, X /∈ B,
r if |X| ≥ r + 1.

We see that the function rM is the supremum of all rank
functions for (E,B), and can be approached arbitrarily closely.
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An example of such a function is given by

rk(X) =


|X| if |X| ≤ r− 1 or X ∈ B,
r− 1/p if |X| = r, X /∈ B,
r if |X| ≥ r + 1.

We see that the function rM is the supremum of all rank
functions for (E,B), and can be approached arbitrarily closely.
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In the other direction, we have:

Theorem
Let (E,B) be a set family of rank r. Then there is a set X with |X| = r
and rm(X) = (r + I)/2, where

I = min
B∈B

max
C∈B,C 6=B

|B∩ C|.

Moreover, for any rank function rk, we have

rk(X)− rm(X) ≥ (r− I)/4.

So a basis disjoint from all other bases leads to large differences
between any rank function and the lower bound rm.
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Closure

A rank function defines a closure operator cl, by

cl(X) = {e ∈ E : rk(X ∪ {e}) = rk(X)}.

It has the properties
I X ⊆ cl(X) for all X ⊆ E.
I If X ⊆ Y, then cl(X) ⊆ cl(Y).
I cl(cl(X)) = cl(X) for all X ⊆ E.
I rk(cl(X)) = rk(X) for all X ⊆ E.
I cl(X) = E if and only if rk(X) = r.

Not every closure operator (satisfying the first three conditions)
comes from a rank function.
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Closure in a representation

If the rank function arises from a combinatorial representation
f = (fe : e ∈ E), then we have

cl(X) = {e ∈ E : fX refines fe}.

(We say that f1 refines f2 if f1(x) = f1(y) implies f2(x) = f2(y).)


