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Hadamard’s theorem

Let H be an n× n matrix, all of whose entries are at most 1 in
modulus. How large can det(H) be?

Now det(H) is equal to the volume of the n-dimensional
parallelepiped spanned by the rows of H. By assumption, each
row has Euclidean length at most n1/2, so that det(H) ≤ nn/2;
equality holds if and only if

I every entry of H is ±1;
I the rows of H are orthogonal, that is, HH> = nI.

A matrix attaining the bound is a Hadamard matrix.
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Remarks

I HH> = nI⇒ H−1 = n−1H> ⇒ H>H = nI, so a Hadamard
matrix also has orthogonal columns.

I Changing signs of rows or columns, permuting rows or
columns, or transposing preserve the Hadamard property.

Examples of Hadamard matrices include

(
+
)

,
(
+ +
+ −

)
,


+ + + +
+ + − −
+ − + −
+ − − +
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Orders of Hadamard matrices

Theorem
The order of a Hadamard matrix is 1, 2 or a multiple of 4.

We can ensure that the first row consists of all +s by column
sign changes. Then (assuming at least three rows) we can bring
the first three rows into the following shape by column
permutations:

a︷ ︸︸ ︷
+ . . . +

b︷ ︸︸ ︷
+ . . . +

c︷ ︸︸ ︷
+ . . . +

d︷ ︸︸ ︷
+ . . . +

+ . . . + + . . . + − . . . − − . . . −
+ . . . + − . . . − + . . . + − . . . −


Now orthogonality of rows gives

a + b = c + d = a + c = b + d = a + d = b + c = n/2,

so a = b = c = d = n/4.
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The Hadamard conjecture

The Hadamard conjecture asserts that a Hadamard matrix
exists of every order divisible by 4. The smallest multiple of 4
for which no such matrix is currently known is 668, the value
428 having been settled only in 2005.



Conference matrices
A conference matrix of order n is an n× n matrix C with
diagonal entries 0 and off-diagonal entries ±1 which satisfies
CC> = (n− 1)I.

We have:

I The defining equation shows that any two rows of C are
orthogonal. The contributions to the inner product of the
ith and jth rows coming from the ith and jth positions are
zero; each further position contributes +1 or −1; there
must be equally many (namely (n− 2)/2) contributions of
each sign. So n is even.

I The defining equation gives C−1 = (1/(n− 1))C>, whence
C>C = (n− 1)I. So the columns are also pairwise
orthogonal.

I The property of being a conference matrix is unchanged
under changing the sign of any row or column, or
simultaneously applying the same permutation to rows
and columns.
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Symmetric and skew-symmetric

Using row and column sign changes, we can assume that all
entries in the first row and column (apart from their
intersection) are +1; then any row other than the first has n/2
entries +1 (including the first entry) and (n− 2)/2 entries −1.
Let C be such a matrix, and let S be the matrix obtained from C
by deleting the first row and column.

Theorem
If n ≡ 2 (mod 4) then S is symmetric; if n ≡ 0 (mod 4) then S is
skew-symmetric.
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Proof of the theorem
Suppose first that S is not symmetric. Without loss of
generality, we can assume that S12 = +1 while S21 = −1. Each
row of S has m entries +1 and m entries −1, where n = 2m + 2;
and the inner product of two rows is −1.

Suppose that the first two rows look as follows:

0 + + · · ·+ + · · ·+ − · · · − − · · · −
− 0 + · · ·+︸ ︷︷ ︸

a

− · · · −︸ ︷︷ ︸
b

+ · · ·+︸ ︷︷ ︸
c

− · · · −︸ ︷︷ ︸
d

Now row 1 gives a + b = m− 1, c + d = m;
row 2 gives a + c = m, b + d = m− 1;
and the inner product gives a + d = m− 1, b + c = m.
From these we obtain

a = 1
2 ((a + b) + (a + c)− (b + c)) = (m− 1)/2,

so m is odd, and n ≡ 0 (mod 4).

The other case is similar.
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By slight abuse of language, we call a normalised conference
matrix C symmetric or skew according as S is symmetric or skew
(that is, according to the congruence on n (mod 4)). A
“symmetric” conference matrix really is symmetric, while a
skew conference matrix becomes skew if we change the sign of
the first column.



Symmetric conference matrices

Let C be a symmetric conference matrix. Let A be obtained from
S by replacing +1 by 0 and −1 by 1.Then A is the incidence
matrix of a strongly regular graph of Paley type: that is, a graph
with n− 1 vertices in which every vertex has degree (n− 2)/2,
two adjacent vertices have (n− 6)/4 common neighbours, and
two non-adjacent vertices have (n− 2)/4 common neighbours.
The matrix S is called the Seidel adjacency matrix of the graph.

The complementary graph has the same properties.
Symmetric conference matrices are associated with other
combinatorial objects, among them regular two-graphs, sets of
equiangular lines in Euclidean space, switching classes of
graphs. Note that the same conference matrix can give rise to
many different strongly regular graphs by choosing a different
row and column for the normalisation.



Symmetric conference matrices

Let C be a symmetric conference matrix. Let A be obtained from
S by replacing +1 by 0 and −1 by 1.Then A is the incidence
matrix of a strongly regular graph of Paley type: that is, a graph
with n− 1 vertices in which every vertex has degree (n− 2)/2,
two adjacent vertices have (n− 6)/4 common neighbours, and
two non-adjacent vertices have (n− 2)/4 common neighbours.
The matrix S is called the Seidel adjacency matrix of the graph.
The complementary graph has the same properties.

Symmetric conference matrices are associated with other
combinatorial objects, among them regular two-graphs, sets of
equiangular lines in Euclidean space, switching classes of
graphs. Note that the same conference matrix can give rise to
many different strongly regular graphs by choosing a different
row and column for the normalisation.



Symmetric conference matrices

Let C be a symmetric conference matrix. Let A be obtained from
S by replacing +1 by 0 and −1 by 1.Then A is the incidence
matrix of a strongly regular graph of Paley type: that is, a graph
with n− 1 vertices in which every vertex has degree (n− 2)/2,
two adjacent vertices have (n− 6)/4 common neighbours, and
two non-adjacent vertices have (n− 2)/4 common neighbours.
The matrix S is called the Seidel adjacency matrix of the graph.
The complementary graph has the same properties.
Symmetric conference matrices are associated with other
combinatorial objects, among them regular two-graphs, sets of
equiangular lines in Euclidean space, switching classes of
graphs. Note that the same conference matrix can give rise to
many different strongly regular graphs by choosing a different
row and column for the normalisation.



A theorem of van Lint and Seidel asserts that, if a symmetric
conference matrix of order n exists, then n− 1 is the sum of two
squares. Thus there is no such matrix of order 22 or 34. They
exist for all other orders up to 42 which are congruent to 2
(mod 4), and a complete classification of these is known up to
order 30.

The simplest construction is that by Paley, in the case where
n− 1 is a prime power: the matrix S has rows and columns
indexed by the finite field of order n− 1, and the (i, j) entry is
+1 if j− i is a non-zero square in the field, −1 if it is a
non-square, and 0 if i = j.
Symmetric conference matrices first arose in the field of
conference telephony.
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Skew conference matrices

Let C be a “skew conference matrix”. By changing the sign of
the first column, we can ensure that C really is skew: that is,
C> = −C. Now (C + I)(C> + I) = nI, so H = C + I is a
Hadamard matrix. By similar abuse of language, it is called a
skew-Hadamard matrix: apart from the diagonal, it is skew.
Conversely, if H is a skew-Hadamard matrix, then H− I is a
skew conference matrix.

It is conjectured that skew-Hadamard matrices exist for every
order divisible by 4. Many examples are known. The simplest
are the Paley matrices, defined as in the symmetric case, but
skew-symmetric because −1 is a non-square in the field of
order q in this case.
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If C is a skew conference matrix, then S is the adjacency matrix
of a strongly regular tournament (also called a doubly regular
tournament: this is a directed graph on n− 1 vertices in which
every vertex has in-degree and out-degree (n− 2)/2 and every
pair of vertices have (n− 4)/4 common in-neighbours (and the
same number of out-neighbours). Again this is equivalent to
the existence of a skew conference matrix.



Dennis Lin’s problem
Dennis Lin is interested in skew-symmetric matrices C with
diagonal entries 0 (as they must be) and off-diagonal entries
±1, and also in matrices of the form H = C + I with C as
described. He is interested in the largest possible determinant
of such matrices of given size. Of course, it is natural to use the
letters C and H for such matrices, but they are not necessarily
conference or Hadamard matrices. So I will call them cold
matrices and hot matrices respectively.



Dennis Lin’s problem
Dennis Lin is interested in skew-symmetric matrices C with
diagonal entries 0 (as they must be) and off-diagonal entries
±1, and also in matrices of the form H = C + I with C as
described. He is interested in the largest possible determinant
of such matrices of given size. Of course, it is natural to use the
letters C and H for such matrices, but they are not necessarily
conference or Hadamard matrices. So I will call them cold
matrices and hot matrices respectively.



Of course, if n is a multiple of 4, the maximum determinant for
C is realised by a skew conference matrix (if one exists, as is
conjectured to be always the case), and the maximum
determinant for H is realised by a skew-Hadamard matrix. In
other words, the maximum-determinant cold and hot matrices
C and H are related by H = C + I.

In view of the skew-Hadamard conjecture, I will not consider
multiples of 4 for which a skew conference matrix fails to exist.
A skew-symmetric matrix of odd order has determinant zero;
so there is nothing interesting to say in this case. So the
remaining case is that in which n is congruent to 2 (mod 4).
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Lin made the first half of the following conjecture, and the
second half seems as well supported:

Conjecture

For orders congruent to 2 (mod 4), if C is a cold matrix with
maximum determinant, then C + I is a hot matrix with maximum
determinant; and, if H is a hot matrix with maximum determinant,
then H− I is a cold matrix with maximum determinant.
Of course, he is also interested in the related questions:

I What is the maximum determinant?
I How do you construct matrices achieving this maximum

(or at least coming close)?
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Hot matrices

Ehlich and Wojtas (independently) considered the question of
the largest possible determinant of a matrix with entries ±1
when the order is not a multiple of 4. They showed:

Theorem
For n ≡ 2 (mod 4), the determinant of an n× n matrix with entries
±1 is at most 2(n− 1)(n− 2)(n−2)/2.
Of course this is also an upper bound for the determinant of a
hot matrix.
We believe there should be a similar bound for the determinant
of a cold matrix.
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Meeting the Ehlich–Wojtas bound

Will Orrick (personal communication) showed:

Theorem
A hot matrix of order n can achieve the Ehlich–Wojtas bound if and
only if 2n− 3 is a perfect square.
This allows n = 6, 14, 26 and 42, but forbids, for example,
n = 10, 18 and 22.
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Computational results

These are due to me, Will Orrick, and Gordon Royle.

Lin’s conjecture is confirmed for n = 6 and n = 10. The
maximum determinants of hot and cold matrices are (160, 81)
for n = 6 (the former meeting the EW bound) and
(64000, 33489) for n = 10 (the EW bound is 73728). In each case
there is a unique maximising matrix up to equivalence.
Random search by Gordon Royle gives strong evidence for the
truth of Lin’s conjecture for n = 14, 18, 22 and 26, and indeed
finds only a few equivalence classes of maximising matrices in
these cases.
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Will Orrick searched larger matrices, assuming a special
bi-circulant form for the matrices. He was less convinced of the
truth of Lin’s conjecture; he conjectures that the maximum
determinant of a hot matrix is at least cnn/2 for some positive
constant c, and found pairs of hot matrices with determinants
around 0.45nn/2 where the determinants of the corresponding
cold matrices are ordered the other way.


