Cycles of length 3 and 4 in tournaments

Timothy F. N. Chan

Joint work with: Andrzej Grzesik (Kraków) Daniel Kráľ (Brno) Jonathan A. Noel (Warwick)

March 18, 2019

Context

Mantel 1907: Any graph with more than $\lfloor n^2/4 \rfloor$ copies of K_2 contains a copy of K_3 .

Erdős-Rademacher problem: If a graph exceeds $\lfloor n^2/4 \rfloor$ copies of K_2 , how many copies of K_3 are forced?

A: Asymptotically solved by Razborov 2008, using flag algebras.

Topic of this talk: Analogous problem for **tournaments**.

Tournaments

Complete graph with every edge given a direction. e.g. random tournament, transitive tournament

Q: What is the minimum number of K_3 's in a graph with a given number of K_2 's?

Q: What is the minimum number of K_3 's in a tournament with a given number of K_2 's?

Q: What is the minimum number of K_3 's in a tournament with a given number of K_2 's?

Q: What is the minimum number of C_4 's in a tournament with a given number of C_3 's?

Q: What is the minimum number of K_3 's in a tournament with a given number of K_2 's?

Q: What is the minimum number of C_4 's in a tournament with a given number of C_3 's?

density:

 $c_{\ell}(T) :=$ probability that a random mapping from $V(C_{\ell})$ to V(T) is a homomorphism i.e. arcs of C_{ℓ} map to arcs of T.

$$c_3(T) = (3+3)/4^3 = 3/32$$

Q: Given $c_3(T)$, asymptotically minimise $c_4(T)$.

An extremal construction?

Fix $z \in [0,1]$. Create as many blocks of vertices of size zn as possible, and put the remaining $\leq zn$ vertices in a single block. Edges within blocks behave randomly, edges between blocks go to the right.

"random blow-up of a transitive tournament"

An extremal construction?

Fix $z \in [0,1]$. Create as many blocks of vertices of size zn as possible, and put the remaining $\leq zn$ vertices in a single block. Edges within blocks behave randomly, edges between blocks go to the right.

"random blow-up of a transitive tournament"

$$c_3(T) = rac{1}{8} \left(\lfloor z^{-1} \rfloor z^3 + \left(1 - \lfloor z^{-1} \rfloor z \right)^3 \right) + o(1)$$
 $c_4(T) = rac{1}{16} \left(\lfloor z^{-1} \rfloor z^4 + \left(1 - \lfloor z^{-1} \rfloor z \right)^4 \right) + o(1)$

An extremal construction?

Fix $z \in [0,1]$. Create as many blocks of vertices of size zn as possible, and put the remaining $\leq zn$ vertices in a single block. Edges within blocks behave randomly, edges between blocks go to the right.

"random blow-up of a transitive tournament"

Conjecture (Linial & Morgenstern 2016)

For every tournament T,

$$c_4(T) \geq g(c_3(T)) + o(1).$$

Main result

Conjecture (Linial & Morgenstern 2016)

For every tournament T,

$$c_4(T) \ge g(c_3(T)) + o(1).$$

Main result

Conjecture (Linial & Morgenstern 2016)

For every tournament T,

$$c_4(T) \geq g(c_3(T)) + o(1).$$

Theorem (C., Grzesik, Kráľ, Noel 2018)

The above conjecture is true for $c_3(T) \ge 1/72$. Furthermore, we characterise the extremal tournaments when $c_3(T) \ge 1/32$.

Main result

Conjecture (Linial & Morgenstern 2016)

For every tournament T,

$$c_4(T) \geq g(c_3(T)) + o(1).$$

Theorem (C., Grzesik, Kráľ, Noel 2018)

The above conjecture is true for $c_3(T) \ge 1/72$. Furthermore, we characterise the extremal tournaments when $c_3(T) \ge 1/32$.

Notes:

- Behaviour appears similar to the Razborov result
- Proof uses spectral methods instead of flag algebras
- The space of extremal tournaments is surprisingly large!

The c_3 - c_4 profile

Aside: The upper bound

Upper bound is $c_4(T) \le \frac{2}{3}c_3(T) + o(1)$.

Bottom left construction ($c_3 = 0, c_4 = 0$): transitive tournament

Upper right construction ($c_3 = 1/8, c_4 = 1/12$): the "circular" tournament, edges directed from v_i to $v_{i+1}, \ldots v_{i+n/2}$ for each i (indices modulo n)

The spectral approach

tournament matrix: non-negative square matrix satisfying $A + A^T = \text{matrix of ones}$.

tournament \mapsto tournament matrix by taking the usual (directed) adjacency matrix and replacing the diagonal entries with 1/2.

The spectral approach

tournament matrix: non-negative square matrix satisfying $A + A^T = \text{matrix of ones}$.

tournament \mapsto tournament matrix by taking the usual (directed) adjacency matrix and replacing the diagonal entries with 1/2.

Fact: If A is the tournament matrix corresponding to a T of order n and $\ell \geq 3$, then the number of homomorphisms from C_{ℓ} to T is $\text{Tr}(A^{\ell}) + O(n^{\ell-1})$.

density:

$$\sigma_{\ell}(A) := \frac{1}{n^{\ell}} \operatorname{Tr} A^{\ell} \leftrightarrow c_{\ell}(T)$$

Fact:

$$Tr(A^{\ell}) = \sum_{i=1}^{n} \lambda_i^{\ell},$$

where the λ_i are the eigenvalues of A.

Rephrasing the problem

```
Minimise c_4(T) for fixed c_3(T)

\iff Minimise Tr(A^4) for fixed Tr(A^3)

\iff Minimise the sum of 4th powers of the eigenvalues of A, given a fixed the sum of 3rd powers
```

The main property of A that we know is that the sum of eigenvalues is n/2.

Rephrasing the problem

Minimise $c_4(T)$ for fixed $c_3(T)$

 \iff Minimise $Tr(A^4)$ for fixed $Tr(A^3)$

 \iff Minimise the sum of 4th powers of the eigenvalues of A, given a fixed the sum of 3rd powers

The main property of A that we know is that the sum of eigenvalues is n/2.

Lemma (Linial & Morgenstern)

Let x_1, \ldots, x_n be non-negative **real** numbers summing to 1/2. Then

$$x_1^4 + \cdots + x_n^4 \ge g(x_1^3 + \ldots x_n^3).$$

Rephrasing the problem

Minimise $c_4(T)$ for fixed $c_3(T)$

 \iff Minimise $Tr(A^4)$ for fixed $Tr(A^3)$

 \iff Minimise the sum of 4th powers of the eigenvalues of A, given a fixed the sum of 3rd powers

The main property of A that we know is that the sum of eigenvalues is n/2.

Lemma (Linial & Morgenstern)

Let x_1, \ldots, x_n be non-negative **real** numbers summing to 1/2. Then

$$x_1^4 + \cdots + x_n^4 \ge g(x_1^3 + \ldots x_n^3).$$

Problem: What if the eigenvalues are complex?

Taking a step back

general case: A has eigenvalues

- ρn , the spectral radius
- $r_1 n, \ldots, r_k n$, the remaining real eigenvalues
- $(a_1 \pm \iota b_1)n, \ldots, (a_\ell \pm \iota b_\ell)n$, conjugate pairs of complex eigenvalues

Taking a step back

general case: A has eigenvalues

- ρn , the spectral radius
- $r_1 n, \ldots, r_k n$, the remaining real eigenvalues
- $(a_1 \pm \iota b_1)n, \ldots, (a_\ell \pm \iota b_\ell)n$, conjugate pairs of complex eigenvalues

Optimization problem Spectrum

	Optimization problem Spectrum
Parameters:	reals $c_3 \in [0, 1/8]$ and $\rho \in [0, 1/2]$
	non-negative integers k and ℓ
Variables:	real numbers r_1, \ldots, r_k , a_1, \ldots, a_ℓ and b_1, \ldots, b_ℓ
Constraints:	$0 \leq r_1, \ldots, r_k \leq \rho$
	$0 \leq a_1, \ldots, a_\ell$
	k ℓ
	$\rho + \sum_{i=1}^{k} r_i + 2 \sum_{i=1}^{\ell} a_i = 1/2$
	i=1 $i=1$
	$\rho^{3} + \sum_{i=1}^{k} r_{i}^{3} + 2 \sum_{i=1}^{\ell} \left(a_{i}^{3} - 3a_{i}b_{i}^{2} \right) = c_{3}$
	i=1 $i=1$
Objective:	minimize $\rho^4 + \sum_{i=1}^{k} r_i^4 + 2 \sum_{i=1}^{\ell} (a_i^4 - 6a_i^2b_i^2 + b_i^4)$
	i=1 $i=1$

Structure of optimal solutions

Key lemma

Let $r_1, \ldots r_k, a_1, \ldots a_\ell, b_1, \ldots, b_\ell$ be an optimal solution to the optimisation problem. Then one of the following holds:

- **1** There exist positive reals r' and r'' such that $r_1, \ldots, r_k \in \{0, r', r'', \rho\}$ and $(a_1, b_1), \ldots, (a_\ell, b_\ell) \in \{(0, 0), (r', 0), (r'', 0)\}.$
- ② There exist reals a' and $b' \neq 0$ such that $r_1, \ldots, r_k \in \{0, \rho\}$ and $(a_1, b_1), \ldots, (a_\ell, b_\ell) \in \{(0, 0), (a', b'), (a', -b')\}.$

Structure of optimal solutions

Key lemma

Let $r_1, \ldots r_k, a_1, \ldots a_\ell, b_1, \ldots, b_\ell$ be an optimal solution to the optimisation problem. Then one of the following holds:

- All eigenvalues are real
- ② There exist reals a' and $b' \neq 0$ such that $r_1, \ldots, r_k \in \{0, \rho\}$ and $(a_1, b_1), \ldots, (a_\ell, b_\ell) \in \{(0, 0), (a', b'), (a', -b')\}.$

Structure of optimal solutions

Key lemma

Let $r_1, \ldots r_k, a_1, \ldots a_\ell, b_1, \ldots, b_\ell$ be an optimal solution to the optimisation problem. Then one of the following holds:

- All eigenvalues are real
- ② Up to multiplicity, there's only real eigenvalue and one pair of complex eigenvalues

A key ingredient

Our optimisation problem involves:

- An objective function f (sum of 4th powers of e-values)
- Two constraint functions $g_1=1/2$ and $g_2=c_3$ (sum of e-values and 3rd powers of e-values)
- Some boundary conditions on the r_i and a_i

A key ingredient

Our optimisation problem involves:

- An objective function f (sum of 4th powers of e-values)
- Two constraint functions $g_1 = 1/2$ and $g_2 = c_3$ (sum of e-values and 3rd powers of e-values)
- Some boundary conditions on the r_i and a_i

The method of *Lagrange multipliers* tells us that the extrema of *f* in the feasible set occur at

- the boundary of the feasible set, or
- where $\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2$ for some constants λ_1, λ_2 .

Lagrange multipliers

The extrema of f in the feasible set occur at

- the boundary of the feasible set, or
- where $\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2$ for some constants λ_1, λ_2 .

Theorem (C., Grzesik, Král', Noel 2018)

If $c_3(T) \ge 1/72$, then $c_4(T) \ge g(c_3(T)) + o(1)$.

Theorem (C., Grzesik, Král', Noel 2018)

If $c_3(T) \ge 1/72$, then $c_4(T) \ge g(c_3(T)) + o(1)$.

Theorem (C., Grzesik, Král', Noel 2018)

If $c_3(T) \ge 1/72$, then $c_4(T) \ge g(c_3(T)) + o(1)$. \checkmark Furthermore, we characterise the extremal tournaments for $c_3(T) \ge 1/32$.

Theorem (C., Grzesik, Král', Noel 2018)

If $c_3(T) \ge 1/72$, then $c_4(T) \ge g(c_3(T)) + o(1)$. \checkmark Furthermore, we characterise the extremal tournaments for $c_3(T) \ge 1/32$.

To get all the extremal tournaments on n vertices:

- Associate each vertex v_i with a real number $p_i \in [0, 1/2]$
- Direct the edge $v_i v_j$ from i to j with probability $1/2 + p_i p_j$.
- The resulting tournament has $c_4(T) = g(c_3(T)) + o(1)$ w.h.p.

Open problems

- Obvious: Prove the conjecture for remaining values of c_3 , and find all the extremal examples
- Related: Study *profiles* of graphs and tournaments

