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Context

Mantel 1907: Any graph with more than bn2/4c copies of K2

contains a copy of K3.

Erdős-Rademacher problem: If a graph exceeds bn2/4c copies of
K2, how many copies of K3 are forced?
A: Asymptotically solved by Razborov 2008, using flag algebras.

Topic of this talk: Analogous problem for tournaments.



Tournaments

Complete graph with every edge given a direction.
e.g. random tournament, transitive tournament
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Main question

Q: What is the minimum number of K3’s in a graph with a given
number of K2’s?

Q: What is the minimum number of C4’s in a tournament with a
given number of C3’s?

density:
c`(T ) := probability that a random mapping from V (C`) to V (T )
is a homomorphism i.e. arcs of C` map to arcs of T .
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c3(T ) = (3 + 3)/43 = 3/32

Q: Given c3(T ), asymptotically minimise c4(T ).
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An extremal construction?

Fix z ∈ [0, 1]. Create as many blocks of vertices of size zn as
possible, and put the remaining ≤ zn vertices in a single block.
Edges within blocks behave randomly, edges between blocks go to
the right.

”random blow-up of a transitive tournament”
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For every tournament T ,

c4(T ) ≥ g(c3(T )) + o(1).



Main result

Conjecture (Linial & Morgenstern 2016)

For every tournament T ,

c4(T ) ≥ g(c3(T )) + o(1).

Theorem (C., Grzesik, Král’, Noel 2018)

The above conjecture is true for c3(T ) ≥ 1/72. Furthermore, we
characterise the extremal tournaments when c3(T ) ≥ 1/32.

Notes:

Behaviour appears similar to the Razborov result

Proof uses spectral methods instead of flag algebras

The space of extremal tournaments is surprisingly large!
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The c3-c4 profile
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Aside: The upper bound

Upper bound is c4(T ) ≤ 2
3c3(T ) + o(1).

Bottom left construction (c3 = 0, c4 = 0): transitive tournament

Upper right construction (c3 = 1/8, c4 = 1/12): the “circular”
tournament, edges directed from vi to vi+1, . . . vi+n/2 for each i
(indices modulo n)



The spectral approach

tournament matrix: non-negative square matrix satisfying
A + AT = matrix of ones.
tournament 7→ tournament matrix by taking the usual (directed)
adjacency matrix and replacing the diagonal entries with 1/2.
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The spectral approach

tournament matrix: non-negative square matrix satisfying
A + AT = matrix of ones.
tournament 7→ tournament matrix by taking the usual (directed)
adjacency matrix and replacing the diagonal entries with 1/2.

Fact: If A is the tournament matrix corresponding to a T of order
n and ` ≥ 3, then the number of homomorphisms from C` to T is
Tr(A`) + O(n`−1).

density:

σ`(A) :=
1

n`
TrA` ↔ c`(T )

Fact:

Tr(A`) =
n∑

i=1

λ`i ,

where the λi are the eigenvalues of A.



Rephrasing the problem

Minimise c4(T ) for fixed c3(T )
⇐⇒ Minimise Tr(A4) for fixed Tr(A3)
⇐⇒ Minimise the sum of 4th powers of the eigenvalues of A,
given a fixed the sum of 3rd powers

The main property of A that we know is that the sum of
eigenvalues is n/2.

Lemma (Linial & Morgenstern)

Let x1, . . . , xn be non-negative real numbers summing to 1/2.
Then

x41 + · · ·+ x4n ≥ g(x31 + . . . x3n ).

Problem: What if the eigenvalues are complex?
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Taking a step back

general case: A has eigenvalues

ρn, the spectral radius
r1n, . . . , rkn, the remaining real eigenvalues
(a1 ± ιb1)n, . . . , (a` ± ιb`)n, conjugate pairs of complex
eigenvalues

Optimization problem Spectrum
Parameters: reals c3 ∈ [0, 1/8] and ρ ∈ [0, 1/2]

non-negative integers k and `
Variables: real numbers r1, . . . , rk , a1, . . . , a` and b1, . . . , b`
Constraints: 0 ≤ r1, . . . , rk ≤ ρ

0 ≤ a1, . . . , a`

ρ+
k∑

i=1
ri + 2

∑̀
i=1

ai = 1/2

ρ3 +
k∑

i=1
r3i + 2

∑̀
i=1

(
a3i − 3aib

2
i

)
= c3

Objective: minimize ρ4 +
k∑

i=1
r4i + 2

∑̀
i=1

(
a4i − 6a2i b

2
i + b4i

)
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Structure of optimal solutions

Key lemma

Let r1, . . . rk , a1, . . . a`, b1, . . . , b` be an optimal solution to the
optimisation problem. Then one of the following holds:

1 There exist positive reals r ′ and r ′′ such that
r1, . . . , rk ∈ {0, r ′, r ′′, ρ} and
(a1, b1), . . . , (a`, b`) ∈ {(0, 0), (r ′, 0), (r ′′, 0)}.

2 There exist reals a′ and b′ 6= 0 such that r1, . . . , rk ∈ {0, ρ}
and (a1, b1), . . ., (a`, b`) ∈ {(0, 0), (a′, b′), (a′,−b′)}.
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Structure of optimal solutions

Key lemma

Let r1, . . . rk , a1, . . . a`, b1, . . . , b` be an optimal solution to the
optimisation problem. Then one of the following holds:

1 All eigenvalues are real

2 Up to multiplicity, there’s only real eigenvalue and one pair of
complex eigenvalues



A key ingredient

Our optimisation problem involves:

An objective function f (sum of 4th powers of e-values)

Two constraint functions g1 = 1/2 and g2 = c3 (sum of
e-values and 3rd powers of e-values)

Some boundary conditions on the ri and ai

The method of Lagrange multipliers tells us that the extrema of f
in the feasible set occur at

the boundary of the feasible set, or

where ∇f = λ1∇g1 + λ2∇g2 for some constants λ1, λ2.
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Lagrange multipliers

The extrema of f in the feasible set occur at

the boundary of the feasible set, or

where ∇f = λ1∇g1 + λ2∇g2 for some constants λ1, λ2.
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Theorem revisited

Theorem (C., Grzesik, Král’, Noel 2018)

If c3(T ) ≥ 1/72, then c4(T ) ≥ g(c3(T )) + o(1). X
Furthermore, we characterise the extremal tournaments for
c3(T ) ≥ 1/32.

To get all the extremal tournaments on n vertices:

Associate each vertex vi with a real number pi ∈ [0, 1/2]

Direct the edge vivj from i to j with probability 1/2 + pi − pj .

The resulting tournament has c4(T ) = g(c3(T )) + o(1) w.h.p.



Open problems

Obvious: Prove the conjecture for remaining values of c3, and
find all the extremal examples

Related: Study profiles of graphs and tournaments
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