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Mantel 1907: Any graph with more than |n?/4] copies of K,
contains a copy of Ks.

Erdés-Rademacher problem: If a graph exceeds |n®/4| copies of
K>, how many copies of K3 are forced?

A: Asymptotically solved by Razborov 2008, using flag algebras.

Topic of this talk: Analogous problem for tournaments.



Tournaments

Complete graph with every edge given a direction.
e.g. random tournament, transitive tournament



Q: What is the minimum number of K3's in a graph with a given
number of K5's?



Q: What is the minimum number of K3's in a tournament with a
given number of K5's?



Q: What is the minimum number of K3's in a tournament with a

given number of K5's?
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given number of (3's?



Q: What is the minimum number of K3's in a tournament with a
given number of K5's?
Q: What is the minimum number of (4's in a tournament with a
given number of (3's?

density:
ce(T) := probability that a random mapping from V() to V(T)
is a homomorphism i.e. arcs of C; map to arcs of T.

c3(T) = (3+3)/4> =3/32

Q: Given c3(T), asymptotically minimise c4(T).



An extremal construction?

Fix z € [0,1]. Create as many blocks of vertices of size zn as
possible, and put the remaining < zn vertices in a single block.
Edges within blocks behave randomly, edges between blocks go to
the right.
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An extremal construction?

Fix z € [0,1]. Create as many blocks of vertices of size zn as
possible, and put the remaining < zn vertices in a single block.
Edges within blocks behave randomly, edges between blocks go to
the right.
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a(T) =5 (12722 + (1 - 12712)°) +01)

a(T) = 1—16 (Lz_ljz4 + (1- Lz_ljz)4) +o(1)



An extremal construction?

Fix z € [0,1]. Create as many blocks of vertices of size zn as
possible, and put the remaining < zn vertices in a single block.
Edges within blocks behave randomly, edges between blocks go to
the right.
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Conjecture (Linial & Morgenstern 2016)

For every tournament T,

ca(T) > g(e3(T)) + o(1).
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For every tournament T,
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Theorem (C., Grzesik, Kral’, Noel 2018)

The above conjecture is true for c3(T) > 1/72. Furthermore, we
characterise the extremal tournaments when c3(T) > 1/32.




Main result

Conjecture (Linial & Morgenstern 2016)

For every tournament T,

ca(T) > g(e3(T)) + o(1).

Theorem (C., Grzesik, Kral’, Noel 2018)

The above conjecture is true for c3(T) > 1/72. Furthermore, we
characterise the extremal tournaments when c3(T) > 1/32.

Notes:
@ Behaviour appears similar to the Razborov result
@ Proof uses spectral methods instead of flag algebras

@ The space of extremal tournaments is surprisingly large!



The c3-¢4 profile

HCy,T)
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Aside: The upper bound

Upper bound is c4(T) < %C3(T) + o(1).
Bottom left construction (c3 = 0, c4 = 0): transitive tournament
Upper right construction (c3 = 1/8, ¢4 = 1/12): the “circular”

tournament, edges directed from v; to vjy1,... Vi ,/2 for each /
(indices modulo n)



The spectral approach

tournament matrix: non-negative square matrix satisfying

A+ AT = matrix of ones.

tournament — tournament matrix by taking the usual (directed)
adjacency matrix and replacing the diagonal entries with 1/2.

B
A C
1/2 1 0
0 1/2 0



The spectral approach

tournament matrix: non-negative square matrix satisfying

A+ AT = matrix of ones.

tournament — tournament matrix by taking the usual (directed)
adjacency matrix and replacing the diagonal entries with 1/2.

Fact: If A is the tournament matrix corresponding to a T of order
n and ¢ > 3, then the number of homomorphisms from C; to T is
Tr(A) + O(n*1).

density:

1

oe(A) = =

Tr A 5 ¢o(T)

Fact: .
Tr(AY) =YX,
i=1

where the A; are the eigenvalues of A.



Rephrasing the problem

Minimise c4(T) for fixed c3(T)

<= Minimise Tr(A%) for fixed Tr(A3)

<= Minimise the sum of 4th powers of the eigenvalues of A,
given a fixed the sum of 3rd powers

The main property of A that we know is that the sum of
eigenvalues is n/2.
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Let xi,...,x, be non-negative real numbers summing to 1/2.
Then
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Rephrasing the problem

Minimise c4(T) for fixed c3(T)

<= Minimise Tr(A%) for fixed Tr(A3)

<= Minimise the sum of 4th powers of the eigenvalues of A,
given a fixed the sum of 3rd powers

The main property of A that we know is that the sum of
eigenvalues is n/2.

Lemma (Linial & Morgenstern)

Let xi,...,x, be non-negative real numbers summing to 1/2.
Then
4+ xt > g3 +...x0).

Problem: What if the eigenvalues are complex?



Taking a step back

general case: A has eigenvalues
@ pn, the spectral radius
@ rn,...,rgn, the remaining real eigenvalues
o (a1 £ ub1)n,...,(ag £ thy)n, conjugate pairs of complex
eigenvalues



Taking a step back

general case: A has eigenvalues
@ pn, the spectral radius

@ rn,...,rgn, the remaining real eigenvalues
o (a1 £ ub1)n,...,(ag £ thy)n, conjugate pairs of complex
eigenvalues

Optimization problem Spectrum
Parameters: reals c3 € [0,1/8] and p € [0,1/2]
non-negative integers k and ¢

Variables: real numbers ry, ..., 1k, a1,...,a¢ and by, ..., by
Constraints: 0<r,....n <p
0< dl,...,ay
k 5
p—|—Zr;+2Za;:1/2
i=1 i=1

K ¢
PP+ P2y (a3 —3a3b?) = c3
i=1 i=1

k ¢
Objective:  minimize p* + Y r} +2 3 (a} — 6a?b? + b)
i=1 i=1



Structure of optimal solutions

Let rn,...rk,a1,...ae, b1,..., by be an optimal solution to the
optimisation problem. Then one of the following holds:

@ There exist positive reals r’ and r” such that
r,....re €4{0,r',r" p} and
(al, bl), 0G0 (ag, bg) € {(0, 0), (r’, 0), (I’”, 0)}

@ There exist reals &’ and b’ # 0 such that ry,..., rc € {0, p}
and (a1, b1),- .., (ag, be) € {(0,0),(a', '), (a,—b")}.




Structure of optimal solutions

Let ri,...rc,a1,...ap b1,..., by be an optimal solution to the
optimisation problem. Then one of the following holds:

O All eigenvalues are real

@ There exist reals &’ and b’ # 0 such that r1,..., r € {0, p}
and (a1, b1), ..., (ar, be) € {(0,0), (2, b'),(a’,—b)}.




Structure of optimal solutions

Let ri,...re,a1,...ap b1,..., by be an optimal solution to the
optimisation problem. Then one of the following holds:

O All eigenvalues are real

@ Up to multiplicity, there's only real eigenvalue and one pair of
complex eigenvalues




A key ingredient

Our optimisation problem involves:
@ An objective function f (sum of 4th powers of e-values)

@ Two constraint functions gy = 1/2 and g» = ¢3 (sum of
e-values and 3rd powers of e-values)

@ Some boundary conditions on the r; and a;



A key ingredient

Our optimisation problem involves:
@ An objective function f (sum of 4th powers of e-values)

@ Two constraint functions gy = 1/2 and g» = ¢3 (sum of
e-values and 3rd powers of e-values)

@ Some boundary conditions on the r; and a;

The method of Lagrange multipliers tells us that the extrema of f
in the feasible set occur at

@ the boundary of the feasible set, or

@ where VFf = A\1Vgy + AoV gy for some constants Az, Ao.



Lagrange multipliers

The extrema of f in the feasible set occur at
@ the boundary of the feasible set, or

@ where VI = A1V gy + AV g for some constants A, Ap.
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Theorem revisited
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Theorem revisited

Theorem (C., Grzesik, Kral’, Noel 2018)

If c3(T) > 1/72, then ca(T) > g(c3(T)) + o(1).
Furthermore, we characterise the extremal tournaments for
a3(T) >1/32.

To get all the extremal tournaments on n vertices:
@ Associate each vertex v; with a real number p; € [0,1/2]
@ Direct the edge v;v; from i to j with probability 1/2 4 p; — p;.
@ The resulting tournament has c4(T) = g(c3(T)) + o(1) w.h.p.



Open problems

@ Obvious: Prove the conjecture for remaining values of c¢3, and
find all the extremal examples

@ Related: Study profiles of graphs and tournaments
{(Cy,T)
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