Krzysztof Choromanski

Google Research, New York City

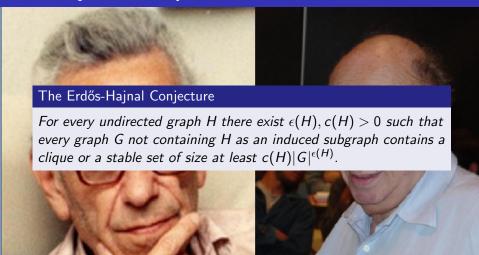
October 19 2015

Anonymization via perfect matchings

The Conjecture - Polynomial Phenomenon

Krzysztof Choromanski Google Research, New York City
The Erdős-Hajnal Conjecture, structured non-linear graph-based hashing and b-matching anonymization via perfect matchings

The Conjecture - Polynomial Phenomenon



Krzysztof Choromanski

Google Research, New York City

The Conjecture - Polynomial Phenomenon

The Erdős-Hajnal Conjecture

For every undirected graph H there exist $\epsilon(H)$, c(H) > 0 such that every graph G not containing H as an induced subgraph contains a clique or a stable set of size at least $c(H)|G|^{\epsilon(H)}$.

The Erdős-Hajnal Conjecture - directed version

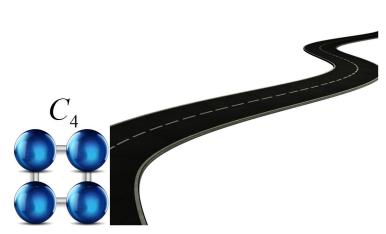
For every tournament H there exist $\epsilon(H)$, c(H) > 0 such that every tournament T not containing H as an induced subtournament contains a transitive subtournament of size at least $c(H)|T|^{\epsilon(H)}$.

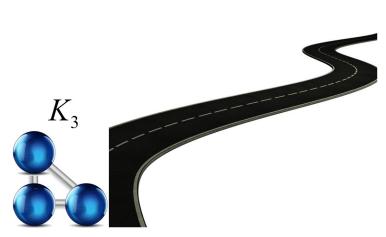
The Erdős-Hajnal Conjecture

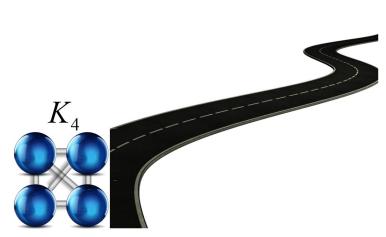
For every undirected graph H there exist $\epsilon(H)$, c(H) > 0 such that every graph G not containing H as an induced subgraph contains a clique or a stable set of size at least $c(H)|G|^{\epsilon(H)}$.

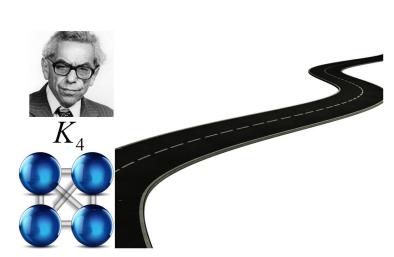
The Erdős-Hajnal Conjecture - directed version

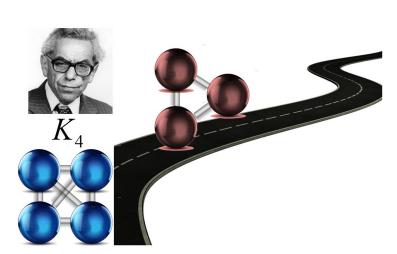
For every tournament H there exist $\epsilon(H)$, c(H) > 0 such that every tournament T not containing H as an induced subtournament contains a transitive subtournament of size at least $c(H)|T|^{\epsilon(H)}$.



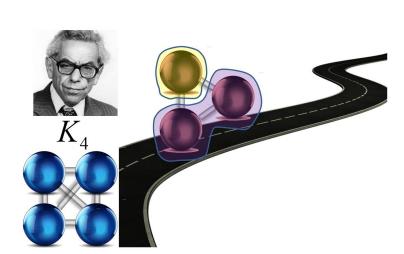


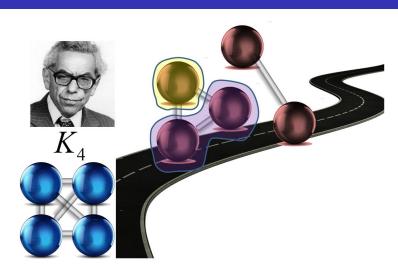


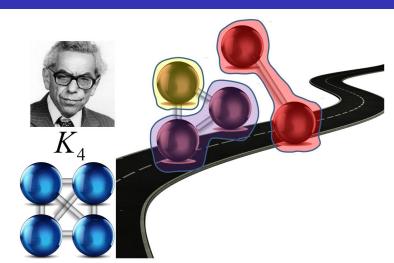


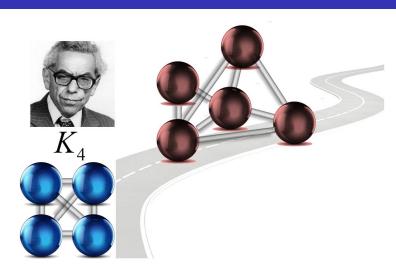


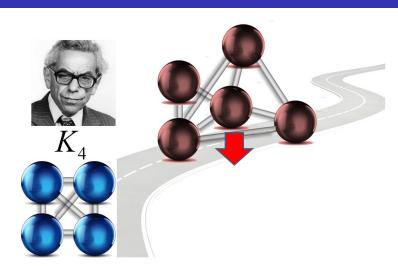


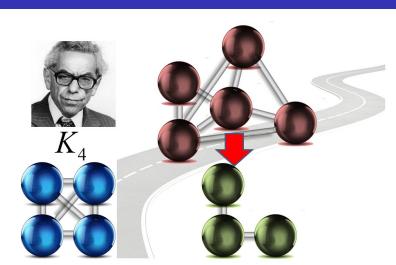


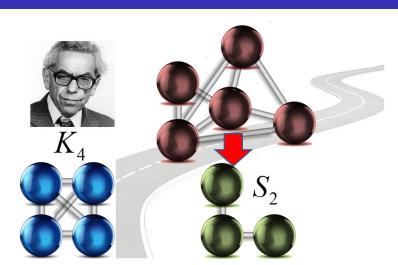


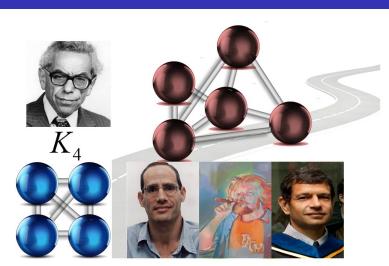


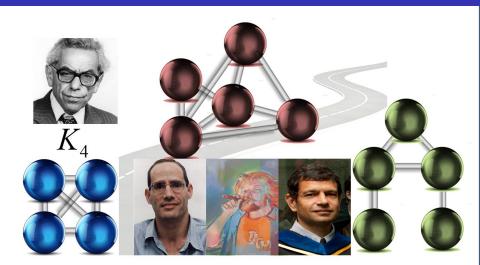


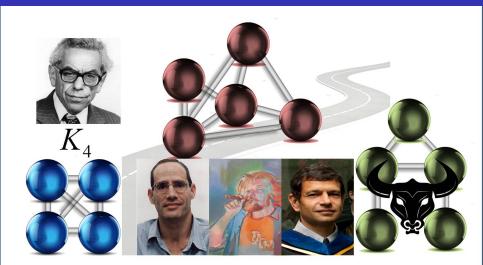


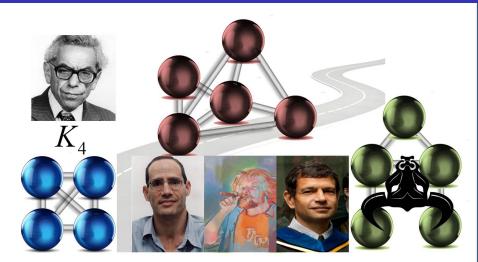


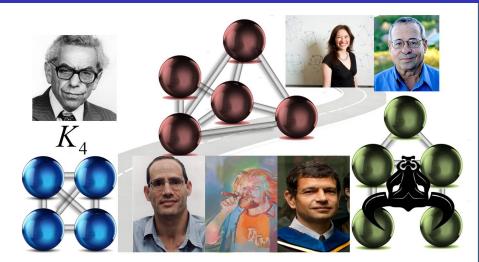






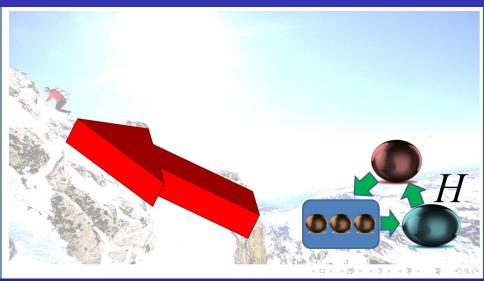






Krzysztof Choromanski

Google Research, New York City



Krzysztof Choromanski

Google Research, New York City

Krzysztof Choromanski

Google Research, New York City

Tournaments satisfying the Conjecture in the linear sense

Definition

Tournament H is a celebrity if there exists c(H) > 0 such that every H-free n-vertex tournament contains a transitive subtournament of order at least c(H)n.

Theorem (Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, Thomasse '11)

Tournament H is a celebrity iff either:

- it is not strongly connected and is of the form $H_1 \implies H_2$, where H_1 , H_2 are celebrities or,
- is strongly connected and is of the form $\Delta(1, T_k, D)$, where D is a celebrity and T_k is a transitive tournament on k vertices.

Tournaments satisfying the Conjecture in the linear sense

Definition

A dichromatic number $\chi(T)$ of the tournament T is the smallest number of colors that can be used to color its vertices in such a way that there does not exist a monochromatic directed cycle.

Theorem (Berger, Choromanski, Chudnovsky, Fox, Loebl, Scott, Seymour, Thomasse '11)

Tournament H is a celebrity iff there exists d(H) such that every H-free tournament T satisfies:

$$\chi(T) \leq d(H)$$
.

Krzysztof Choromanski

Google Research, New York City

Krzysztof Choromanski

Google Research, New York City

Krzysztof Choromanski

Tournaments satisfying the Conjecture in the pseudolinear sense

Definition

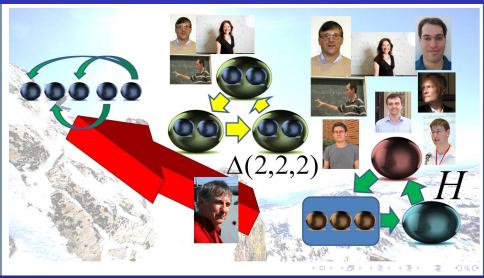
Tournament H is a pseudocelebrity if it is not a celebrity, but there exist c(H), d(H) > 0 such that every n-vertex H-free tournament T satisfies: $\chi(T) \le c(H) \log^{d(H)}(n)$.

Theorem (Choromanski, Chudnovsky, Seymour '12)

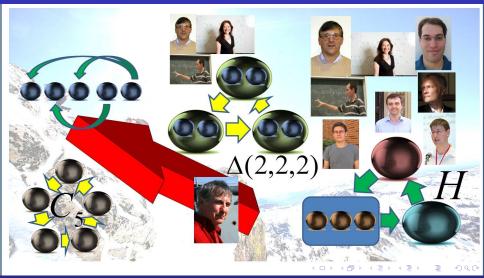
Tournament H is a pseudocelebrity if it is of the form:

- $H_1 \implies H_2$, where both H_i s are pseudocelebrities or one is a celebrity and the other one is a pseudocelebrity or
- $\Delta(1, T_k, H)$ or $\Delta(2, T_k, T_k)$, where H is a pseudocelebrity.

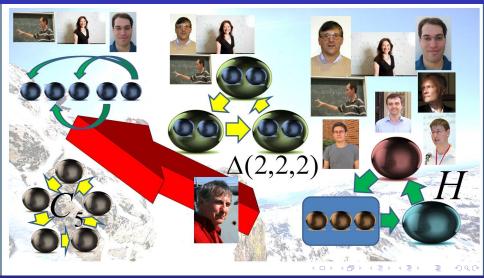
Krzysztof Choromanski



Krzysztof Choromanski



Krzysztof Choromanski

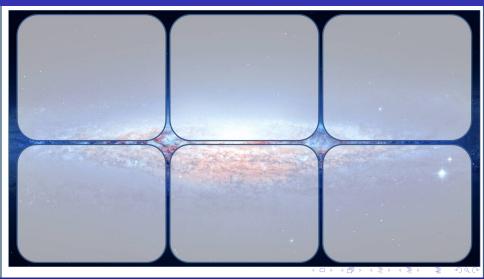


Krzysztof Choromanski

Krzysztof Choromanski

Google Research, New York City

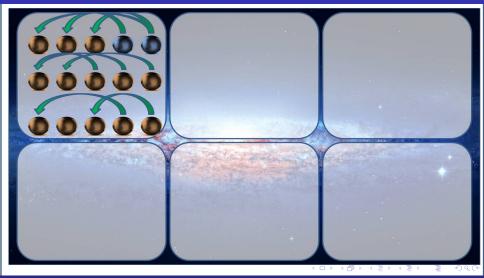
Galaxies, constellations, nebulae...



Krzysztof Choromanski

Google Research, New York City

Galaxies, constellations, nebulae...



Krzysztof Choromanski

Google Research, New York City

Infinitely many prime Erdős-Hajnal tournaments

Theorem (Berger, Choromanski, Chudnovsky '12)

Every galaxy satisfies the Erdős-Hajnal Conjecture. In particular, every directed path satisfies the Conjecture.

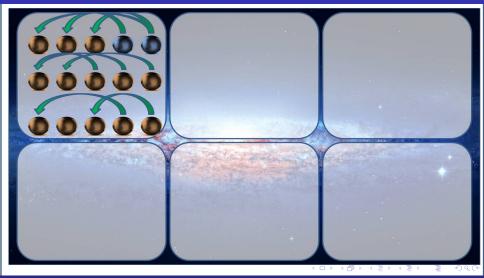
Theorem (Choromanski '12)

Tournament C_5 satisfies the Conjecture.

Corollary

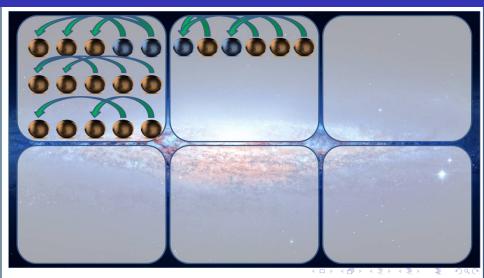
Every tournament on at most five vertices satisfies the Conjecture.

Galaxies, constellations, nebulae...



Krzysztof Choromanski

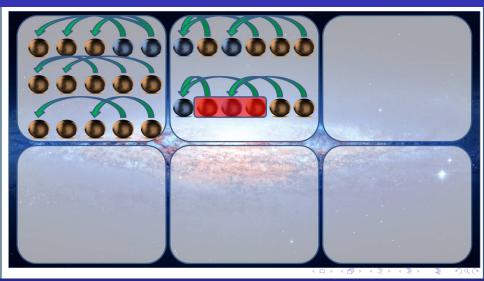
Google Research, New York City



Krzysztof Choromanski

Google Research, New York City

Galaxies, constellations, nebulae...



Krzysztof Choromanski

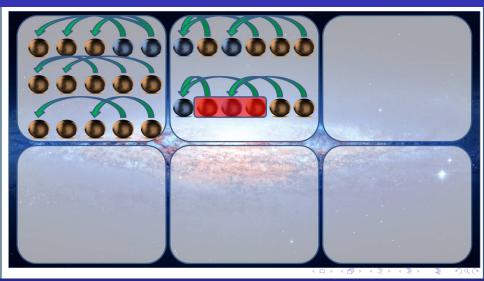
Google Research, New York City

Going beyond galaxies

Theorem (Choromanski '12)

Every constellation satisfies the Erdős-Hajnal Conjecture.

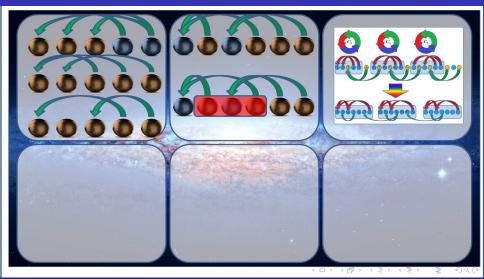
Galaxies, constellations, nebulae...



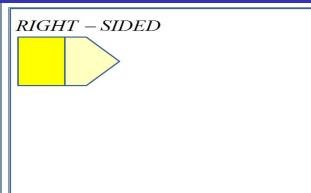
Krzysztof Choromanski

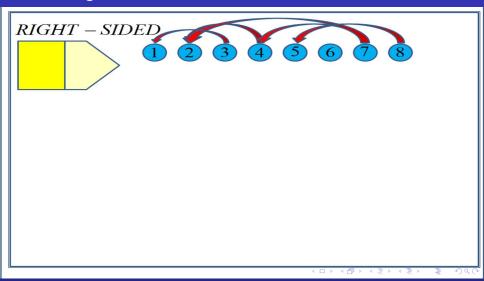
Google Research, New York City

Galaxies, constellations, nebulae...



Krzysztof Choromanski

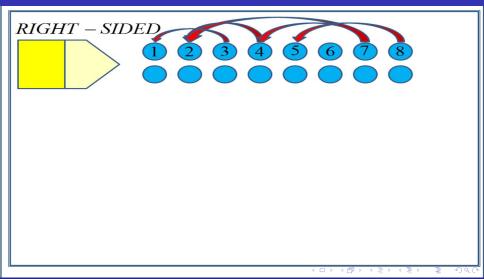




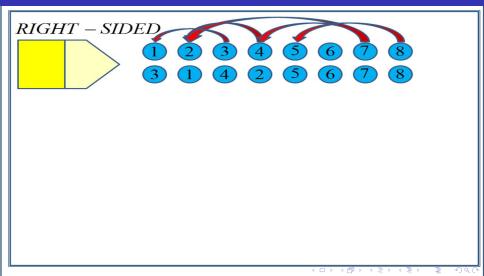
Krzysztof Choromanski

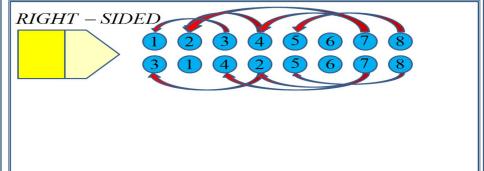
Google Research, New York City

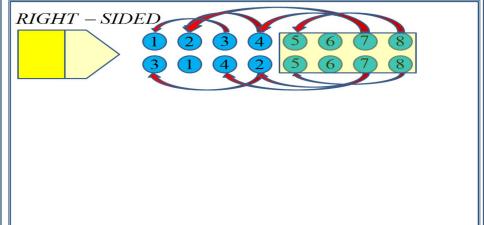
Anonymization via perfect matchings

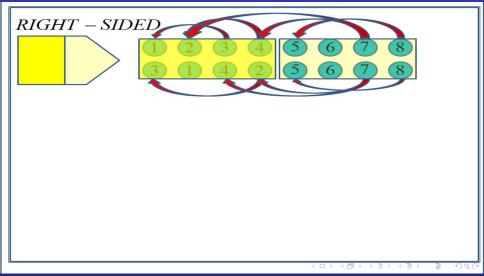


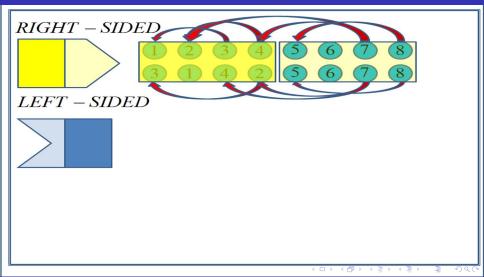
Anonymization via perfect matchings



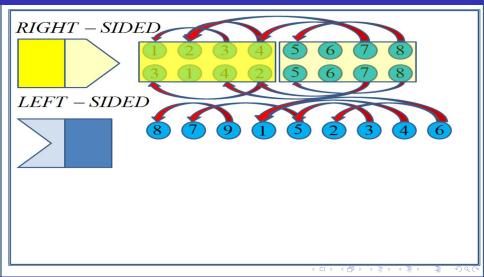




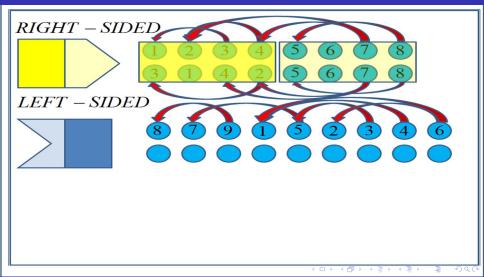




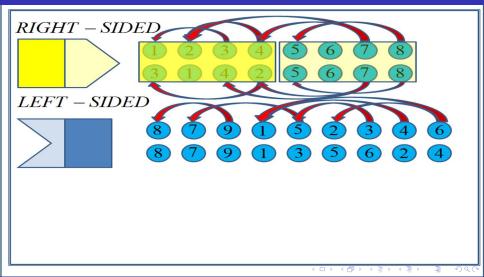
Anonymization via perfect matchings



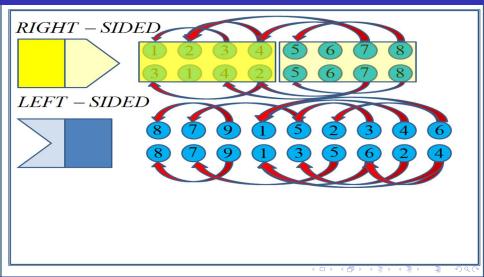
Krzysztof Choromanski



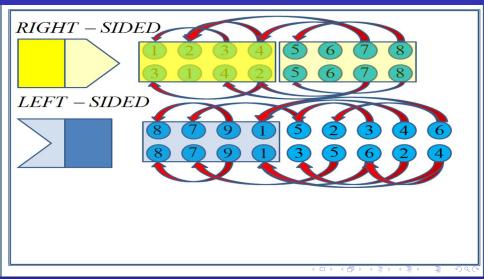
Krzysztof Choromanski



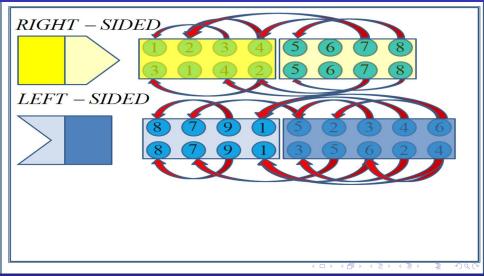
Krzysztof Choromanski



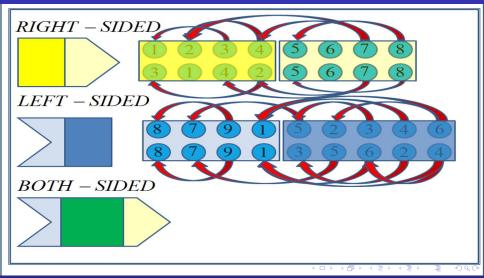
Krzysztof Choromanski



Krzysztof Choromanski

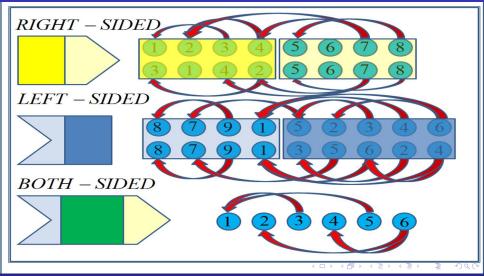


Krzysztof Choromanski

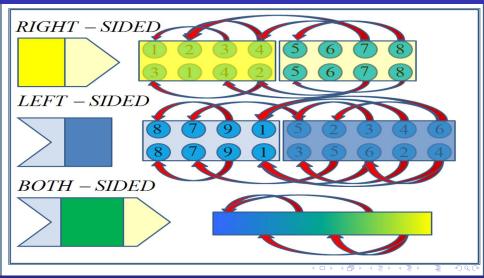


Krzysztof Choromanski

Google Research, New York City

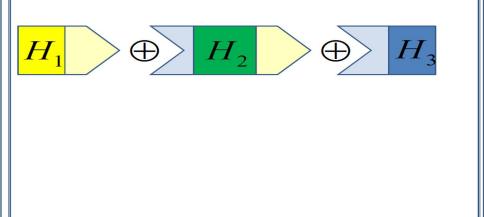


Krzysztof Choromanski



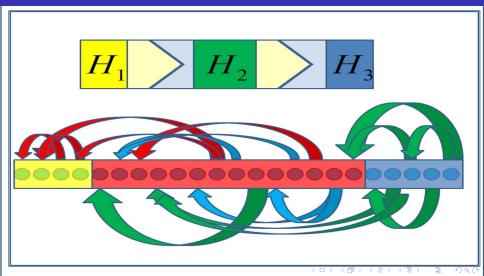
Krzysztof Choromanski

Google Research, New York City



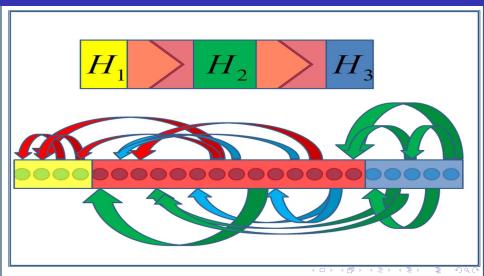
Krzysztof Choromanski

Google Research, New York City



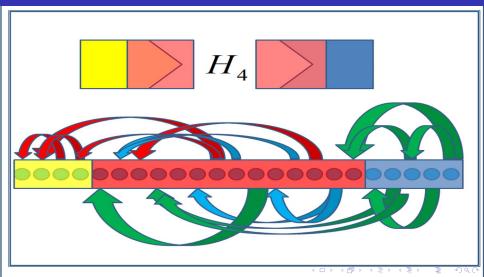
Krzysztof Choromanski

Google Research, New York City



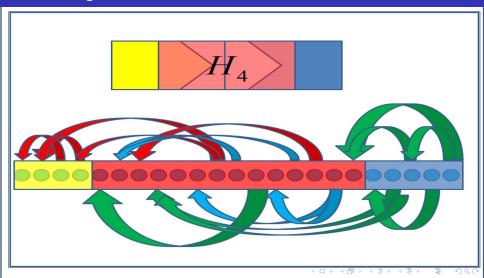
Krzysztof Choromanski

Google Research, New York City



Krzysztof Choromanski

Google Research, New York City

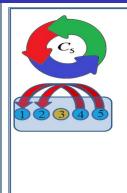


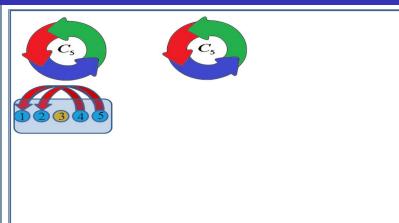
Krzysztof Choromanski

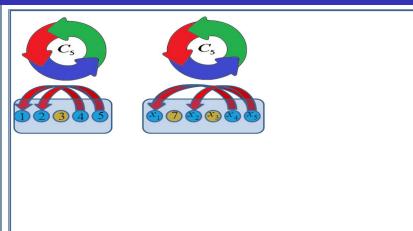
Google Research, New York City

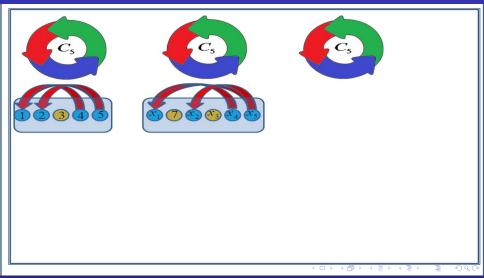
Krzysztof Choromanski

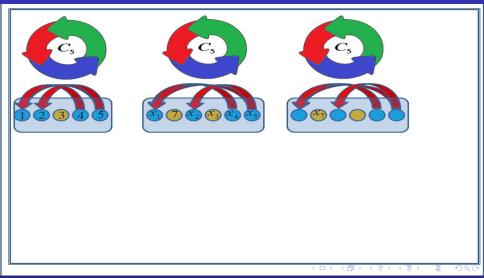
Google Research, New York City

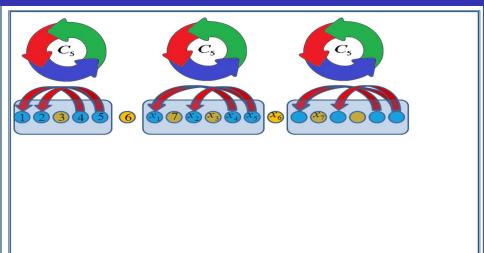


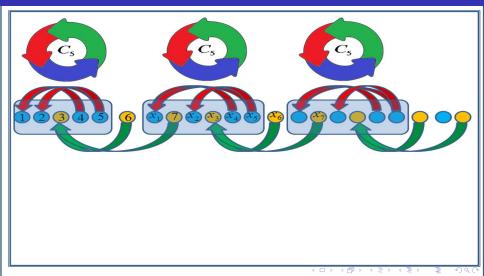


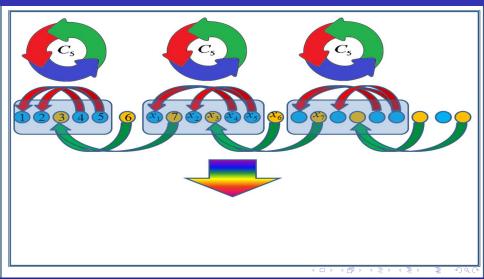








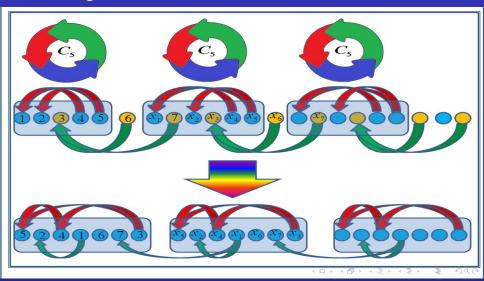




Krzysztof Choromanski

Google Research, New York City

The Erdős-Hajnal Conjecture, structured non-linear graph-based hashing and b-matching anonymization via perfect matchings



Krzysztof Choromanski

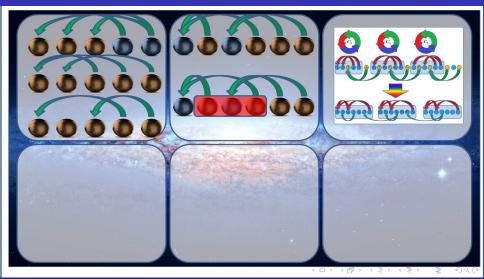
Google Research, New York City

The Erdős-Hajnal Conjecture, structured non-linear graph-based hashing and b-matching anonymization via perfect matchings

Theorem (Choromanski '13)

There exists a generic procedure for constructing larger prime tournaments satisfying the conjecture from smaller ones.

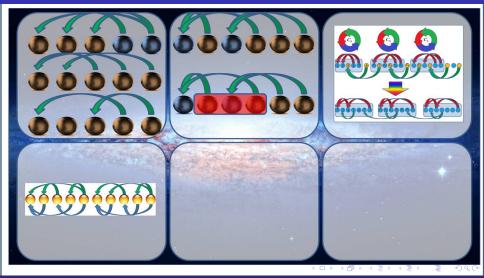
Galaxies, constellations, nebulae...



Krzysztof Choromanski

Google Research, New York City

Galaxies, constellations, nebulae...



Krzysztof Choromanski

Google Research, New York City

Nebulae...

Definition

Tournament is a **nebula** if it has an ordering of vertices under which the graph of backward edges is a collection of vertex disjoint stars.

Definition

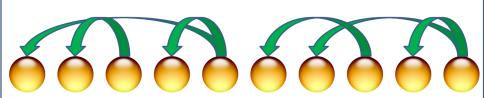
Tournament is a **nebula** if there exists its ordering of vertices under which the graph of backward edges is a collection of vertex disjoint stars.

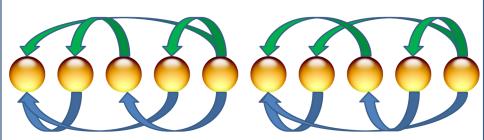
Definition

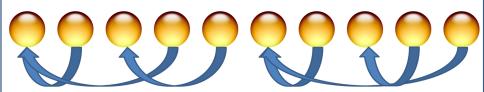
Tournament is a **left/right nebula** if it has an ordering of vertices under which the graph of backward edges is a collection of vertex disjoint left/right stars.

Conjecture

Let N_l be a left nebula and N_r be a right nebula. Then there exists $\epsilon(N_l, N_r) > 0$ such that every $\{N_l, N_r\}$ -free n-vertex tournament contains a transitive subtournament of order at least $n^{\epsilon(N_l, N_r)}$.







Theorem (Choromanski '14)

Let N_l^s be a small left nebula and N_r^s be a small right nebula. Then there exists $\epsilon(N_l^s,N_r^s)>0$ such that every $\{N_l^s,N_r^s\}$ -free n-vertex tournament contains a transitive subtournament of order at least $n^{\epsilon(N_l^s,N_r^s)}$.

Hardcore nebulae...

Definition

Let S be a left/right star. We call the set of vertices of S other than its first and last vertex a **core**.

Definition

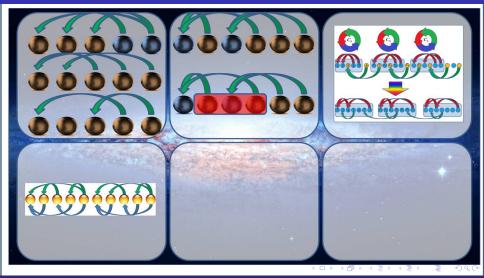
A tournament is called a **hardcore nebula** if it is a collection of vertex-disjoint left and right stars such that the only vertices between core vertices of any given star in the collection are core vertices.

Hardcore nebulae...

Theorem (Choromanski '14)

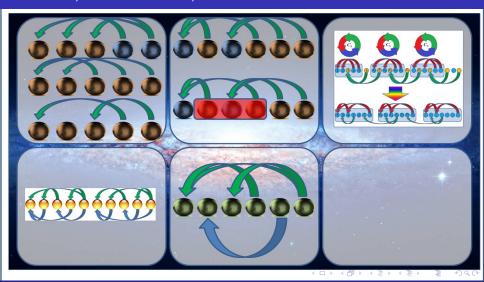
Let HN_I be a left hardcore nebula and HN_r be a right hardcore nebula. Then there exists $\epsilon(HN_I, HN_r) > 0$ such that every $\{HN_I, HN_r\}$ -free n-vertex tournament contains a transitive subtournament of order at least $n^{\epsilon(HN_I, HN_r)}$.

Galaxies, constellations, nebulae...



Krzysztof Choromanski

Google Research, New York City



Krzysztof Choromanski

Google Research, New York City

The Erdős-Hajnal Conjecture, structured non-linear graph-based hashing and b-matching anonymization via perfect matchings

On the Erdős-Hajnal Conjecture for six-vertex tournaments

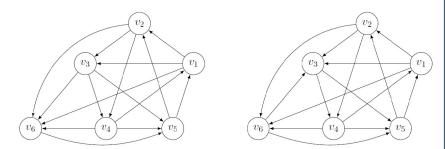
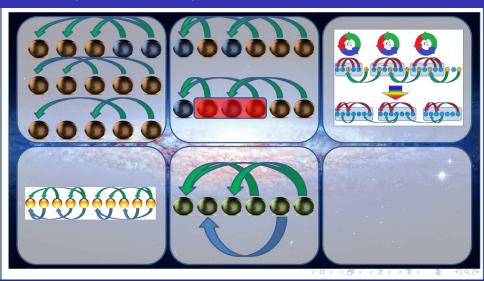


Figure: Tournament L_1 on the left and tournament L_2 on the right. Both are obtained from C_5 by adding one extra vertex.

On the Erdős-Hajnal Conjecture for six-vertex tournaments

Theorem (Berger, Choromanski, Chudnovsky '15)

Every tournament on six vertices other than K_6 satisfies the Erdős-Hajnal Conjecture.



Krzysztof Choromanski

Google Research, New York City

The Erdős-Hajnal Conjecture, structured non-linear graph-based hashing and b-matching anonymization via perfect matchings

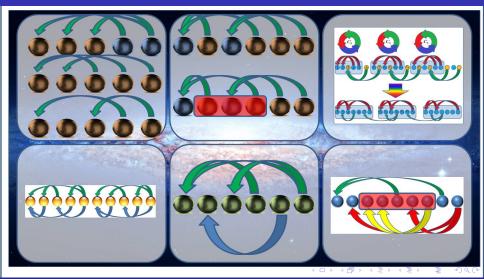
Galaxies, constellations, nebulae...



Krzysztof Choromanski

Google Research, New York City

Galaxies, constellations, nebulae...



Krzysztof Choromanski

Google Research, New York City

The Erdős-Hajnal Conjecture, structured non-linear graph-based hashing and b-matching anonymization via perfect matchings

Theorem (Choromanski '15)

Let H be an ultraconstellation and let θ_H be its ultraconstellation ordering of vertices. Then there exists $\epsilon(H) > 0$ such that every $\{(H, \theta_H), (H, \theta_H^c)\}$ -free ordered tournament (T, θ_T) contains a transitive subtournament of order at lest $|T|^{\epsilon(H)}$.

Ultraconstellations - main results

Corollary 1

Gives the proof of the standard directed version of the Conjecture for the class of tournaments that contains as special cases all known infinite families of prime tournaments satisfying the Conjecture and defined by a single ordering.

Corollary 2

Implies all known results regarding excluding pairs of prime tournaments.

Undirected setting - excluding H and H^c

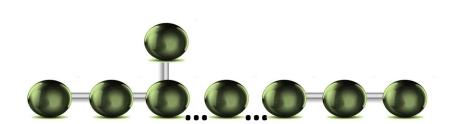
4 D > 4 A > 4 B > 4 B > B 9 9 9 9

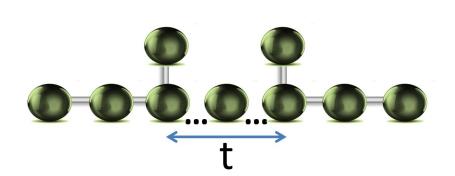
Undirected setting - excluding H and H^c

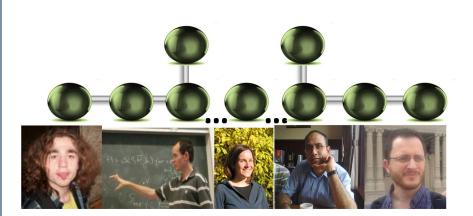
Theorem (Bousquet, Lagoutte, Thomasse '13)

Let k, l > 0. Define the class $\mathcal{H}_{k,l}$ of tournaments as those tournaments that are $\{P_k, P_l^c\}$ -free, where P_k is a path of k vertices and P_l^c is an antipath of l vertices. Then $\mathcal{H}_{k,l}$ has polynomial-size transitive subtournaments.

Hooks







Theorem (Choromanski, Falik, Liebenau, Patel, Pilipczuk '15)

Let H_t be an double t-hook. Then for every m there exists $\epsilon(m)$ such that every $\{H_t, H_t^c : t = m, m+1, ...\}$ -free undirected n-vertex graph G contains a clique or a stable set of size at least $n^{\epsilon(m)}$.

Theorem (Choromanski, Falik, Liebenau, Patel, Pilipczuk '15)

Let H_t be an double t-hook. Then for every m there exists $\epsilon(m)$ such that every $\{H_t, H_t^c : t = m, m+1, ...\}$ -free undirected n-vertex graph G contains a clique or a stable set of size at least $n^{\epsilon(m)}$.

Corollary

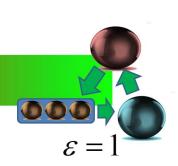
For every hook H there exists $\epsilon(H) > 0$ such that every $\{H, H^c\}$ -free undirected n-vertex graph G contains a clique or a stable set of size at least $n^{\epsilon(H)}$ (that extends the result of Bousquet, Lagoutte and Thomasse).

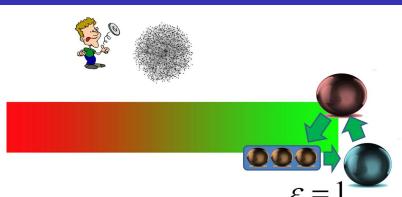
Theorem (Choromanski, Falik, Liebenau, Patel, Pilipczuk '15)

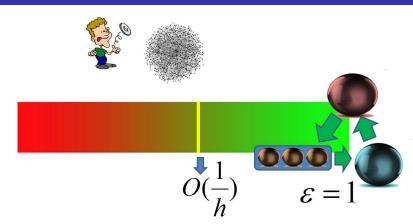
Let H_t be an double t-hook. Then for every m there exists $\epsilon(m)$ such that every $\{H_t, H_t^c : t = m, m+1, ...\}$ -free undirected n-vertex graph G contains a clique or a stable set of size at least $n^{\epsilon(m)}$.

Corollary

For every tree H on at most six vertices there exists $\epsilon(H) > 0$ such that every $\{H, H^c\}$ -free undirected n-vertex graph G contains a clique or a stable set of size at least $n^{\epsilon(H)}$.





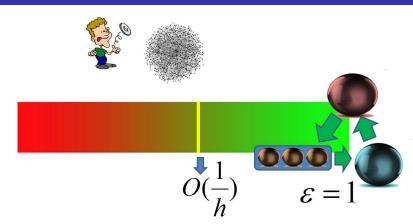


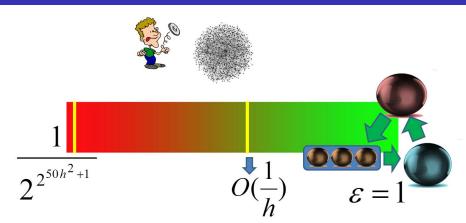
EH-coefficients of random tournaments

Theorem (Choromanski '10)

There exists $\eta > 0$ such that if we denote by $H^{n,\eta}$ the set of all n-vertex tournaments H with $\epsilon(H) \leq \frac{4}{|H|} (1 + \frac{\eta \sqrt{\log(|H|)}}{\sqrt{|H|}})$, and by H^n the set of all n-vertex tournaments then

$$\lim_{n\to\infty}\frac{|H^{n,\eta}|}{|H^n|}=1.$$

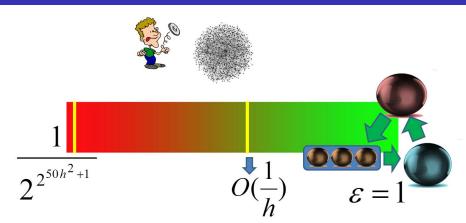


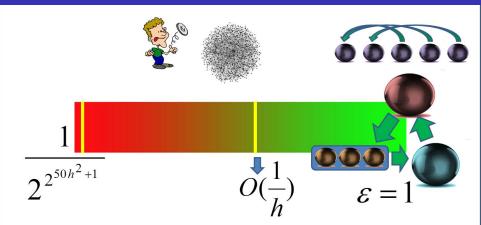


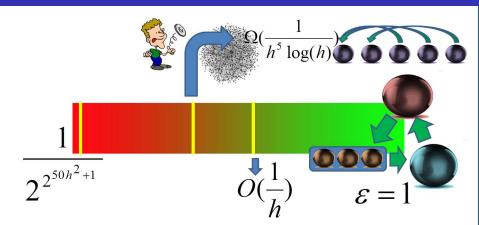
Freed from the Regularity Lemma

Theorem (Choromanski, Jebara '13)

Every known prime tournament H satisfying the Conjecture satisfies also: $\epsilon(H) \geq \frac{1}{2^{2^{50|H|^2+1}}}$.





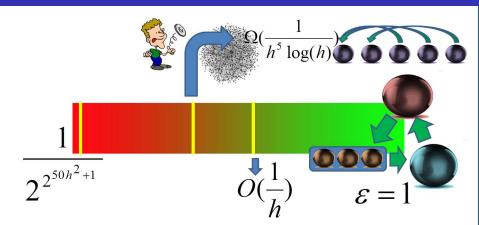


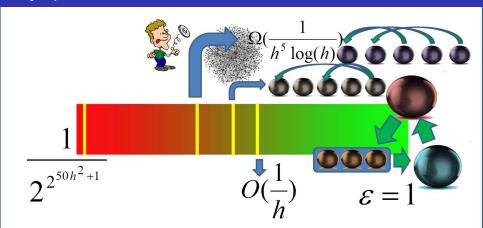
Polynomial EH-coefficients

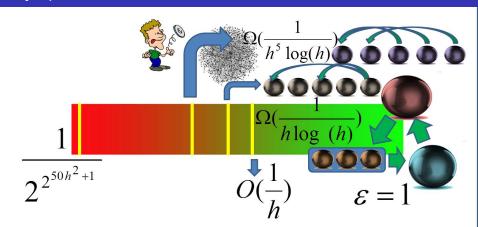
Theorem (Choromanski '14)

There exists C > 0 such that every known prime tournament H satisfying the Conjecture satisfies also:

$$\epsilon(H) \geq \frac{C}{|H|^5 \log(|H|)}.$$







Tight bounds on EH coefficients for stars

Krzysztof Choromanski Google Research, New York City

The Erdős-Hajnal Conjecture,structured non-linear graph-based hashing and b-matching anonymization via perfect matchings

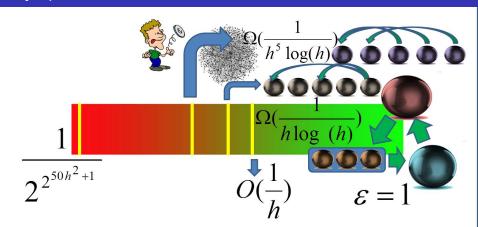
Tight bounds on EH coefficients for stars

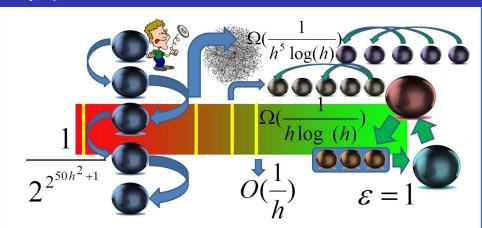
Theorem (Choromanski '12)

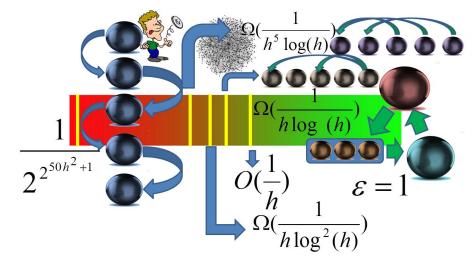
For every star H there exist C_1 , $C_2 > 0$ such that

$$\frac{C_1}{h\log(h)} \le \epsilon(H) \le \frac{C_2\log(h)}{h},$$

where h = |H|.







Tight bounds on EH coefficients for directed paths

Theorem (Choromanski '15)

For every directed path P_h there exist C_1 , $C_2 > 0$ such that

$$\frac{C_1}{h\log^2(h)} \le \epsilon(H) \le \frac{C_2\log(h)}{h}.$$

Krzysztof Choromanski

Google Research, New York City

The Erdős-Hajnal Conjecture, structured non-linear graph-based hashing and b-matching anonymization via perfect matchings

Partition numbers and EH-coefficients

Theorem (Choromanski '12)

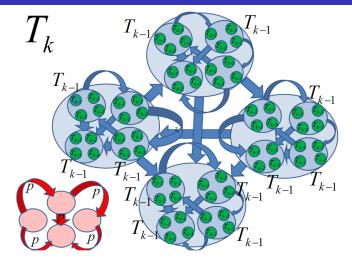
There exists $C_1 > 0$ such that for a tournament H the following holds:

$$\epsilon(H) \leq C_1 \frac{\log(\log(p(H)))}{\log(p(H))}.$$

There exists $C_2 > 0$ such that if H is prime then the following holds:

$$\epsilon(H) \leq C_2 \frac{\log(|H|)}{|H|}.$$

Powers of graphs



Small homogeneous sets imply small EH-coefficients

 T_k

Theorem (Choromanski '12)

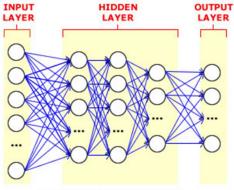
If H is a tournament without homogeneous sets of size larger than $\frac{\sqrt{|H|}}{2}$ then

$$\limsup_{p(H)\to\infty}\frac{\epsilon(H)}{\frac{\log(p(H))}{p(H)^{\frac{1}{2}-\delta}}}<\infty,$$

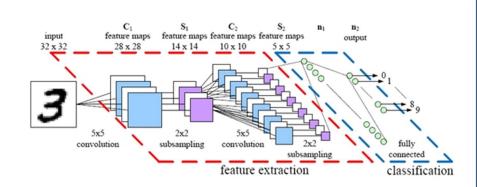
for every $\delta > 0$.

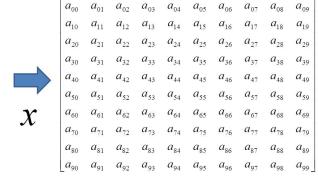
The Erdős-Hajnal Conjecture, structured non-linear graph-based hashing and b-matching anonymization via perfect matchings

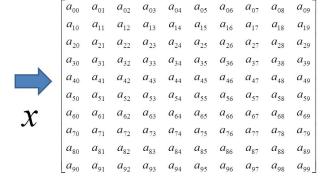
The Erdős-Hajnal Conjecture



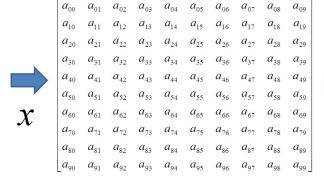
A SIMPLE NEURAL NETWORK

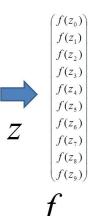


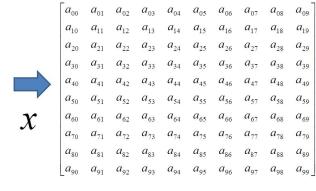


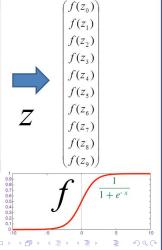


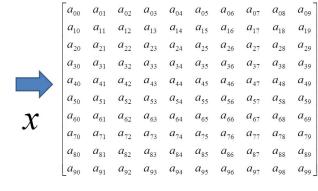
The Erdős-Hajnal Conjecture

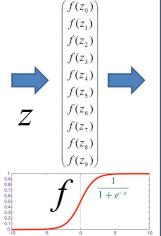










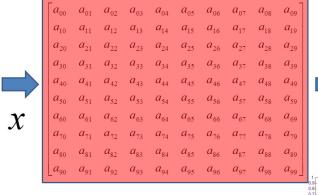


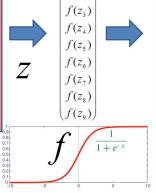
Anonymization via perfect matchings

 $f(z_0)$ $f(z_1)$

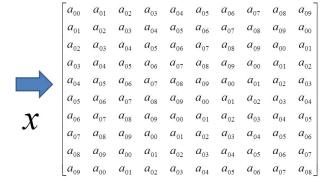
 $f(z_2)$

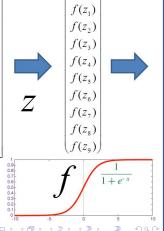
Introducing structured approach





 $f(z_0)$

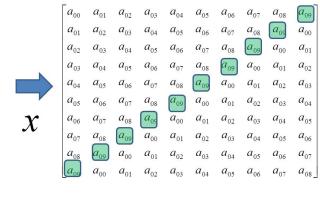


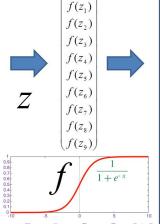


The Erdős-Hajnal Conjecture

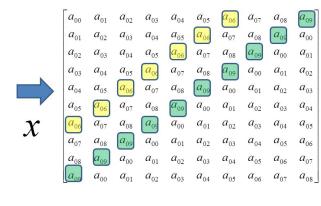
 $f(z_0)$

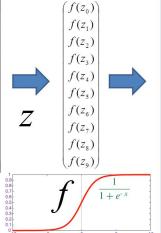
Introducing structured approach



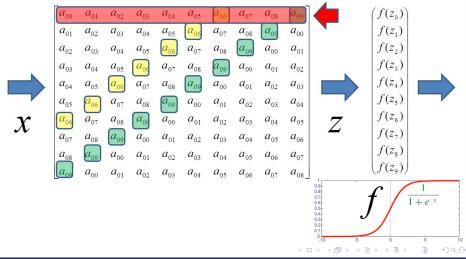


Introducing structured approach

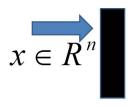




Introducing structured approach

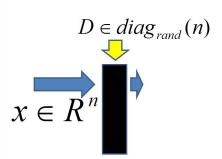


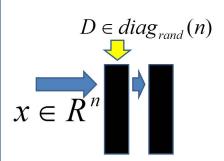
Krzysztof Choromanski

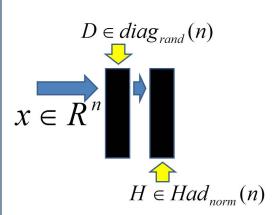


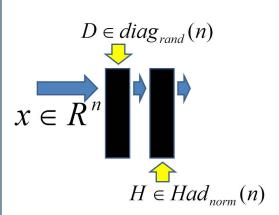
$$D \in diag_{rand}(n)$$

$$x \in \mathbb{R}^n$$

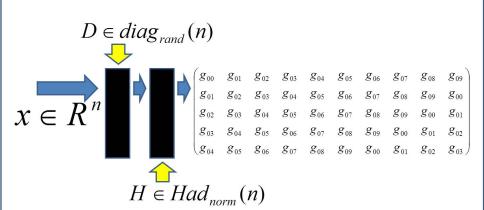


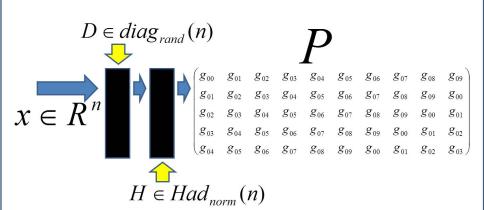


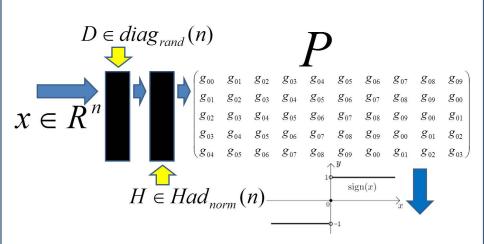


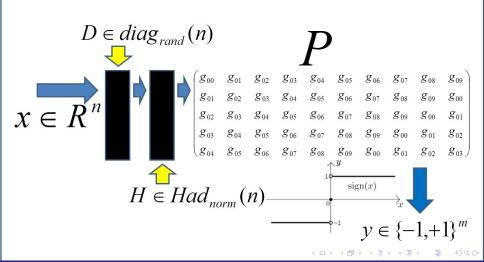


Anonymization via perfect matchings









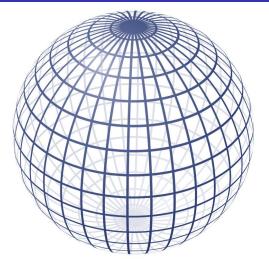
Ψ-regular structured gaussian matrices

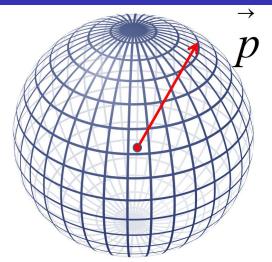
Matrix \mathcal{P} is Ψ -regular random matrix if it has the following form

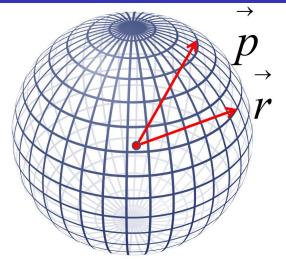
$$\begin{pmatrix} \sum_{l \in \mathcal{S}_{1,1}} g_l & \cdots & \sum_{l \in \mathcal{S}_{1,j}} g_l & \cdots & \sum_{l \in \mathcal{S}_{1,n}} g_l \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \sum_{l \in \mathcal{S}_{i,1}} g_l & \cdots & \sum_{l \in \mathcal{S}_{i,j}} g_l & \cdots & \sum_{l \in \mathcal{S}_{i,n}} g_l \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ \sum_{l \in \mathcal{S}_{k,1}} g_l & \cdots & \sum_{l \in \mathcal{S}_{k,j}} g_l & \cdots & \sum_{l \in \mathcal{S}_{k,n}} g_l \end{pmatrix}$$

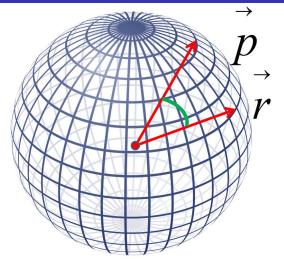
where
$$S_{i,j} \subseteq \{1,...,t\}$$
, $|S_{i,1}| = ... = |S_{i,n}|$, $S_{i,j} \cap S_{i,u} = \emptyset$ for $j \neq u$, and furthermore:

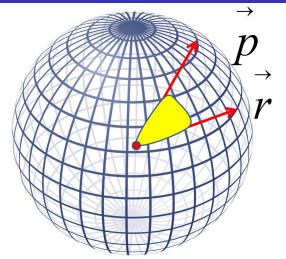
• for a fixed column C of P and fixed $l \in \{1, ..., t\}$ random variable g_l appears in at most $\Psi + 1$ entries from C.

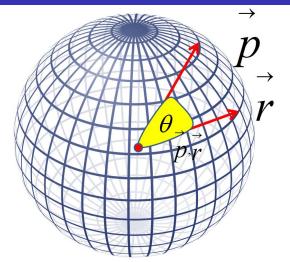


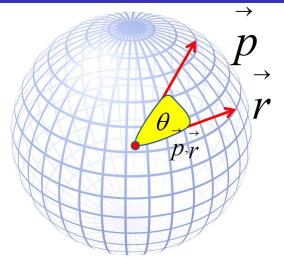


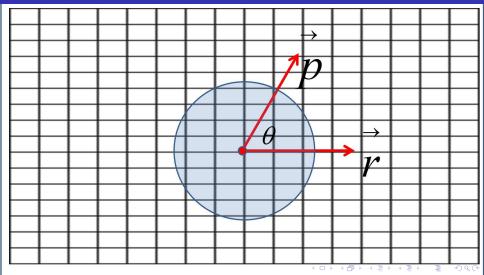






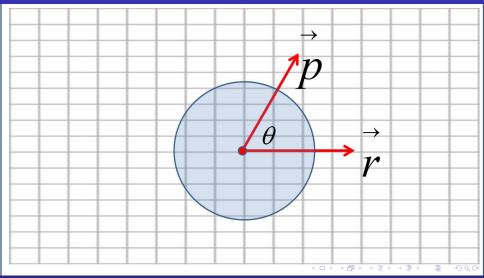




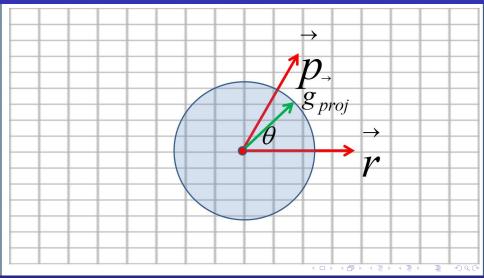


Krzysztof Choromanski

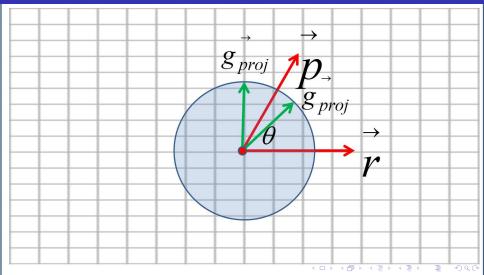
The Erdős-Hajnal Conjecture



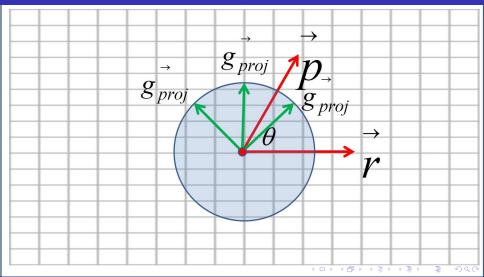
Krzysztof Choromanski



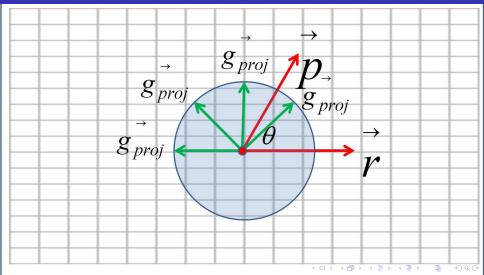
Krzysztof Choromanski



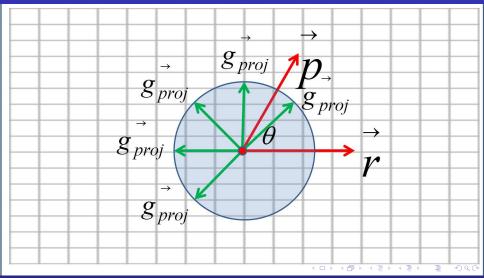
Krzysztof Choromanski



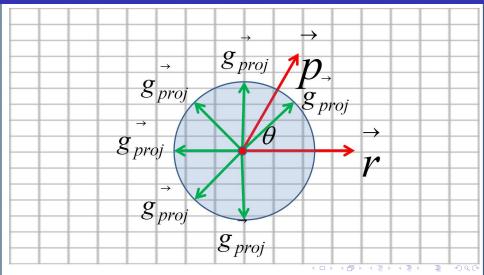
Krzysztof Choromanski



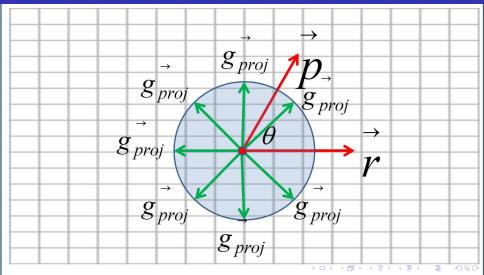
Krzysztof Choromanski



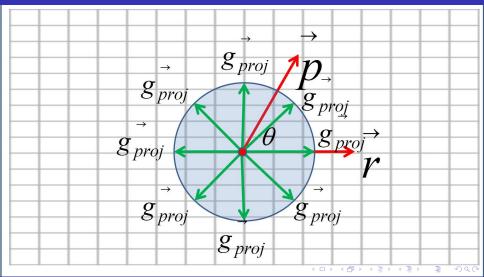
Krzysztof Choromanski



Krzysztof Choromanski



Krzysztof Choromanski



Krzysztof Choromanski

Coloring graphs of structured matrices

Let us fix two rows of \mathcal{P} of indices $1 \leq k_1 < k_2 \leq k$ respectively. We define a graph $\mathcal{G}_{\mathcal{P}}(k_1, k_2)$ as follows:

- $V(\mathcal{G}_{\mathcal{P}}(k_1, k_2)) = \{\{j_1, j_2\} : \exists I \in \{1, ..., t\} s.t.g_I \in \mathcal{S}_{k_1, j_1} \cap \mathcal{S}_{k_2, j_2}, j_1 \neq j_2\},$
- there exists an edge between vertices $\{j_1, j_2\}$ and $\{j_3, j_4\}$ iff $\{j_1, j_2\} \cap \{j_3, j_4\} \neq \emptyset$.

Definition

Let $\mathcal P$ be a Ψ -regular matrix. We define the $\mathcal P$ -chromatic number $\chi(\mathcal P)$ as:

$$\chi(\mathcal{P}) = \max_{1 \leq k_1 < k_2 \leq k} \chi(\mathcal{G}(k_1, k_2)).$$

Coloring graphs of structured matrices

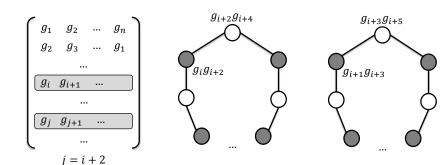


Figure: Structured graph for the circulant matrix - a set of disjoint cycles.

Theorem (Choromanski '15)

Take the extended Ψ -regular hashing model \mathcal{M} . Let N be the size of the dataset. Denote by k the size of the hash and by n the dimensionality of the data. Let f(n) be an arbitrary positive function. Then for every $a, \epsilon > 0$ the following is true:

$$\mathbb{P}\left(\left|\tilde{\theta}_{p,r}^n - \frac{\theta_{p,r}}{\pi}\right| \le \epsilon\right) \ge \left[1 - 4\binom{N}{2}e^{-\frac{f^2(n)}{2}} - 4\chi(\mathcal{P})\binom{k}{2}e^{-\frac{2a^2t}{f^4(t)}}\right]\Lambda,$$

where
$$\Lambda=1-rac{1}{\pi}\sum_{j=rac{\epsilon k}{2}}^krac{1}{\sqrt{j}}(rac{ke}{j})^j\mu^j(1-\mu)^{k-j}+2e^{-rac{\epsilon^2k}{2}}$$
 and

$$\mu = \frac{8k(a\chi(\mathcal{P}) + \Psi^{\frac{f^2(n)}{n}})}{\theta_{p,r}}.$$

Coloring and concentration results

Corollary

Take the extended Ψ -regular hashing model \mathcal{M} . Assume that the projection matrix \mathcal{P} is Toeplitz gaussian. Let N be the size of the dataset. Denote by k the size of the hash and by n the dimensionality of the data. Then for every $\epsilon>0$ the following is true:

$$\mathbb{P}\left(\left|\tilde{\theta}_{p,r}^{n} - \frac{\theta_{p,r}}{\pi}\right| \leq k^{-\frac{1}{3}}\right) \geq \left|1 - O\left(\frac{N^{2}}{n^{4.5}} + k^{2}e^{-\Omega\left(\frac{n^{\frac{1}{3}}}{\log^{2}(n)}\right)}\right)\right| \Lambda,$$

where
$$\Lambda = \left[1 - \left(\frac{k^7}{n}\right)^{\frac{1}{3}}\right]$$
.

Coloring and concentration results

Theorem (Choromanski '15)

Take the short Ψ -regular hashing model \mathcal{M} , where \mathcal{P} is a Toeplitz gaussian matrix. Denote by k the size of the hash. Then the following is true

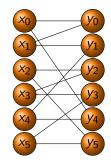
$$Var(\tilde{\theta}_{p,r}^n) \leq \frac{1}{k} \frac{\theta_{p,r}(\pi - \theta_{p,r})}{\pi^2} + (\frac{\log(k)}{k^2})^{\frac{1}{3}},$$

and thus for any c > 0:

$$\mathbb{P}\left(\left|\tilde{\theta}^n_{p,r} - \frac{\theta_{p,r}}{\pi}\right| \geq c\left(\frac{\sqrt{\log(k)}}{k}\right)^{\frac{1}{3}}\right) = O\left(\frac{1}{c^2}\right).$$

Adaptive anonymity with b-matchings

username				
Anna	1	0	0	0
Robert	0	0	0	0
Paul	0	0	1	1
Peter	1	0	1	1
Carl	1	1	0	0
Olaf	0	1	1	1



				key
*	0	0	0	172
*	*	0	0	236
*	0	1	1	672
*	*	1	1	229
1	*	0	0	761
0	*	1	1	298

Figure: The *b*-matching *k*-anonymity. The comparability graph is not a disjoint union of complete bipartite graphs. The parameters of the model are: n = 6, f = 4, k = 2. Presented solution achieves #(*) = 8. The standard *k*-anonymity would achieve #(*) = 10.

Combinatorics of adaptive anonymity via b-matching

Definition

Let G(A, B) be a bipartite graph with color classes: A, B, where |A| = |B| = n. For a vertex $v \in V(G(A, B))$ we denote by N(v) the set of its neighbours in G(A, B). For a subset $S \subseteq V(G(A, B))$ we denote: $N(S) = \bigcup_{v \in S} N(v)$.

Definition

A *perfect matching* in the graph G is the set of its pairwise vertex-disjoint edges that cover all its vertices.

Hall's Theorem

Bipartite graph G(A, B) has a perfect matching if and only if $|N(S)| \ge |S|$ for every $S \subseteq A$.

Definitions again...

Definition

Assume that G(A, B) has a perfect matching. Let M be some fixed canonical matching in G(A, B). Then for $S \subseteq A$ we denote $m(S) = \bigcup_{s \in S} m(s)$, where $(s, m(s)) \in M$.

Definition

Let G(A, B) be a bipartite graph with |A| = |B| = n and let M be its canonical matching. We say that a set $S \subseteq V(A)$ is *closed* if N(S) = m(S).

Lemma

If G(A, B) is an arbitrary d-regular graph and the adversary does not know in advance any edges of the matching he is looking for then every person is d-anonymous.

Structured nonlinear graph-based hashing

Simple theorems

Lemma

If G(A, B) is an arbitrary d-regular graph and the adversary does not know in advance any edges of the matching he is looking for then every person is d-anonymous.

Proof:

It suffices to prove that for every edge e of G(A, B) there exists a perfect matching in G(A, B) that uses e. This is a direct implication of Hall's Theorem. You keep finding matchings one by one, removing edges of the matchings found so far from the graph.

Simple theorems - sustained attack with d-anonymity

Lemma

If G(A, B) is clique-bipartite d-regular graph and the adversary knows in advance c edges of the matching then every person is (d - c)-anonymous.

Simple theorems - sustained attack with d-anonymity

Proof:

Follows immediately from the following lemma:

Lemma

Assume that G(A, B) is clique-bipartite d-regular graph (i.e. it is a union of disjoint complete bipartite graphs). Denote by M some perfect matching in G(A, B). Let C be some subset of the edges of M and let c = |C|. Fix some vertex $v \in A$ not matched in C. Then there are at least (d - c) edges adjacent to v such that for each edge e like that there exists some perfect matching M^e in G(A, B) that uses both e and C.

Main Result - Adversary with extra Knowledge

Theorem (Choromanski '11-15)

Let G(A,B) be a k-regular bipartite graph with color classes: A and B. Assume that |A| = |B| = n. Denote by M some perfect matching M in G(A,B). Let C be some subset of the edges of M and let c = |C|. Take some $\xi \geq c$. Denote $\hat{n} = n - c$. Fix any function $\phi: N \to R$ satisfying $\forall_k (\xi \sqrt{2k + \frac{1}{4}} < \phi(k) < k)$. Then for all but at most $\delta = \frac{2ck^2\hat{n}\xi(1 + \frac{\phi(k) + \sqrt{\phi^2(k) - 2\xi^2k}}{2\xi k})}{\phi^3(k)(1 + \sqrt{1 - \frac{2\xi^2k}{\phi^2(k)}})(\frac{1}{\xi} - \frac{c}{\phi(k)} + \frac{k(1 - \frac{\xi}{\xi})}{\phi(k)})} + \frac{ck}{\phi(k)}$

vertices $v \in A$ not matched in C the following holds:

Main Result - Adversary with extra knowledge

Theorem (Choromanski '11-15)

The size of the set of edges e adjacent to v and with the additional property that there exists some perfect matching M^v in G(A,B) that uses e and edges from C is at least $(k-c-\phi(k))$.

Definition

Take a bipartite graph $G_{del} = G(A_{del}, B_{del})$ with color classes A_{del}, B_{del} , obtained from G(A, B) by deleting all the vertices of C. For a vertex $v \in A_{del}$ and an edge e adjacent to it in G_{del} we say that e is bad in respect to v if there is no perfect matching in G(A, B) that uses e and all the edges from C.

Definition

We say that a vertex $v \in A_{del}$ is bad if there are at least $\phi(d)$ edges bad with respect to v.

Lemma

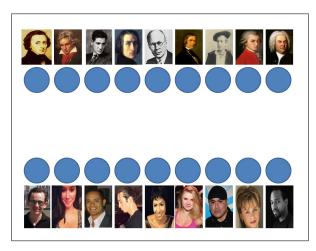
For every edge e which is bad with respect to a vertex v there exists a closed set S_v^e such that $v \notin S_v^e$ and v is adjacent to some vertex in $m(S_v^e)$.

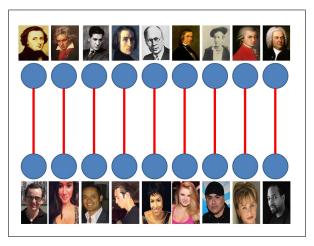
Definition

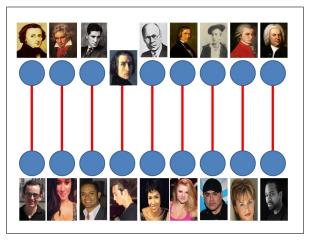
Fix some bad vertex v and some set E of its bad edges of size $\phi(d)$. Let $S_v^E = \bigcup_{e \in E} S_v^e$. Note that S_v^E is closed as a sum of closed sets. We also have: $v \notin S_v^E$. Besides every edge from E touches some vertex from $m(S_v^E)$. We say that the set S is $\phi(d)$ -bad with respect to a vertex $v \in A_{del} - S$ if it is closed and there are $\phi(d)$ bad edges with respect to v that touch S. So we conclude that S_v^E is $\phi(d)$ -bad with respect to v.

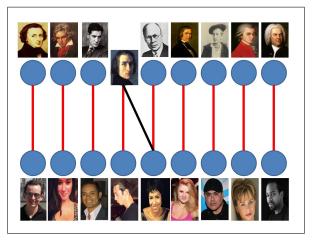
Definition

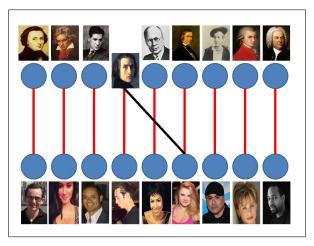
Denote by S_v^m a minimal $\phi(d)$ -bad set with respect to v.

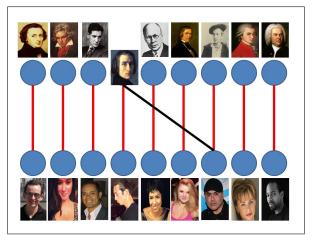


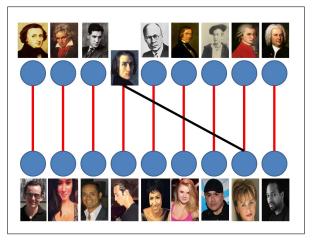


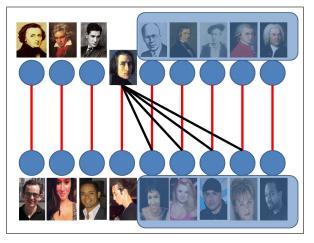


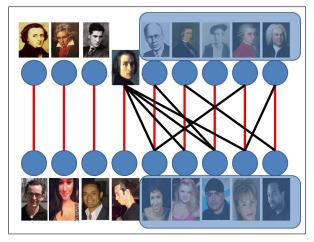








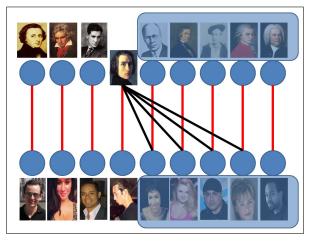


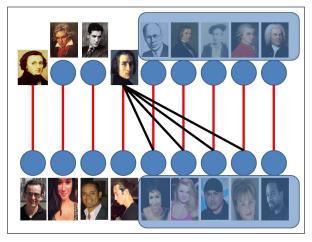


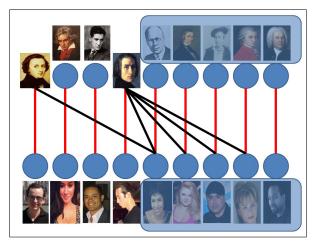
Lemma

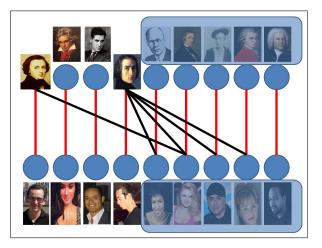
Let v_1, v_2 be two bad vertices. If $v_2 \in S_{v_1}^m$ then $S_{v_2}^m \subseteq S_{v_1}^m$.

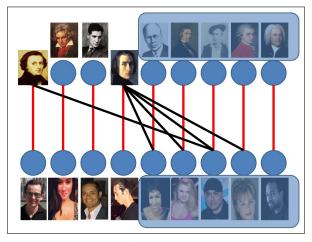
Anonymization via perfect matchings

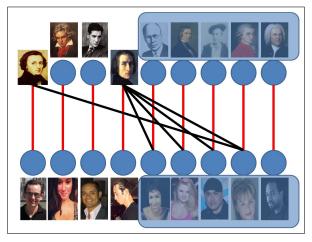


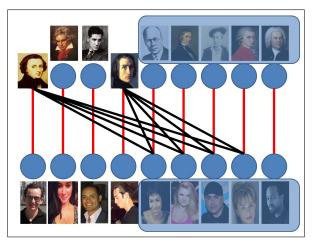


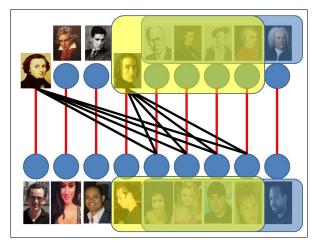


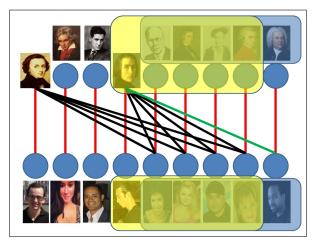


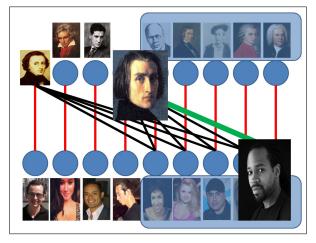


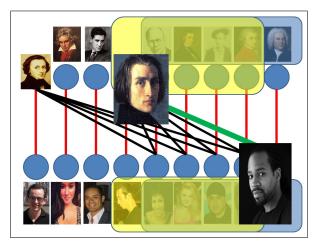


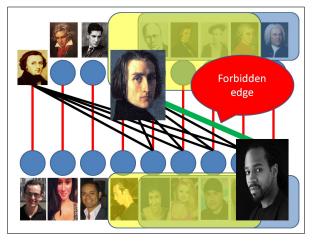


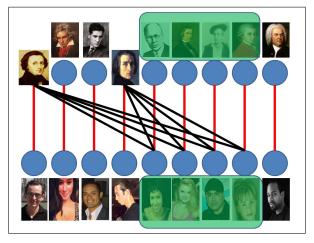


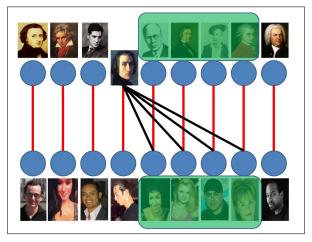












Lemma

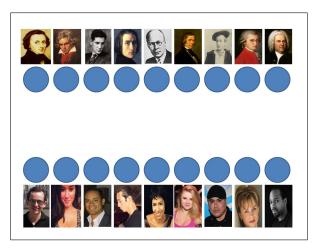
Denote $P = \{S_v^m : v \in X\}$. As a poset with an ordering induced by the inclusion relation, it does not have antichains of size larger than $\frac{cd}{\phi(d)}$.

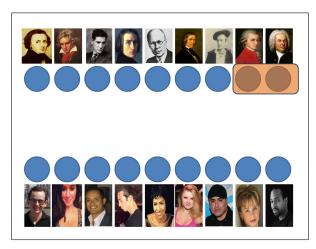
Lemma

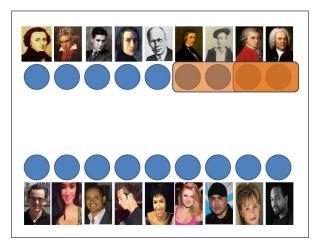
Denote $P = \{S_v^m : v \in X\}$. As a poset with an ordering induced by the inclusion relation, it does not have antichains of size larger than $\frac{cd}{\phi(d)}$.

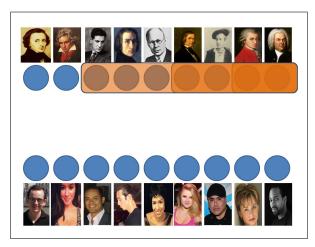
Corollary

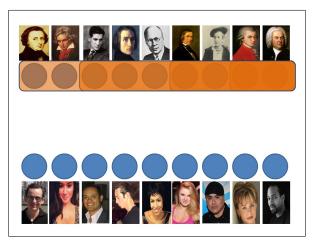
Using Dilworth's lemma about chains and antichains in the poset and the previous lemma we can conclude that a set $P = \{S_v^m : v \in A\}$ has a chain of length at least $\frac{\hat{n}\phi(d)}{cd}$.

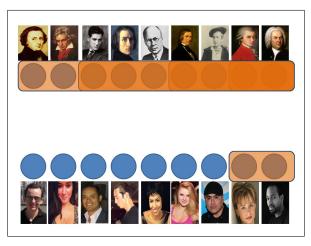


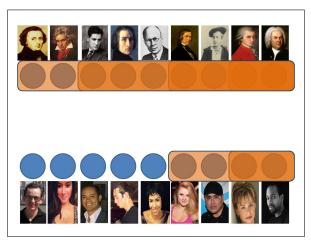


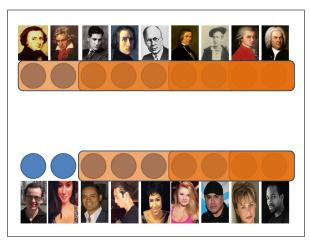


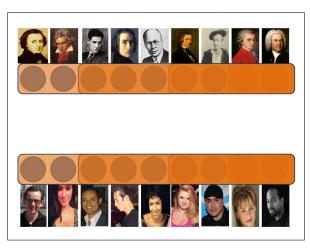


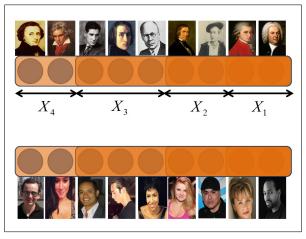










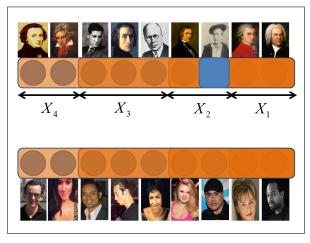


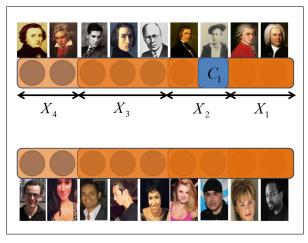
Gap Lemma

If
$$|X_i| > c$$
 then $|X_i| \ge \frac{\phi(k)}{c} - c$.

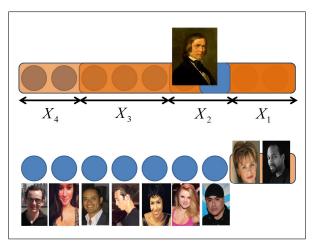
Short subsequences of small values

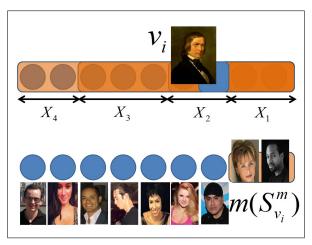
For every i and $I > \frac{\phi(d) - \sqrt{\phi^2(d) - 2\xi^2 d}}{\xi}$ in the sequence $(X_{i+1}, ..., X_{i+l})$ there exists at least one element of size more than C.











Structured nonlinear graph-based hashing

