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Equations in monoids and groups - introduction
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Equations in monoids: word equations

I Algebraic structures: monoids.

Free monoid FM(a, b) = all words over {a, b}.

I An equation in the structure and variables {X ,Y , . . . } has the form

XaUZaU = YZbXaabY in FM(a, b).

I A solution is an assignment for each variable that makes the two sides equal.

X → abb, Y → ab, Z → ba, U → bab =⇒

XaUZaU = YZbXaabY = abbababbaabab.
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Equations in groups

• G is a group

• {X1, . . .,Xn} is a set of variables.

An equation with coefficients gj in G has the form

g1X
ε1
i1
g2X

ε2
i2
. . .X εm

im
gm+1 = 1G

where ij ∈ {1, . . . , n}, εj ∈ {1,−1}.
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Equations in free groups

FG(a, b) = the free group on a, b.

I The equation

X−1abX = ba

has solutions X = (ab)na, n ∈ Z.

I The equation

XYX−1Y−1 = aba−1b−1

has solutions X = a, Y = b; X = ab, Y = b; . . . , X = abn, Y = b;

X = a, Y = bam . . .
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Two natural questions

I Deciding satisfiability: a decision problem

Does an equation have solutions? Does there exist an algorithm which for any

equation in a given group can determine whether the equation is satisfiable?

I Find and describe the solutions

Give an algorithm that finds a solution (all solutions) for any satisfiable equation.
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Motivation: Hilbert’s Tenth Problem

(Markov, Hmelevskii, Malcev, Makanin, ...)

• The matrices a =

1 1

0 1

 and b =

1 0

1 1

 form a free

monoid inside SL2(Z).

• Consider a word equation over {a, b}∗ with variables

{X1, . . . ,Xn}, where each Xi =

αi1 αi2

αi3 αi4

, αij ∈ N.
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• Consider an equation over {a, b}∗ with variables {X1, . . . ,Xn},

where each Xi =

αi1 αi2

αi3 αi4

, αij ∈ Z.

• The equation becomesP1 P2

P3 P4

 =

Q1 Q2

Q3 Q4

 ,

where P1, . . . ,Q4 are polynomials in the αij .

• The equation has a solution if and only if the Diophantine

system has a solution:

αi1αi4 − αi2αi3 = 1

Pj = Qj .
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Deciding satisfiability of systems of equations is:

I Unsolvable in general groups/monoids.

I First breakthrough: decidable, but hard over free (semi)groups (not

primitive recursive, EXPSPACE)

(G. Makanin 1982 and A. Razborov 1985)

I Decidable in groups that ‘close’ to free:

- hyperbolic (Rips & Sela, 1995; Dahmani & Guirardel, 2010)

- partially commutative (Diekert & Muscholl, 2005)

- some extensions of the above
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Equations in other groups

I Solvable in abelian groups: linear algebra

I Not solvable in general nilpotent groups

(Roman’kov ’79)

I Solvable for single equations in all Heisenberg groups

(Duchin, Liang, Shapiro ’14)
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Equations that are not

An inequation with coefficients gj in G has the form

g1X
ε1
i1
g2X

ε2
i2
. . .X εm

im
gm+1 6= 1G

where ij ∈ {1, . . . , n}, εj ∈ {1,−1}.
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Connections to:

I Logic: the satisfiability of equations and inequations is equivalent to the

decidability of the existential theory of a group.

(Tarski’s Conjecture ∼1950) The elementary theories of free groups with

different number of generators coincide. (Sela, Kharlampovich & Myasnikov)

I Geometry: Viewing maps from surface groups to free groups geometrically

=⇒ quadratic equations (every variable appears twice) in free groups are

well understood.

I Theoretical Computer Science

Unification theory - solvability of free monoid equations.
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Understanding the solutions

13 / 50



Description of solutions: algebraic approach

1987 Razborov: Description of all solutions for an equation in a free group via

“Makanin-Razborov” diagrams.

2000s: generalisations of such diagrams to hyperbolic groups etc

2016 Sela: Description of all solutions for an equation in a free monoid via

“Makanin-Razborov” diagrams.
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Solving equations in free structures: the CS approach

I 1999 Plandowski: Decidability for word equations is in PSPACE.

I 2000 Gutiérrez: Decidability for free group equations is in PSPACE.

I 2001 Diekert, Gutiérrez, Hagenah: Decidability for free group equations with

rational constraints is PSPACE-complete.

I 2013: Jeż applied recompression and simplified all known proofs for decidability.

I 2014: Diekert, Jeż, Plandowski gave a new PSPACE algorithm that produces all

solutions for an equation with rational constraints in free groups or free monoids

with involution.
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Description of solutions as formal languages

Let A be a finite alphabet. A formal language over A is a set L ⊂ A∗ of words.

How do we represent the solutions as a formal language?

I In FG(a, b): represent the solutions of XYX−1Y−1 = aba−1b−1 as

{a#b, ab#b, ab2#b, . . . }

over the alphabet {a, b, a−1, b−1,#}.
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I In general: Let G be a group generated by a set A.

• Suppose U = 1 is an equation over G with variables Ω = {X1, . . . ,Xk}.

• Any solution of U = 1 is a substitution σ with σ(Xi ) = ui , ui ∈ A∗.

• Let # be a symbol not in A. We encode a solution of U = 1 as

σ(X1)# · · ·#σ(Xk ).
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I What is the formal language type of a solution set in a free group?

I ANSWER: An indexed language!

(C., Diekert, Elder)
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The hierarchy of formal languages

regular

context-free
NO

INDEXED

context-sensitive
YES

recursive

recursively enumerable
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The right kind of language: EDT0L ⊂ indexed

regular

context-free

indexed

context-sensitive

EDT0L
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Solutions are EDT0L in important classes of groups

CDE The set of all solutions as reduced words in a free group is EDT0L in

NSPACE(n log n).

(C. - Diekert - Elder, ICALP 2015)

DE The set of all solutions in a virtually free group is EDT0L in NSPACE(n2 log n).

(Diekert - Elder, ICALP 2017)

DJK The set of all solutions in a partially commutative group is EDT0L in

NSPACE(n log n).

(Diekert - Jeż - Kufleitner, ICALP 2016)
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EDT0L (Extended, Deterministic, Table, 0 interaction, and Lindenmayer)

I 1960s: Lindenmeyer’s grammars intended to model the growth of organisms.

I L languages: GREAT for ALGEBRA. Why?

Obtained by applying a (rational) family of morphisms∗ to some fixed symbol #.

I Definition:

Let A be an alphabet and L ⊆ A∗.

L is an EDT0L language if there is

I an alphabet C ⊇ A,

I a finite set H of morphisms C∗ → C∗,

I a rational language R ⊆ H∗ of morphisms, and

I a symbol # ∈ C such that

L = {φ(#) | φ ∈ R} ∩ A∗.
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L = {an2 | n ∈ N} is EDT0L

A = {a} ⊂ C = {#, s, t, u, a}

The finite state automaton A gives the rational control R:

q0

q1 q2

q3

ϕ# : # 7→ tsa

ϕ1 : s 7→ su

ϕ2 : t 7→ at
u 7→ ua2ϕ3 : s, t, u 7→ ε

Then R = ϕ#(ϕ1ϕ2)∗ϕ3 applied to start symbol # gives {an
2

| n ∈ N}.
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Theorem (C., Diekert, Elder, 2016)

Let F (A) be the free group on A and Ω = {X1, . . . ,Xk} a set of variables.

I The set of all solutions in reduced words to U = V is an EDT0L language.

I There is an algorithm which takes (U,V ) as input and computes in

NSPACE(n log n) a finite graph (an NFA) A where the transitions are

monoid morphisms and

Sol(U = V ) = {φ($) | φ ∈ L(A)}.
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The algorithm: an overview

1. First we translate an equation in a free group into a system of equations in

a free monoid with involutions.

2. Then we solve equations in free monoids with RATIONAL constraints.

3. We ensure that the solutions are reduced words in the free group by using

the rational constrains. (MR diagrams cannot produce reduced words!)
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About the algorithm

1. It is easy to produce the graph that gives the solutions, HARD to show it

is the correct graph.

2. Once the graph is produced from an initial vertex to final vertices, we start

at the final vertices and go backwards to the initial ones to read off the

solutions.

This gives us the EDT0L description.
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The proof: preprocessing
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Step 1: transform equation into triangular system

Take the equation U = V in F (A), which is equivalent to UV –1 = 1,

and make a system of equations, using new variables Zi , as follows:

UV –1 = p1p2p3 . . . pn = 1

→ p1p2 = Z1, Z1p3 = Z2, Z2p4 = Z3, Z3p5 = Z4, . . .

Each equation is now triangular, i.e. it has length 3.
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Step 2. Free groups −→ free monoids

In a free group, xy = z holds if and only if there are reduced words P,Q,R with

x = PQ, y = Q–1R, z = PR

as word equations in the free monoid over A = {a1, a
–1
1 , . . . , ad , a

–1
d }.

P

Q R

x z

1

y
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Step 3: Free monoids with involution

I Write a–1 as a and X –1 as X .

The map a 7→ a : A→ A is an involution, i.e. (a) = a for all a ∈ A.

I We have a system of word equations ki li = mi over A ∪ Ω

(where A = {a1, a1, . . . , ad , ad} and Ω now includes Xi ,Zi ,Z i ,P,P, etc.)

and we require that solutions do not contain aa or aa.

I Finally put the system ki li = mi into a single equation

k1l1#k2l2# . . .#ks ls = m1#m2# . . .#ms

and insist that the letter # /∈ A does not appear in any solution.
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Step 3: Free groups −→ free monoids with constraints

Now let A := {a1, a1, . . . , ad , ad ,#}.

How do we find solutions {Xi → ui} to a word equation such that:

I ui ∈ A∗ is not allowed to contain any subwords aa,

I ui ∈ A∗ is not allowed to use the letter # ?

We use CONSTRAINTS.
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The proof: key process
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Main idea of the proof: example aXXb = YX

I We start guessing the first and last letters of the variables, and substitute:

X → aX aaXaXb = YaX

X → Xb aaXbaXbb = YaXb

X → aX aaaXbaaXbb = YaaaXb

I We get long segments of constants in between variables.

I We compress these segments, to bring the equation length back down.

I Eventually, we will substitute X → 1 and Y → 1, and be left with two

words just in constants. If they are identical we accept, else reject.
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Goal: Find all solutions to the word equation U = V satisfying the constraints.

• We first guess ρ(X ) ∈ N \ {0} for each X ∈ Ω.

• We then apply the following moves to the equation:

– pop variables: X → aX

– compress pairs of constants ab → c where c is a new constant.

– compress blocks of letters aa . . . a→ a` where a` is a new constant.

– Eventually, we will substitute X → 1 and Y → 1, and be left with two

words just in constants. If they are identical we accept, else reject.
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Comments

I The first move (pop) increases the length of the equation, but gets us

closer to a solution.

I The two compression moves, applied many times, will reduce the length of

the equation, at the expense of enlarging the set of constants.
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Constructing the NFA: the vertices

We represent this process using a finite directed graph.

Vertices — labeled by the current state of the equation, plus some extra data.

I An initial vertex is a vertex containing the initial equation together with

some guess for the constraint for each variable X .

I Final vertices — equation with no variables and both sides identical.
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Constructing the NFA: the transitions

(I) As we move between vertices, variables will be replaced (eg X → aX ), and

the value of ρ will be updated.

(II) Also, we have two types of compression:

• pair: ab → cab • block: bbb . . . b → b`

A priori these restrictions might mean that we miss finding some (any)

solutions. The heart of the proof is to show that, with the right bounds, the

graph encodes precisely all the solutions.
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The nondeterministic finite automaton

So we need more constants than the original set A. Call this set C .

We define several types of edges, such that solutions and constraints are

preserved by an edge, and each edge is labeled by a morphism h of C∗.

To ensure the graph is finite, we must

I only use (and reuse) finitely many new constants,

I have a GLOBAL BOUND on the length of any intermediate equation.
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How do we get the solutions?

If there is a path from some

I initial vertex to a

I final vertex (with P = P and no variables)

then we can apply the maps h labeling the path backwards from final to initial

and recover a solution to U = V .
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Is this graph the correct one?

The graph can then be turned into a finite state automaton, accepting a

language R of morphisms. The set of all solutions becomes the (EDT0L)

language {h($) | h ∈ R}.

The key of the proof is to show

(1) that every answer we get is indeed a solution, and

(2) we get all solutions.
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Dealing with the two issues

(1) every answer we get is indeed a solution:

the graph was constructed to preserve solutions,

(2) we get all solutions:

the most technical and complicated part of the paper.
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Solutions sets to systems of equations in

hyperbolic groups
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Groups and their presentations

Every group has a presentation P = 〈X | R〉, which is an abstract way of defining the

group via generators X and relations R.

Examples:

I P = 〈a, b, c | aba = bab, bcb−1 = c2〉

I (Z,+) has presentation 〈a | 〉

I (Z2,+) has presentation 〈a, b | ab = ba〉
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Hyperbolic groups

Motivation: Most (finitely presented, i.e. X , R finite) groups are hyperbolic.

Definition: Groups whose ‘picture’ looks like the hyperbolic plane.

Examples: free groups, free products of finite groups, SL(2,Z), virtually free groups ∗,

surface groups, small cancellation groups, and many more.

∗ Virtually free = groups with a free subgroup of finite index.
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Equations in hyperbolic groups

I Free products of finite groups:

G = 〈a, b | a3 = 1, b5 = 1〉

Solving XaYb−1 = Za2X−1 means finding X ,Y , Z in {a±1, b±1}∗, with

a3 = 1, b5 = 1.

I Surface groups:

G = 〈a, b, c, d | aba−1b−1cdc−1d−1 = 1〉

Solving XaY 2b−1 = Ya2X−1 means finding X ,Y in {a±1, b±1, c±1, d±1}∗, with

aba−1b−1cdc−1d−1 = 1.

45 / 50



Equations in hyperbolic groups

I Free products of finite groups:

G = 〈a, b | a3 = 1, b5 = 1〉

Solving XaYb−1 = Za2X−1 means finding X ,Y , Z in {a±1, b±1}∗, with

a3 = 1, b5 = 1.

I Surface groups:

G = 〈a, b, c, d | aba−1b−1cdc−1d−1 = 1〉

Solving XaY 2b−1 = Ya2X−1 means finding X ,Y in {a±1, b±1, c±1, d±1}∗, with

aba−1b−1cdc−1d−1 = 1.

45 / 50



Languages in groups

Let G be a group with finite symmetric generating set X . A language (over X ) of

I normal forms picks one representative for each element in G .

I shortlex normal forms picks the smallest representative for each element

with respect to <, an order on X (<sl the induced shortlex order on X∗).

Example:

Standard normal forms in FG(a, b)

= the reduced words over X = {a±1, b±1}

= X∗ \ (X∗ · {aa−1, a−1a, bb−1, b−1b} · X∗)

=⇒ the normal forms are a regular language!

The set of shortlex normal forms is regular in hyperbolic groups.
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Main Result (C. - Elder, 2019)

Let G be a hyperbolic group with generating set X .

I The set of all solutions in shortlex normal form to an equation U = 1 is an

EDT0L language over the alphabet X .

I The complexity of building the graph which gives the EDT0L description

is NSPACE(n2 log n) if G is torsion-free∗; otherwise it is

NSPACE(n4 log n), where n is the size of the equation.

∗Torsion-free means gk 6= 1 for all nontrivial g ∈ G and nonzero integer k.
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Applications

1. The existential theory for hyperbolic groups can be decided in NSPACE(n2 log n)

for torsion-free and NSPACE(n4 log n) for groups with torsion.

2. Can decide in the same space complexity as above whether or not the solution

set is empty, finite or infinite.
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Proof – big picture:

I Torsion-free case (Rips & Sela): solutions in G can be deduced from solving

equations in F (X ).

Use the CDE algorithm to get solutions in F (X ).

I Torsion/general case (Dahmani & Guirardel): solutions in G are projections of

solutions of equations in a virtually free group V � G .

Use the DE algorithm to get solutions in V .

To get EDT0L solutions: use above descriptions, plus the geometry of hyper-

bolic groups, plus language theory operations and results.
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Thank you!
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