Conjugacy growth in groups, geometry and combinatorics

Laura Ciobanu

Heriot-Watt University, Edinburgh, UK

Colloquium, Monash University, 6 September 2019

Counting elements and conjugacy classes

Let G be a group with finite generating set X.

Let G be a group with finite generating set X.

Any element g can be written as a word over the generators X. Choose a shortest word w representing g. The length $|g|_X$ of g is then |w|.

Let G be a group with finite generating set X.

- Any element g can be written as a word over the generators X. Choose a shortest word w representing g. The length $|g|_X$ of g is then |w|.
- ▶ Growth of G: number of elements of length n in G, for all $n \ge 0$.

Let G be a group with finite generating set X.

- Any element g can be written as a word over the generators X. Choose a shortest word w representing g. The length $|g|_X$ of g is then |w|.
- ▶ Growth of G: number of elements of length n in G, for all $n \ge 0$.
- Standard growth functions:

$$\text{sphere} \longrightarrow a(n) = a_{G,X}(n) := \sharp \{g \in G \mid |g|_X = n\}$$

$$\text{ball} \longrightarrow A(n) = A_{G,X}(n) := \sharp \{g \in G \mid |g|_X \le n\}.$$

A finite example

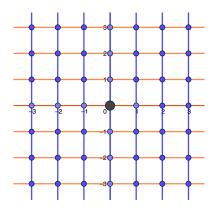
Let
$$G = S_3 = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$$
, $X = \{a, b\}$.

A finite example

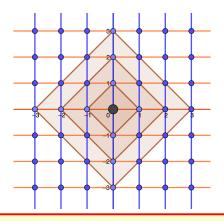
Let
$$G = S_3 = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$$
, $X = \{a, b\}$.

► Element representatives: {1, a, b, ab, ba, aba}

Cayley graph of \mathbb{Z}^2 with standard generators ${\color{black} a}$ and ${\color{black} b}$



\mathbb{Z}^2 with standard generators a and b



$$a(k) = 4k$$
, $A(n) = 1 + \sum_{k=1}^{n} 4k = 2n^{2} + 2n + 1$

Counting in groups

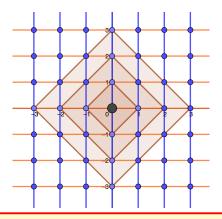
- ▶ Conjugacy growth of G: number of conjugacy classes containing an element of length n in G, for all $n \ge 0$.
- Conjugacy growth functions:

$$c(n) = c_{G,X}(n) := \sharp \{ [g] \in G \mid |g|_c = n \}$$

$$C(n) = C_{G,X}(n) := \sharp \{ [g] \in G \mid |g|_c \leq n \},$$

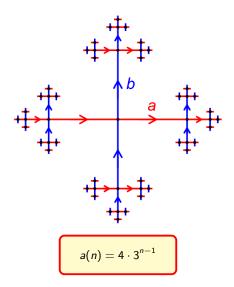
where $|g|_c$ is the length of a shortest element in the conjugacy class [g], with respect to X.

\mathbb{Z}^2 with standard generators a and b



$$a(k) = c(k) = 4k$$
, $A(n) = C(n) = 1 + \sum_{k=1}^{n} 4k = 2n^2 + 2n + 1$

Examples: F_2 with free generators **a** and **b**



Asymptotics of conjugacy growth in the free group F_r

Idea: take all cyclically reduced words of length n, whose number

is
$$(2r-1)^n + 1 + (r-1)[1 + (-1)^n]$$
, and divide by n .

Asymptotics of conjugacy growth in the free group F_r

Idea: take all cyclically reduced words of length n, whose number

is
$$(2r-1)^n + 1 + (r-1)[1 + (-1)^n]$$
, and divide by n .

Coornaert (2005): For the free group F_k , the primitive (non-powers) conjugacy growth function is given by

$$c_p(n) \sim \frac{(2r-1)^{n+1}}{2(r-1)n} = K \frac{(2r-1)^n}{n},$$

where $K = \frac{2r-1}{2(r-1)}$.

Asymptotics of conjugacy growth in the free group F_r

Idea: take all cyclically reduced words of length n, whose number

is
$$(2r-1)^n + 1 + (r-1)[1 + (-1)^n]$$
, and divide by n .

Coornaert (2005): For the free group F_k , the primitive (non-powers) conjugacy growth function is given by

$$c_p(n) \sim \frac{(2r-1)^{n+1}}{2(r-1)n} = K \frac{(2r-1)^n}{n},$$

where $K = \frac{2r-1}{2(r-1)}$.

In general, when powers are included, one cannot divide by n.

Conjugacy growth: history and motivation

Counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives

Counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives

via quasi-isometries

Counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives

via quasi-isometries

good exponential asymptotics for the primitive conjugacy growth of the fundamental group of \mathcal{M} .

Counting the primitive closed geodesics of bounded length on a compact manifold M of negative curvature and exponential volume growth gives

via quasi-isometries

good exponential asymptotics for the primitive conjugacy growth of the fundamental group of M.

- ▶ 1960s (Sinai, Margulis): *M*= complete Riemannian manifolds or compact manifolds of pinched negative curvature;
- ▶ 1990s 2000s (Knieper, Coornaert, Link): some classes of (rel) hyperbolic or CAT(0) groups.

▶ Babenko (1989): asymptotics for virtually abelian and the discrete Heisenberg groups.

- Babenko (1989): asymptotics for virtually abelian and the discrete
 Heisenberg groups.
- ▶ Rivin (2000), Coornaert (2005): asymptotics for the free groups.

- Babenko (1989): asymptotics for virtually abelian and the discrete
 Heisenberg groups.
- ▶ Rivin (2000), Coornaert (2005): asymptotics for the free groups.
- ► Guba-Sapir (2010): asymptotics for various groups.
- Conjecture (Guba-Sapir): groups* of standard exponential growth have exponential conjugacy growth.

 Breuillard-Cornulier (2010): exponential conjugacy growth for solvable (non virt. nilpotent) groups.

- Breuillard-Cornulier (2010): exponential conjugacy growth for solvable (non virt. nilpotent) groups.
- Breuillard-Cornulier-Lubotzky-Meiri (2011): exponential conjugacy growth for linear (non virt. nilpotent) groups.

- Breuillard-Cornulier (2010): exponential conjugacy growth for solvable (non virt. nilpotent) groups.
- Breuillard-Cornulier-Lubotzky-Meiri (2011): exponential conjugacy growth for linear (non virt. nilpotent) groups.
- Hull-Osin (2014): all acylindrically hyperbolic groups have exponential conjugacy growth.

What is the relation between A(n) and C(n)?

▶ Easy (no partial credit): $C(n) \le A(n)$ and C(n) = A(n) for abelian groups.

- ▶ Easy (no partial credit): $C(n) \le A(n)$ and C(n) = A(n) for abelian groups.
- ► Medium:

$$\limsup_{n\to\infty}\frac{C(n)}{A(n)}=?$$

- ▶ Easy (no partial credit): $C(n) \le A(n)$ and C(n) = A(n) for abelian groups.
- ► Medium:

$$\limsup_{n\to\infty}\frac{C(n)}{A(n)}=?$$

► Hard:

Conjecture (Guba-Sapir): groups* of standard exponential growth have exponential conjugacy growth.

- ▶ Easy (no partial credit): $C(n) \le A(n)$ and C(n) = A(n) for abelian groups.
- ► Medium:

$$\limsup_{n\to\infty}\frac{C(n)}{A(n)}=?$$

► Hard:

Conjecture (Guba-Sapir): groups* of standard exponential growth have exponential conjugacy growth.

- * Exclude the Osin or Ivanov type 'monsters'!
- ► Easy/Hard: Compare standard and conjugacy growth rates.

Growth rates

The standard growth rate of G wrt X always exists and is

$$\alpha = \alpha_{G,X} = \limsup_{n \to \infty} \sqrt[n]{a(n)}.$$

Growth rates

The standard growth rate of G wrt X always exists and is

$$\alpha = \alpha_{G,X} = \limsup_{n \to \infty} \sqrt[n]{a(n)}.$$

The conjugacy growth rate of G wrt X is

$$\gamma = \gamma_{G,X} = \limsup_{n \to \infty} \sqrt[n]{c(n)}.$$

Growth rates

The standard growth rate of G wrt X always exists and is

$$\alpha = \alpha_{G,X} = \limsup_{n \to \infty} \sqrt[n]{a(n)}.$$

The conjugacy growth rate of G wrt X is

$$\gamma = \gamma_{G,X} = \limsup_{n \to \infty} \sqrt[n]{c(n)}.$$

Hull: There are groups for which

$$\liminf_{n\to\infty}\sqrt[n]{c(n)}<\limsup_{n\to\infty}\sqrt[n]{c(n)},$$

that is, the limit does not exist.

Conjugacy vs. standard growth

	Standard growth	Conjugacy growth
Туре	pol., int., exp.	pol., int.*, exp.
Quasi-isometry invariant	yes	no**, but group invariant
Rate of growth	exists	exists (not always)

^{*} Bartholdi, Bondarenko, Fink.

^{**} Hull-Osin (2013): conjugacy growth not quasi-isometry invariant.

The conjugacy growth series

The conjugacy growth series

Let G be a group with finite generating set X.

► The conjugacy growth series of *G* with respect to *X* records the number of conjugacy classes of every length. It is

$$\sigma_{(G,X)}(z) := \sum_{n=0}^{\infty} c(n)z^n,$$

where c(n) is the number of conjugacy classes of length n.

An example

Let
$$G = S_3 = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$$
, $X = \{a, b\}$.

An example

Let
$$G = S_3 = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$$
, $X = \{a, b\}$.

$$1 + 2z + 2z^2 + z^3$$

An example

Let
$$G = S_3 = \langle a, b \mid a^2 = b^2 = (ab)^3 = 1 \rangle$$
, $X = \{a, b\}$.

- ► Element representatives: {1, a, b, ab, ba, aba}
- $1 + 2z + 2z^2 + z^3$

▶ Conjugacy representatives: $\{1, a, ab\}$

$$1+z+z^2$$

Conjugacy growth series in \mathbb{Z} , $\mathbb{Z}_2 * \mathbb{Z}_2$

In $\mathbb Z$ the conjugacy growth series is the same as the standard one:

$$\sigma_{(\mathbb{Z},\{1,-1\})}(z) = 1 + 2z + 2z^2 + \cdots = \frac{1+z}{1-z}.$$

Conjugacy growth series in \mathbb{Z} , $\mathbb{Z}_2 * \mathbb{Z}_2$

In \mathbb{Z} the conjugacy growth series is the same as the standard one:

$$\sigma_{(\mathbb{Z},\{1,-1\})}(z) = 1 + 2z + 2z^2 + \cdots = \frac{1+z}{1-z}.$$

In $\mathbb{Z}_2 * \mathbb{Z}_2$ a set of conjugacy representatives is $1, a, b, ab, abab, \ldots$, so

$$\sigma_{(\mathbb{Z}_2*\mathbb{Z}_2,\{a,b\})}(z) = 1 + 2z + z^2 + z^4 + z^6 \cdots = \frac{1 + 2z - 2z^3}{1 - z^2}.$$

Growth rates from power series

For any complex power series

$$f(z) = \sum_{i=0}^{\infty} a_i z^i$$

with radius of convergence RC(f) we have

$$RC(f) = \frac{1}{\limsup_{i \to \infty} \sqrt[i]{a_i}} = \frac{1}{\alpha}.$$

Radius of convergence for rational series

For any rational function $f(z) = \frac{P(z)}{Q(z)}$ the radius of convergence RC(f) of f is

the smallest absolute value of a zero of Q(z).

Radius of convergence for rational series

For any rational function $f(z)=\frac{P(z)}{Q(z)}$ the radius of convergence RC(f) of f is the smallest absolute value of a zero of Q(z).

Rational conjugacy growth series give conjugacy asymptotics.

Question: For which groups are conjugacy growth series rational?

Rational, algebraic, transcendental

A generating function f(z) is

- rational if there exist polynomials P(z), Q(z) with integer coefficients such that $f(z) = \frac{P(z)}{Q(z)}$;
- ▶ algebraic if there exists a polynomial P(x, y) with integer coefficients such that P(z, f(z)) = 0;
- transcendental otherwise.

Conjugacy growth series: results

Rationality

Being rational/algebraic/transcendental is not a group invariant!

Rationality

Being rational/algebraic/transcendental is not a group invariant!

Theorem [Stoll, 1996]

The higher Heisenberg groups H_r have rational growth with respect to one choice of generating set and transcendental with respect to another.

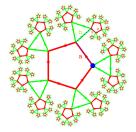
$$H_2 = \left\{ egin{pmatrix} 1 & a & b & c \ 0 & 1 & 0 & d \ 0 & 0 & 1 & e \ 0 & 0 & 0 & 1 \end{pmatrix} \middle| a,b,c,d,e \in \mathbb{Z}
ight\}$$

Conjugacy in hyperbolic groups

Hyperbolic groups

Motivation: Most (finitely presented, i.e. *X*, *R* finite) groups are hyperbolic.

Definition: Groups whose 'picture' looks like the hyperbolic plane.



Examples: free groups, free products of finite groups, $SL(2,\mathbb{Z})$, virtually free groups *, surface groups, small cancellation groups, and many more.

^{*} Virtually free = groups with a free subgroup of finite index.

Virtually cyclic groups: \mathbb{Z} , $\mathbb{Z}_2 * \mathbb{Z}_2$

In \mathbb{Z} the conjugacy growth series is the same as the standard one:

$$\sigma_{(\mathbb{Z},\{1,-1\})}(z) = 1 + 2z + 2z^2 + \cdots = \frac{1+z}{1-z}.$$

Virtually cyclic groups: \mathbb{Z} , $\mathbb{Z}_2 * \mathbb{Z}_2$

In \mathbb{Z} the conjugacy growth series is the same as the standard one:

$$\sigma_{(\mathbb{Z},\{1,-1\})}(z) = 1 + 2z + 2z^2 + \cdots = \frac{1+z}{1-z}.$$

In $\mathbb{Z}_2 * \mathbb{Z}_2$ a set of conjugacy representatives is $1, a, b, ab, abab, \ldots$, so

$$\sigma_{(\mathbb{Z}_2*\mathbb{Z}_2,\{a,b\})}(z) = 1 + 2z + z^2 + z^4 + z^6 \cdots = \frac{1 + 2z - 2z^3}{1 - z^2}.$$

The conjugacy growth series in free groups

• Rivin (2000, 2010): the conjugacy growth series of F_k is not rational:

$$\sigma(z) = \int_0^z \frac{\mathcal{H}(t)}{t} dt$$
, where

$$\mathcal{H}(x) = 1 + (k-1)\frac{x^2}{(1-x^2)^2} + \sum_{d=1}^{\infty} \phi(d) \left(\frac{1}{1-(2k-1)x^d} - 1\right).$$

Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if G is virtually cyclic.

Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if G is virtually cyclic.

 \Rightarrow

Theorem (Antolín - C., 2017)

If G is non-elementary hyperbolic, then the conjugacy growth series is transcendental.

Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if G is virtually cyclic.

 \Rightarrow

Theorem (Antolín - C., 2017)

If G is non-elementary hyperbolic, then the conjugacy growth series is transcendental.

 \Leftarrow

Theorem (C. - Hermiller - Holt - Rees, 2016)

Let G be a virtually cyclic group. Then the conjugacy growth series of G is rational.

NB: Both results hold for all symmetric generating sets of G.

Idea of proof: Asymptotics of conjugacy growth in hyperbolic groups

Theorem. (Coornaert - Knieper 2007, Antolín - C. 2017)

Let G be a non-elementary word hyperbolic group. Then there are positive constants A, B and n_0 such that

$$A\frac{\alpha^n}{n} \le c(n) \le B\frac{\alpha^n}{n}$$

for all $n \ge n_0$, where α is the growth rate of G.

Idea of proof: Asymptotics of conjugacy growth in hyperbolic groups

Theorem. (Coornaert - Knieper 2007, Antolín - C. 2017)

Let G be a non-elementary word hyperbolic group. Then there are positive constants A, B and n_0 such that

$$A\frac{\alpha^n}{n} \le c(n) \le B\frac{\alpha^n}{n}$$

for all $n \geq n_0$, where α is the growth rate of G.

MESSAGE:

The number of conjugacy classes in the ball of radius n is asymptotically the number of elements in the ball of radius n divided by n.

End of the proof: Analytic combinatorics at work

The transcendence of the conjugacy growth series for non-elementary hyperbolic groups follows from the bounds

$$A\frac{\alpha^n}{n} \le c(n) \le B\frac{\alpha^n}{n}$$

End of the proof: Analytic combinatorics at work

The transcendence of the conjugacy growth series for non-elementary hyperbolic groups follows from the bounds

$$A\frac{\alpha^n}{n} \leq c(n) \leq B\frac{\alpha^n}{n}$$

together with

Lemma (Flajolet: Trancendence of series based on bounds).

Suppose there are positive constants A, B, \mathbf{h} and an integer $n_0 \ge 0$ s.t.

$$A\frac{e^{hn}}{n} \le a_n \le B\frac{e^{hn}}{n}$$

for all $n \ge n_0$. Then the power series $\sum_{i=0}^{\infty} a_n z^n$ is not algebraic.

Consequence of Rivin's Conjecture

Corollary (Antolín - C.)

For any hyperbolic group G with generating set X the standard and conjugacy growth rates are the same:

$$\lim_{n\to\infty}\sqrt[n]{c(n)}=\gamma_{G,X}=\alpha_{G,X}.$$

Consequence of Rivin's Conjecture

Corollary (Antolín - C.)

Let G be a hyperbolic group, X any finite generating set, and \mathcal{L}_c be a set containing one minimal length representative of each conjugacy class.

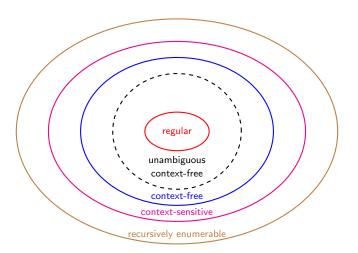
Then \mathcal{L}_c is not unambiguous context-free, so not regular.

2nd Consequence: Formal languages and the Chomsky hierarchy

Let X be a finite alphabet. A formal language over X is a set $L \subset X^*$ of words.

2nd Consequence: Formal languages and the Chomsky hierarchy

Let X be a finite alphabet. A formal language over X is a set $L \subset X^*$ of words.



Formal languages and their algebraic complexity

Let $L \subset X^*$ be a language.

▶ The growth function $f_L : \mathbb{N} \to \mathbb{N}$ of L is:

$$f_L(n) = \sharp \{ w \in L \mid w \text{ of length } n \}.$$

► The growth series of *L* is

$$S_L(z) = \sum_{n=0}^{\infty} f_L(n) z^n.$$

Formal languages and their algebraic complexity

Let $L \subset X^*$ be a language.

▶ The growth function $f_L : \mathbb{N} \to \mathbb{N}$ of L is:

$$f_L(n) = \sharp \{ w \in L \mid w \text{ of length } n \}.$$

► The growth series of *L* is

$$S_L(z) = \sum_{n=0}^{\infty} f_L(n) z^n.$$

Theorem

- Regular languages have RATIONAL growth series.
- Unambiguous context-free languages have ALGEBRAIC growth series.
 (Chomsky-Schützenberger)

Acylindrically hyperbolic groups

Main Theorem (Antolín - C., 2017)

Let G be an acylindrically hyperbolic group, X any finite generating set, and \mathcal{L}_c be a set containing one minimal length representative of each conjugacy class.

Then \mathcal{L}_c is not unambiguous context-free, so not regular.

Rivin's conjecture for other groups

Theorem (Gekhtman and Yang, 2018)

Let G be a non-elementary group with a finite generating set S. If G has a contracting element with respect to the action on the corresponding Cayley graph, then the conjugacy growth series is transcendental.

Examples: relatively hyperbolic groups, (non-abelian) RAAGs, RAACs, graph products of finite groups, graphical small cancellation groups.

Rationality of standard and conjugacy growth series

	Standard Growth Series	Conjugacy Growth Series	
Hyperbolic	Rational	Transcendental	
	(Cannon, Gromov, Thurston)	(C Antolín' 17*)	
Virtually abelian			
Heisenberg H ₁			

FOR ALL GENERATING SETS!

Rationality of standard and conjugacy growth series

	Standard Growth Series	Conjugacy Growth Series	
Hyperbolic	Rational	Transcendental	
	(Cannon, Gromov, Thurston)	(Antolín - C. '17*)	
Virtually abelian	Rational (Benson '83)	Rational (Evetts '18)	
Heisenberg H ₁	Rational (Duchin-Shapiro '19)	Transcendental	

FOR ALL GENERATING SETS!

Standard generating set \dots for now

	Conjugacy Growth Series	Formula
Wreath products	Transcendental (Mercier '17)	✓
Graph products	Transcendental ¹ (C Hermiler - Mercier '19)	✓
BS(1,m)	Transcendental (C Evetts - Ho, '19)	✓

 $^{^{1} \}mathrm{in}\ \mathrm{most}\ \mathrm{cases}$

► Are the standard and conjugacy growth rates equal for all 'reasonable' groups?

▶ Are the standard and conjugacy growth rates equal for all 'reasonable' groups?

This appears to hold for EVERY class of groups studied so far, but the proof is example dependant.

▶ Are the standard and conjugacy growth rates equal for all 'reasonable' groups?

This appears to hold for EVERY class of groups studied so far, but the proof is example dependant.

▶ Are there groups with algebraic conjugacy growth series?

▶ Are the standard and conjugacy growth rates equal for all 'reasonable' groups?

This appears to hold for EVERY class of groups studied so far, but the proof is example dependant.

- ► Are there groups with algebraic conjugacy growth series?
- Conjecture. The only groups with rational conjugacy growth series are the virtually abelian ones.

▶ Are the standard and conjugacy growth rates equal for all 'reasonable' groups?

This appears to hold for EVERY class of groups studied so far, but the proof is example dependant.

- ▶ Are there groups with algebraic conjugacy growth series?
- Conjecture. The only groups with rational conjugacy growth series are the virtually abelian ones.
- ▶ How do the conjugacy growth series behave when we change generators?

▶ Are the standard and conjugacy growth rates equal for all 'reasonable' groups?

This appears to hold for EVERY class of groups studied so far, but the proof is example dependant.

- ► Are there groups with algebraic conjugacy growth series?
- Conjecture. The only groups with rational conjugacy growth series are the virtually abelian ones.
- ▶ How do the conjugacy growth series behave when we change generators?

Stoll: The rationality of the standard growth series depends on generators.

Thank you!