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Counting elements in groups

Let G be a group with finite generating set X.

> Any element g can be written as a word over the generators X. Choose a

shortest word w representing g. The length |g|x of g is then |w].

> Growth of G: number of elements of length nin G, for all n > 0.

» Standard growth functions:

Il
3
-

sphere — a(n) = ag x(n) :=t{g € G | |g|x

ball — A(n) = Ag x(n) :=#{g € G | |g|x < n}.
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A finite example

Let G=S;=(a,b|a*=b*>=(ab)®* =1), X = {a, b}.

» Element representatives: {1, a, b, ab, ba, aba}



Cayley graph of Z? with standard generators a and b




7?2 with standard generators a and b

a(k) =4k, A(n)=1+> 4k=2n"+2n+1
k=1




Counting in groups

» Conjugacy growth of G: number of conjugacy classes containing an

element of length nin G, for all n > 0.

» Conjugacy growth functions:
c(n) = co.x(n) = t{lg] € G | lglc = n}

C(n) = Cox(n) :=t{lg] € G | lgle < n},

where |g|c is the length of a shortest element in the conjugacy class [g],

with respect to X.



7?2 with standard generators a and b

a(K) = (k) = 4k, A(n) = C(n) =1+ 34k =20 4 20 1 1




Examples: F, with free generators a and b

4
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Asymptotics of conjugacy growth in the free group F,

Idea: take all cyclically reduced words of length n, whose number

is (2r—1)"4+ 14 (r—1)[1 4+ (—=1)"], and divide by n.
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Asymptotics of conjugacy growth in the free group F,

Idea: take all cyclically reduced words of length n, whose number
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Asymptotics of conjugacy growth in the free group F,

Idea: take all cyclically reduced words of length n, whose number

is (2r—1)"4+ 14 (r—1)[1 4+ (—=1)"], and divide by n.

Coornaert (2005): For the free group Fy, the primitive (non-powers) conjugacy

growth function is given by

r— n+1 r— n
cp(n) ~ (g(r —li)n - K(2 n . ’

2r—1
2(r—1)"

where K =

In general, when powers are included, one cannot divide by n.
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[ Conjugacy growth: history and motivation
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Conjugacy growth in geometry

Counting the primitive closed geodesics of bounded length on a compact

manifold M of negative curvature and exponential volume growth gives

via quasi-isometries

good exponential asymptotics for the primitive conjugacy growth of the

fundamental group of M.
» 1960s (Sinai, Margulis): M= complete Riemannian manifolds or compact
manifolds of pinched negative curvature;

» 1990s - 2000s (Knieper, Coornaert, Link): some classes of (rel) hyperbolic
or CAT(0) groups.



Conjugacy growth asymptotics

» Babenko (1989): asymptotics for virtually abelian and the discrete

Heisenberg groups.
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Conjugacy growth asymptotics

v

Babenko (1989): asymptotics for virtually abelian and the discrete

Heisenberg groups.

v

Rivin (2000), Coornaert (2005): asymptotics for the free groups.

\{

Guba-Sapir (2010): asymptotics for various groups.

v

Conjecture (Guba-Sapir): groups” of standard exponential growth have

exponential conjugacy growth.
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Conjugacy growth asymptotics

» Breuillard-Cornulier (2010): exponential conjugacy growth for solvable

(non virt. nilpotent) groups.
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Conjugacy growth asymptotics

» Breuillard-Cornulier (2010): exponential conjugacy growth for solvable

(non virt. nilpotent) groups.

» Breuillard-Cornulier-Lubotzky-Meiri (2011): exponential conjugacy growth

for linear (non virt. nilpotent) groups.

» Hull-Osin (2014): all acylindrically hyperbolic groups have exponential

conjugacy growth.
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What is the relation between A(n) and C(n)?



C(n) vs A(n)??

» Easy (no partial credit): C(n) < A(n) and C(n) = A(n) for abelian groups.
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C(n) vs A(n)??

» Easy (no partial credit): C(n) < A(n) and C(n) = A(n) for abelian groups.
» Medium:

C(n)

limsup ——=~ =7
e’ A(n)

> Hard:
Conjecture (Guba-Sapir): groups” of standard exponential growth have
exponential conjugacy growth.

* Exclude the Osin or Ivanov type ‘monsters’!

» Easy/Hard: Compare standard and conjugacy growth rates.
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Growth rates
The standard growth rate of G wrt X always exists and is

a = ag,x = limsup /a(n).

n—o0o
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Growth rates

The standard growth rate of G wrt X always exists and is

a = ag,x = limsup /a(n).

n—o0o

The conjugacy growth rate of G wrt X is

v = v6,x = limsup v/c(n).

n—oo

Hull: There are groups for which
liminf v/c(n) < limsup 3/ c(n),
n—oo n— oo

that is, the limit does not exist.
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Conjugacy vs. standard growth

Standard growth Conjugacy growth
Type pol., int., exp. pol., int.*, exp.
Quasi-isometry invariant yes no™*, but group invariant
Rate of growth exists exists (not always)

* Bartholdi, Bondarenko, Fink.

** Hull-Osin (2013): conjugacy growth not quasi-isometry invariant.
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The conjugacy growth series

Let G be a group with finite generating set X.

» The conjugacy growth series of G with respect to X records the number of
conjugacy classes of every length. It is
oe.x)(2) = c(n)z",
n=0

where c(n) is the number of conjugacy classes of length n.
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An example

Let G =S3=(a,b|a*=0b>=(ab)’=1), X ={a,b}.

» Element representatives: {1, a, b, ab, ba, aba} 14+2z+22242°

» Conjugacy representatives: {1, a, ab} 14+z+2°
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Conjugacy growth series in Z, Zo * Zo

In Z the conjugacy growth series is the same as the standard one:
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Conjugacy growth series in Z, Zo * Zo

In Z the conjugacy growth series is the same as the standard one:

1
o@-1p(2) =1+2z422" - = 7 i— i
In Zy % Z» a set of conjugacy representatives is 1, a, b, ab, abab, . .., so
_1+2z- 273

Oarntn fap)(2) = 1422+ 2+ 2+ 20 =



Growth rates from power series

For any complex power series

oo

f(z) = Z aiz'

i=0

with radius of convergence RC(f) we have

1 1
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Radius of convergence for rational series

For any rational function f(z) = g((g the radius of convergence RC(f) of f is

the smallest absolute value of a zero of Q(z).
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Radius of convergence for rational series

For any rational function f(z) = g((g the radius of convergence RC(f) of f is

the smallest absolute value of a zero of Q(z).

[ Rational conjugacy growth series give conjugacy asymptotics. ]

Question: For which groups are conjugacy growth series rational?
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Rational, algebraic, transcendental

A generating function f(z) is

> rational if there exist polynomials P(z), Q(z) with integer coefficients

P(z).
Q)

such that f(z) =

> algebraic if there exists a polynomial P(x,y) with integer coefficients such
that P(z,f(z)) =0;

» transcendental otherwise.
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Conjugacy growth series: results



Rationality

Being rational/algebraic/transcendental is not a group invariant!
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Rationality

Being rational/algebraic/transcendental is not a group invariant!

Theorem [Stoll, 1996]

The higher Heisenberg groups H, have rational growth with respect to one

choice of generating set and transcendental with respect to another.

[y
)
o
(9}

H, = a,b,c,d,e€Z

o o o
o o
o
= o
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Conjugacy in hyperbolic groups



Hyperbolic groups

Motivation: Most (finitely presented, i.e. X, R finite) groups are hyperbolic.

Definition: Groups whose ‘picture’ looks like the hyperbolic plane.

Examples: free groups, free products of finite groups, SL(2,Z), virtually free groups *,

surface groups, small cancellation groups, and many more.

* Virtually free = groups with a free subgroup of finite index.

29



Virtually cyclic groups: Z, Zjp * Zy

In Z the conjugacy growth series is the same as the standard one:

_1+Z
T 11—z

oz 1,-11)(2) =14+2z+ 272% 4 ...
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Virtually cyclic groups: Z, Zjp * Zy

In Z the conjugacy growth series is the same as the standard one:

1
o@-1p(2) =1+2z422" - = 7 i— i
In Zy % Z» a set of conjugacy representatives is 1, a, b, ab, abab, . .., so
_1+2z- 273

Oarntn fap)(2) = 1422+ 2+ 2+ 20 =
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The conjugacy growth series in free groups

e Rivin (2000, 2010): the conjugacy growth series of Fj is not rational:

z):/ Mdt, where
0 t

H(x) =1+ (k —1) +Z¢(d <71)Xd—1).
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Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if

G is virtually cyclic.
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Conjecture (Rivin, 2000)

If G hyperbolic, then the conjugacy growth series of G is rational if and only if

G is virtually cyclic.

=
Theorem (Antolin - C., 2017)

If G is non-elementary hyperbolic, then the conjugacy growth series is
transcendental.

P

Theorem (C. - Hermiller - Holt - Rees, 2016)

Let G be a virtually cyclic group. Then the conjugacy growth series of G is

rational.

NB: Both results hold for all symmetric generating sets of G.



Idea of proof: Asymptotics of conjugacy growth in hyperbolic groups

Theorem. (Coornaert - Knieper 2007, Antolin - C. 2017)

Let G be a non-elementary word hyperbolic group. Then there are positive

constants A, B and ng such that
" o
A— <c¢(n) < B—
n n

for all n > ng, where « is the growth rate of G.
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Idea of proof: Asymptotics of conjugacy growth in hyperbolic groups

Theorem. (Coornaert - Knieper 2007, Antolin - C. 2017)

Let G be a non-elementary word hyperbolic group. Then there are positive

constants A, B and ng such that
" o
A— <c¢(n) < B—
n n

for all n > ng, where « is the growth rate of G.

MESSAGE:

The number of conjugacy classes in the ball of radius n is asymptotically the

number of elements in the ball of radius n divided by n.
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End of the proof: Analytic combinatorics at work

The transcendence of the conjugacy growth series for non-elementary

hyperbolic groups follows from the bounds

AL < c(n)< B
n n
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End of the proof: Analytic combinatorics at work

The transcendence of the conjugacy growth series for non-elementary

hyperbolic groups follows from the bounds

AL < c(n)< B
n n

together with

Lemma (Flajolet: Trancendence of series based on bounds).

Suppose there are positive constants A, B, h and an integer np > 0 s.t.

hn hn

e e
A <a,<B
n n

n

for all n > ng. Then the power series Z?zo anz" is not algebraic.
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Consequence of Rivin's Conjecture

Corollary (Antolin - C.)
For any hyperbolic group G with generating set X the standard and conjugacy

growth rates are the same:

lim +/c(n) = v¢,x = ag x.
n— oo
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Consequence of Rivin's Conjecture

Corollary (Antolin - C.)

Let G be a hyperbolic group, X any finite generating set, and L. be a set

containing one minimal length representative of each conjugacy class.

Then L. is not unambiguous context-free, so not regular.
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2nd Consequence: Formal languages and the Chomsky hierarchy

Let X be a finite alphabet. A formal language over X is a set L C X* of words.
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2nd Consequence: Formal languages and the Chomsky hierarchy

Let X be a finite alphabet. A formal language over X is a set L C X* of words.

regular

unambiguous

N

~_ context-free ¢
N .

context-free

context-sensitive

recursively enumerable
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Formal languages and their algebraic complexity
Let L C X* be a language.

> The growth function f; : N — N of L is:

fi(n) = t{w € L | w of length n}.

> The growth series of L is

38/45



Formal languages and their algebraic complexity
Let L C X* be a language.

> The growth function f; : N — N of L is:
fi(n) = t{w € L | w of length n}.

> The growth series of L is

Theorem

> Regular languages have RATIONAL growth series.

» Unambiguous context-free languages have ALGEBRAIC growth series.

(Chomsky-Schiitzenberger)
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Acylindrically hyperbolic groups

Main Theorem (Antolin - C., 2017)

Let G be an acylindrically hyperbolic group, X any finite generating set, and L.

be a set containing one minimal length representative of each conjugacy class.

Then L. is not unambiguous context-free, so not regular.
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Rivin's conjecture for other groups

Theorem (Gekhtman and Yang, 2018)

Let G be a non-elementary group with a finite generating set S. If G has a
contracting element with respect to the action on the corresponding Cayley

graph, then the conjugacy growth series is transcendental.

Examples: relatively hyperbolic groups, (non-abelian) RAAGs, RAACs, graph

products of finite groups, graphical small cancellation groups.
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Rationality of standard and conjugacy growth series

Standard Growth Series

Conjugacy Growth Series

Hyperbolic

Rational

(Cannon, Gromov, Thurston)

Transcendental

(C.- Antolin’ 177)

Virtually abelian

Heisenberg H;

FOR ALL GENERATING SETS!
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Rationality of standard and conjugacy growth series

Standard Growth Series

Conjugacy Growth Series

Hyperbolic

Rational

(Cannon, Gromov, Thurston)

Transcendental

(Antolin - C. '17%)

Virtually abelian

Rational (Benson '83)

Rational (Evetts '18)

Heisenberg H;

Rational (Duchin-Shapiro '19)

Transcendental

FOR ALL GENERATING SETS!



Standard generating set ... for now

Conjugacy Growth Series Formula
Wreath products Transcendental (Mercier '17) v
Graph products | Transcendental' (C.- Hermiler - Mercier '19) v
BS(1,m) Transcendental (C.- Evetts - Ho, '19) v

Yin most cases
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Questions

> Are the standard and conjugacy growth rates equal for all ‘reasonable’ groups?

This appears to hold for EVERY class of groups studied so far, but the proof is

example dependant.

> Are there groups with algebraic conjugacy growth series?

> Conjecture. The only groups with rational conjugacy growth series are the

virtually abelian ones.

» How do the conjugacy growth series behave when we change generators?

Stoll: The rationality of the standard growth series depends on generators.
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Thank you!



