
Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Sequence Covering Arrays

Charles J. Colbourn1

1School of Computing, Informatics, and Decision Systems Engineering
Arizona State University

Monash University, July 2012

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Outline

Sequence Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Testing Event Sequences

I In some processes, for example in manufacturing, a
set of tasks must be carried out in a certain
sequence.

I But people are not good at following instructions, and
sometimes do the steps (or events) in the wrong
order.

I If certain subsets are done in the wrong order, this
may cause the wrong behaviour.

I So we want to test the system to make sure that
when users do some steps in the wrong order, either
the process still works or the user gets an error
message.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Sequence Covering Arrays

I Suppose that there are v steps in the process.
I Suppose that errors can be caused by performing

some subset of t or fewer steps in a certain order.
I We want to ensure that for every subset of t or fewer

steps, we perform the steps in each of the t! orders
at least once – note that in doing this, we still perform
all v steps in some order.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Sequence Covering Arrays

I This problem was introduced by Kuhn, Higdon,
Kacker, Lawrence, and Lei in April 2012 at the
Workshop on Combinatorial Testing.

I They give a basic lower bound on the number of
tests needed, and a heuristic algorithm for
constructing tests.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Sequence Covering Arrays

I A t-subpermutation of {0, . . . , v − 1} is a t-tuple
(x1, . . . , xt) with xi ∈ {0, . . . , v − 1} for 1 ≤ i ≤ t , and
xi 6= xj when i 6= j .

I A permutation π of {0, . . . , v − 1} covers the
t-subpermutation (x1, . . . , xt) if π−1(xi) < π−1(xj)
whenever i < j .

I For example, with v = 5 and t = 3, (4,0,3) is a
3-subpermutation that is covered by the permutation
4 2 0 3 1.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Sequence Covering Arrays

I A sequence covering array of order v and strength t
is a set Π = {π1, . . . , πN} where πi is a permutation
of {0, . . . , v − 1}, and every t-subpermutation of
{0, . . . , v − 1} is covered by at least one of the
permutations {π1, . . . , πN}.

I Call one a SeqCA(N; t , v).

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Sequence Covering Arrays
Example

SeqCA(9;3,7) – t = 3, v = 7, N = 9

0 5 6 4 3 2 1
2 1 6 5 0 3 4
3 4 5 1 2 0 6
6 1 2 4 3 0 5
0 1 4 3 6 2 5
5 2 3 4 6 0 1
3 6 1 5 0 2 4
4 0 1 2 5 6 3
6 2 5 1 3 4 0

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Sequence Covering Arrays
The Existence Question

I Given t and v , what is the smallest N for which a
SeqCA(N; t , v) exists?

I Call this number SeqCAN(t , v).
I SeqCAN(t , v) ≥ t!
I SeqCAN(t , v) ≤

(v
t

)
t!

I SeqCAN(2, v) = 2 for all v ≥ 2 – Just take the
identity permutation and its reversal!

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Sequence Covering Arrays
Existence for t > 2

I SeqCAN(3, v) ≥ 6, but it is not the case that
SeqCAN(3, v) = 6 in general.

I To see why, we develop a connection with the usual
notion of covering arrays, which we introduce next.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Covering Array. Definition

I Let N, k , t , and v be positive integers.
I Let C be an N × k array with entries from an alphabet

Σ of size v ; we typically take Σ = {0, . . . , v − 1}.
I When (ν1, . . . , νt) is a t-tuple with νi ∈ Σ for 1 ≤ i ≤ t ,

(c1, . . . , ct) is a tuple of t column indices
(ci ∈ {1, . . . , k}), and ci 6= cj whenever νi 6= νj , the
t-tuple {(ci , νi) : 1 ≤ i ≤ t} is a t-way interaction.

I The array covers the t-way interaction
{(ci , νi) : 1 ≤ i ≤ t} if, in at least one row ρ of C, the
entry in row ρ and column ci is νi for 1 ≤ i ≤ t .

I Array C is a covering array CA(N; t , k , v) of strength t
when every t-way interaction is covered.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Covering Array
CA(13;3,10,2)

0 0 0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 0 1 0 0 0 0 1
1 0 1 1 0 1 0 1 0 0
1 0 0 0 1 1 1 0 0 0
0 1 1 0 0 1 0 0 1 0
0 0 1 0 1 0 1 1 1 0
1 1 0 1 0 0 1 0 1 0
0 0 0 1 1 1 0 0 1 1
0 0 1 1 0 0 1 0 0 1
0 1 0 1 1 0 0 1 0 0
1 0 0 0 0 0 0 1 1 1
0 1 0 0 0 1 1 1 0 1

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Covering Array

I CAN(t , k , v) is the minimum N for which a
CA(N; t , k , v) exists.

I The basic goal is to minimize CAN(t , k , v).
I It is easy to establish that, when t and v are both

fixed, CAN(t , k , v) is O(log k).

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Lower Bounds for Sequence Covering Arrays

Theorem
Let k and t be integers satisfying k ≥ t ≥ 3. Whenever
0 ≤ a < t , the size of a sequence covering array for k
events with strength t is at least

a!CAN(t − a, k − a,a + 1)

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Lower Bounds for Sequence Covering Arrays

I Choose any a events.
I For each ordering (e1, . . . ,ea) of the a events, select

the permutations of the sequence covering array in
which the a selected events appear in the chosen
order; suppose that there are n such permutations.

I Form an n × (k − a) array A whose columns are
indexed by the remaining events, and whose rows
are indexed by the permutations selected.

I In the row indexed by π and the column indexed by
event e,

I place 0 if π(e) < π(e1)
I place a if π(e) > π(ea)
I otherwise, place i when π(ei) < π(e) < π(ei+1).

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Lower Bound
Example

SeqCA(9;3,7) – t = 3, v = 7, N = 9
take a = 1 and use symbol 6

0 5 6 4 3 2 1
2 1 6 5 0 3 4
3 4 5 1 2 0 6
6 1 2 4 3 0 5
0 1 4 3 6 2 5
5 2 3 4 6 0 1
3 6 1 5 0 2 4
4 0 1 2 5 6 3
6 2 5 1 3 4 0

0 1 1 1 1 0
1 0 0 1 1 1
0 0 0 0 0 0
1 1 1 1 1 1
0 0 1 0 0 1
1 1 0 0 0 0
1 1 1 0 1 1
0 0 0 1 0 0
1 1 1 1 1 1

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Lower Bounds for Sequence Covering Arrays

I The theorem can give better estimates.
I For t = 4, we obtain the lower bounds

I SeqCAN(4, v) ≥ CAN(4, v ,1) by taking a = 0,
I SeqCAN(4, v) ≥ CAN(3, v − 1,2) by taking a = 1,
I SeqCAN(4, v) ≥ 2CAN(2, v − 2,3) by taking a = 2,
I SeqCAN(4, v) ≥ 6CAN(1, v − 3,4) = 24 by taking

a = 3.
I Taking a = 0 always gives a trivial bound.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Upper Bounds for Sequence Covering Arrays
Random Arrays

I Suppose that you pick a permutation of
{0, . . . , v − 1} uniformly at random.

I Any specific t-subpermutation is covered with
probability 1

t! .
I And it fails to be covered with probability t!−1

t! .
I So if you pick N permutations of {0, . . . , v − 1}

uniformly at random and independently, any specific
t-subpermutation is covered with probability
1−

(t!−1
t!

)N
.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Upper Bounds for Sequence Covering Arrays
Random Arrays

I There are v !
(v−t)! t-subpermutations.

I When N permutations are chosen, each
subpermutation is not covered with probability(t!−1

t!

)N
.

I So the probability that at least one subpermutation is
not covered is at most v !

(v−t)!

(t!−1
t!

)N
.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Upper Bounds for Sequence Covering Arrays
Random Arrays

I When v !
(v−t)!

(t!−1
t!

)N
< 1, a SeqCA(N; t , v) must

exist!
I So when t is fixed, this gives an O(log v) upper

bound on the number of permutations needed.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Upper Bounds for Sequence Covering Arrays
Greedy Random Arrays

I Instead consider generating the set of permutations
one permutation at a time.

I Idea: Always pick the next permutation so that it
covers the largest possible number of
as-yet-uncovered t-subpermutations.

I Suppose that after i permutations have already been
chosen, there remain Ri t-subpermutations to be
covered.

I Then R0 = v !
(v−t)! .

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Upper Bounds for Sequence Covering Arrays
Greedy Random Arrays

I Consider selecting the (i + 1)st permutation.
I If we choose it uniformly at random, then as before

every (as-yet-uncovered) t-subpermutation is
covered by the chosen permutation with probability
1
t! .

I So using the linearity of expectations (“the sum of the
expectations is the expectation of the sum”), the
expected number of t-subpermutations covered for
the first time by the chosen permutation is Ri

t! .

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Upper Bounds for Sequence Covering Arrays
Greedy Random Arrays

I But then some permutation covers at least Ri
t!

t-subpermutations for the first time, and hence

Ri+1 ≤ Ri −
Ri

t!
.

I Combine with R0 = v !
(v−t)! to get

Ri ≤
(

t!− 1
t!

)i v !

(v − t)!
.

I When RN < 1, a SeqCA(N; t , v) exists – and the
greedy method guarantees to find one!

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Stein-Lovász-Johnson

I The greedy strategy has proved remarkably
successful for a variety of combinatorial covering
problems.

I Most surprising is that in many cases it has been
shown that we can select the next row efficiently (in
time polynomial in the number of columns when the
strength t is fixed).

I Such efficient methods have been found for
I covering arrays (Bryce and Colbourn (2007, 2009))
I perfect hash families (Colbourn (2008))
I separating, distributing, strengthening, scattering, . . .

hash families (Colbourn (2011); Colbourn, Horsley,
and Syrotiuk (2012))

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Stein-Lovász-Johnson

I The key observations in these efficient methods are
I It is enough to choose the next “row” so that it covers

at least the average number of as-yet-uncovered
“entities”

I We can fill in the row one entry at a time so that the
expected number covered by any completion of the
row never decreases, and what we need to do is to
find an entry – efficiently – that does not decrease
this expected number.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Upper Bounds for Sequence Covering Arrays
Existence Results

I We implemented this method, and report some
computational results here.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Upper Bounds for Sequence Covering Arrays
Existence Results

Events t = 3
U UR O DR D Other

4 12 12 - 8 6
5 17 16 8 10 8 7
6 20 18 10 10 8
7 23 22 12 12 9 8
8 26 24 12 12 10 9
9 28 26 14 12 11 10
10 30 28 14 14 12 10
11 32 30 14 14 12
12 33 30 16 14 13
13 35 32 16 16 13
14 36 34 16 16 14
15 37 34 18 16 14
16 39 36 18 16 15
17 40 36 20 18 15
18 41 38 20 18 16
19 42 38 22 18 16
20 42 38 22 18 16

Events t = 3
U UR O DR D

21 43 40 22 18 17
22 44 40 22 20 17
23 45 40 24 20 17
24 46 42 24 20 17
25 46 42 24 20 18
26 47 42 24 20 18
27 48 44 26 20 18
28 48 44 26 20 18
29 49 44 26 22 19
30 49 46 26 22 19
40 54 50 32 24 21
50 58 52 34 26 23
60 61 56 38 26 24
70 64 58 40 28 25
80 66 60 42 30 26
90 68 62 - 30 27

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Events t = 4 t = 5
U UR O DR D U UR DR D

4 24 24 24 24 24
5 54 54 29 24 26 120 120 120 120
6 79 78 38 32 34 294 294 148 149
7 98 96 50 40 41 437 436 198 200
8 114 112 56 44 47 552 550 242 243
9 128 126 68 50 52 648 646 282 284
10 140 138 72 56 57 731 728 318 322
11 151 148 78 60 61 803 800 354 356
12 160 158 86 64 66 868 864 384 386
13 169 166 92 70 71 926 922 416 419
14 177 174 100 74 73 978 976 446 448
15 184 180 108 78 78 1027 1024 470 475
16 191 188 112 80 81 1072 1068 496 501
17 197 194 118 84 84 1113 1110 518 521
18 203 200 122 86 86 1152 1148 540 547
19 209 204 128 90 91 1189 1184 560 570
20 214 210 134 92 92 1223 1218 582 590
21 219 214 134 96 95 1256 1252 600 610
22 224 220 140 98 97 1286 1282 622 629
23 228 224 146 98 99 1316 1310 636 646
24 232 228 146 102 101 1344 1338 654 665
25 236 232 152 104 104 1370 1366 674 682
26 240 236 158 106 105 1396 1390 688 698
27 244 240 160 108 107 1420 1416 706 715
28 248 242 162 110 110 1444 1438 718 732
29 251 246 166 112 111 1466 1460 734 746
30 255 250 166 114 113 1488 1482 748 760
40 283 278 198 132 128 1671 1644
50 305 298 214 146 141 1811 1804
60 322 316 238 154 151 1924 1916
70 337 330 250 166 160 2019 2012
80 350 342 264 174 168 2101 2092
90 361 354 - 180 176 2173 2164

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Open Problems # 1

I Can we explain why including the reversal of a
permutation seems like a “good idea” but does not
necessarily lead to the best result?

I Can we determine when SeqCAN(t , v) = t!? This is
related to Directed Steiner t-designs.

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Open Problems # 2

I Find combinatorial direct constructions for sequence
covering arrays.

I Find combinatorial recursive constructions for
sequence covering arrays. (There is some recent
progress on this!)

Sequence
Covering Arrays

Charles J.
Colbourn

Sequence
Covering Arrays

Covering Arrays

Lower Bounds

Upper Bounds

Existence Results

Conclusion

Open Problems # 3

I Can SeqCAN(3, v) be determined exactly?
I Can we construct a sequence covering array from a

covering array? What conditions are necessary?
sufficient?

	Sequence Covering Arrays
	Covering Arrays
	Lower Bounds
	Upper Bounds
	Existence Results
	Conclusion

