Extension of universal cycles for globally identifying colorings of cycles

Pierre Coupechoux

LAAS-CNRS, France

Discrete Maths Research Group, November 21, 2016

1 / 19

Identifying codes

Definition

An identifying code of a graph is a subset C of the vertices such that:

- Every vertex has a neighbor in C (Domination);
- Every vertex has a unique identifier (Identification).
 - Each vertex has a subset of C in its neighborhood and is the only one to have this set.

Identifying codes

Definition

An identifying code of a graph is a subset C of the vertices such that:

- Every vertex has a neighbor in C (Domination);
- Every vertex has a unique identifier (Identification).
 - Each vertex has a subset of C in its neighborhood and is the only one to have this set.

Identifying codes

Definition

An identifying code of a graph is a subset C of the vertices such that:

- Every vertex has a neighbor in C (Domination);
- Every vertex has a unique identifier (Identification).
 - Each vertex has a subset of C in its neighborhood and is the only one to have this set.

A classical application of an identifying code

A classical application of an identifying code

A classical application of an identifying code

- Domination: each room is guarded.
- Identification: in case of fire, we know exactly where the fire is.

Variant: identifying coloring

- Each vertex has a color.
 - No need to have different colors for neighbors.
- Identification property: each vertex has a unique set of colors in its neighborhood.

Variant: identifying coloring

- Each vertex has a color.
 - No need to have different colors for neighbors.
- Identification property: each vertex has a unique set of colors in its neighborhood.

	Red	Green	Blue
1	Х		
2	Х	Х	
3	Х	Х	Χ
4			Χ
5	Х		Χ

Aim

- Fixed number of colors L.
- Longest cycle with a globally identifying coloring.

Aim

- Fixed number of colors L.
- Longest cycle with a globally identifying coloring.

 Jackson proved that (under certain conditions on the number of colors) he can build a cycle such that each set of 3 different colors appears in the neighborhood of only one vertex.

- Jackson proved that (under certain conditions on the number of colors) he can build a cycle such that each set of 3 different colors appears in the neighborhood of only one vertex.
- A universal cycle is a solution to this problem, but without repetition of colors.

- Jackson proved that (under certain conditions on the number of colors) he can build a cycle such that each set of 3 different colors appears in the neighborhood of only one vertex.
- A universal cycle is a solution to this problem, but without repetition of colors.
- A variant exists with repetition, but it considers $\{0,0,1\}$ and $\{0,1,1\}$ as two different (multi)sets.

- Jackson proved that (under certain conditions on the number of colors) he can build a cycle such that each set of 3 different colors appears in the neighborhood of only one vertex.
- A universal cycle is a solution to this problem, but without repetition of colors.
- A variant exists with repetition, but it considers $\{0,0,1\}$ and $\{0,1,1\}$ as two different (multi)sets.

• The proof is constructive.

• A vertex: Up to 3 colors in its neighborhood.

- A vertex: Up to 3 colors in its neighborhood.
- 2 differences.

- A vertex: Up to 3 colors in its neighborhood.
- 2 differences.

• A set of at most 3 colors: initial color + two differences.

- A vertex: Up to 3 colors in its neighborhood.
- 2 differences.

- A set of at most 3 colors: initial color + two differences.
- We arbitrary chose the order of the 3 colors.

- A vertex: Up to 3 colors in its neighborhood.
- 2 differences.

- A set of at most 3 colors: initial color + two differences.
- We arbitrary chose the order of the 3 colors.
 - For example, $\{0,1\}$ will only appear with colors 0, 0, and 1, in this order.

We define a new graph to work on these differences.

We define a new graph to work on these differences.

We define a new graph to work on these differences.

We define a new graph to work on these differences.

We define a new graph to work on these differences.

We define a new graph to work on these differences.

• Edges (0, i) and $(i, 0) \longrightarrow$ same color sets.

- Edges (0, i) and $(i, 0) \longrightarrow$ same color sets.
- Edge $(\frac{L}{3}, \frac{L}{3})$ \longrightarrow same color sets with different initial colors.

- Edges (0, i) and $(i, 0) \longrightarrow$ same color sets.
- Edge $(\frac{L}{3}, \frac{L}{3}) \longrightarrow$ same color sets with different initial colors.
- Edge $(\frac{L}{2}, \frac{L}{2})$ \longrightarrow same color sets with different initial colors.

- Edges (0,i) and $(i,0) \longrightarrow$ same color sets.
- Edge $(\frac{L}{3}, \frac{L}{3}) \longrightarrow$ same color sets with different initial colors.
- Edge $(\frac{L}{2}, \frac{L}{2})$ \longrightarrow same color sets with different initial colors.
- The graph has to be Eulerian.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

- Choice of a circuit in the graph.
- Sequence of differences.

• Choice of an initial color for the first vertex.

- Choice of an initial color for the first vertex.
- Computation of the following colors using the differences.

- Choice of an initial color for the first vertex.
- Computation of the following colors using the differences.

$$1 + 1 + 1$$
 $0 - 1 - 2$

- Choice of an initial color for the first vertex.
- Computation of the following colors using the differences.

$$1 + 1 + 1 + 2$$

 $0 - 1 - 2 - 4$

- Choice of an initial color for the first vertex.
- Computation of the following colors using the differences.

$$0 - 1 - 2 - 4 - 6$$

- Choice of an initial color for the first vertex.
- Computation of the following colors using the differences.

- Choice of an initial color for the first vertex.
- Computation of the following colors using the differences.

November 21, 2016

- Choice of an initial color for the first vertex.
- Computation of the following colors using the differences.

- Choice of an initial color for the first vertex.
- Computation of the following colors using the differences.

- Choice of an initial color for the first vertex.
- Computation of the following colors using the differences.

• Repetition of the process from the previous last vertex...

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

```
+1 +1 +2 +2 +1 +3 +3 +0 +0
```

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

	+1		+1		+2		+2		+1		+3		+3		+0		+0	
0		1		2		4		6		7		2		5		5		5
5		6		7		1		3		4		7		2		2		2

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

	+1	+1	+2	<u>)</u>	+2		+1		+3	+	-3	+0	+	0
0	1		2	4		6		7		2	5		5	5
5	6		7	1		3		4		7	2		2	2
2	3		4	6		0		1		4	7		7	7

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

	+1	+1	+2	+2	+1	+3	+3	+0	+0
0	1	2	4	6	7	2	5	5	5
5	6	7	1	3	4	7	2	2	2
2	3	4	6	0	1	4	7	7	7
7	0	1	3	5	6	1	4	4	4

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

	+1	+1	+2	+2	+1	+3	+3	+0	+0
0	1	2	4	6	7	2	5	5	5
5	6	7	1	3	4	7	2	2	2
2	3	4	6	0	1	4	7	7	7
7	0	1	3	5	6	1	4	4	4
4	5	6	0	2	3	6	1	1	1

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

	+1	+1	+2	+2	+1	+3	+3	+0	+0
0	1	2	4	6	7	2	5	5	5
5	6	7	1	3	4	7	2	2	2
2	3	4	6	0	1	4	7	7	7
7	0	1	3	5	6	1	4	4	4
4	5	6	0	2	3	6	1	1	1
1	2	3	5	7	0	3	6	6	6

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

	+1	+1	+2	+2	+1	+3	+3	+0	+0
0	1	2	4	6	7	2	5	5	5
5	6	7	1	3	4	7	2	2	2
2	3	4	6	0	1	4	7	7	7
7	0	1	3	5	6	1	4	4	4
4	5	6	0	2	3	6	1	1	1
1	2	3	5	7	0	3	6	6	6
6	7	0	2	4	5	0	3	3	3

- Repetition of the process from the previous last vertex...
 - Merging consecutive paths
- ... until the cycle is complete (color of the last vertex = color of the first vertex = 0).

	+1	+1		+2	+2		+1		+3		+3		+0		+0	
0	1		2	4		6		7		2		5		5		5
5	6		7	1		3		4		7		2		2		2
2	3		4	6		0		1		4		7		7		7
7	0		1	3		5		6		1		4		4		4
4	5		6	0		2		3		6		1		1		1
1	2		3	5		7		0		3		6		6		6
6	7		0	2		4		5		0		3		3		3
3	4		5	7		1		2		5		0		0		0
										4.0	· 44	b 4	E 1 2 2 2	= 5	-	200

Cycle with 8 colors

• What if we obtain 0 too soon ?

- What if we obtain 0 too soon?
- ullet o Consider a smaller path without the first difference.

- What if we obtain 0 too soon ?
- ullet ightarrow Consider a smaller path without the first difference.
 - The new path is a shift of the first and is therefore different.

- What if we obtain 0 too soon ?
- ullet ightarrow Consider a smaller path without the first difference.
 - The new path is a shift of the first and is therefore different.

• Lose vertex with initial color L-1 and differences +1, +1.

ullet Repeat k times, until all L paths (for all initial colors) have been used.

- Repeat k times, until all L paths (for all initial colors) have been used.
- Path starting with 0, ending with L-k.

- Repeat k times, until all L paths (for all initial colors) have been used.
- Path starting with 0, ending with L-k.
- Missing vertices with differences (+1, +1) and initial colors L-1, ..., L-k.

- Repeat k times, until all L paths (for all initial colors) have been used.
- Path starting with 0, ending with L-k.
- Missing vertices with differences (+1, +1) and initial colors L-1, ..., L-k.

• Add them at the end!

- Repeat k times, until all L paths (for all initial colors) have been used.
- Path starting with 0, ending with L-k.
- Missing vertices with differences (+1, +1) and initial colors L-1, ..., L-k.

- Add them at the end!
 - No missing (+1, +1) differences

- Repeat k times, until all L paths (for all initial colors) have been used.
- Path starting with 0, ending with L-k.
- Missing vertices with differences (+1, +1) and initial colors L-1, ..., L-k.

- Add them at the end!
 - No missing (+1, +1) differences
 - Path starting and ending with $0 \approx \text{cycle}$

Improvement

- When L odd, we can add some vertices with differences $(0, \frac{L-1}{2}), (\frac{L-1}{2}, \frac{L-1}{2})$ and $(\frac{L-1}{2}, 0)$.
- Path starting and ending with two 0s.

$$0 - 0 - 4 - 8 - 3 - 7 - 2 - 6 - 1 - 5 - 0 - 0$$

Easy to insert in the previous cycle.

Results

With L colors, cycles build with this method have length:

$$\frac{L^{3} + 5L}{6} - \begin{cases} \frac{L+2}{4}L & \text{if } L \equiv 0[4] \\ \frac{L+3}{4}L - 1 & \text{if } L \equiv 1[4] \\ \frac{L^{2}}{4} & \text{if } L \equiv 2[4] \\ \frac{L+1}{4}L - 1 & \text{if } L \equiv 3[4] \end{cases} - \begin{cases} \frac{L}{3} & \text{if } L \equiv 0[3] \\ 0 & \text{else} \end{cases}$$

Not optimal

- For L=5, we can build a cycle with $\frac{L^3+5L}{6}=25$ vertices.
 - Choosing differences (+1,+2) instead of (+2,+2).
- Not for L = 4 (optimal = 10 < 14).

Thank you (in French)

