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The Oberwolfach problem

The Oberwolfach problem was posed by Ringel in the 1960s.
At the Conference center in Oberwolfach, Germany

The Oberwolfach problem was originally motivated as a seating
problem:
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The Oberwolfach problem

Given n attendees at a conference with t circular tables

each of which which seat a;, i =1,...,t people (Efﬂ a= n).
Find a seating arrangement so that every person sits next to each
other person around a table exactly once over the r days of the
conference.
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Factors

Definition
A k-factor of a graph G is a k-regular spanning subgraph of G. J

Definition
Given a factor F, an F—Factorisation of a graph G is a decomposition
of the edges of G into copies of F.

Definition
Given a set of factors F, an F—Factorisation of a graph G is a
decomposition of the edges of G into copies of factors F € F.
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Example n=5

A 2—Factor of Ks
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Example n=5

A 2—Factor of Ks
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Example n=5

A 2-—Factorisation of Ks
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The Oberwolfach problem

When nis odd, the Oberwolfach problem OP(F) asks for a factorisation
of K, into a specified 2—factor F of order n.

(r="3)

When nis even, the Oberwolfach problem OP(F) asks for a
factorisation of K, — I into a specified 2—factor F of order n.

Where K, — I is the complete graph on n vertices with the edges of a
1-factor removed.

(r="7)
We will use the notation [my, mo, ..., m;] to denote the 2-regular graph
consisting of t (vertex-disjoint) cycles of lengths my, mo, ..., m;.

The Oberwolfach problem can be thought of as a generalisation of
Kirkman Triple Systems, which are the case F = [3,3,...,3].
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Example n=8, F = [4,4]

An F—Factor of Kg
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Example n=8, F = [4,4]

A F—Factorisation of Kg with a 1—factor remaining
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The Problem

Hamilton - Waterloo: Include the Pub
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Hamilton-Waterloo

In the Hamilton-Waterloo variant of the problem the conference has
two venues

The first venue (Hamilton) has circular tables corresponding to a
2—factor F; of order n.

The second venue (Waterloo) circular tables each corresponding to a
2—factor F> of order n.
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Hamilton-Waterloo

The Hamilton-Waterloo problem thus requires a factorisation of K, or
K, — I'if nis even into two 2-factors, with o1 classes of the form F; and
ap classes of the form F,. Here the number of days is

=1 nodd
r=oq +ap = -2 peven
2

When nis even

If n =2 mod 4 then %2 is even and a4 and a» have the same parity.
i.e. Either both a1, aps are even or both are odd.

If n = 0 mod 4 thenthen 52 is odd and so a4 and a have opposite
parity. i.e. one of a1, ap is even and the other is odd.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 10/61



The Problem

Example n=8, Fy =[8],a1 =2, Fo =[4,4], az =1

@ 4

An F;—Factor of Kg
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Example n=8, F = [8],0&1 =2, Fo = [4,4], as = 1

An F;—Factor of Kg
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Example n—= 87 Fi= [8],0&1 = 2, F = [4,4]7 as =1

An F>—Factor of Kg
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Example n=8, F = [8],0&1 =2, Fo = [4,4], as = 1

A Solution to the given Hamilton-Waterloo Problem
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The Problem

Hamilton? - Waterloo?

Hamilton?
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The Problem

Hamilton? - Waterloo?

Hamilton?

Hamiltonian?
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The Problem

Hamilton? - Waterloo?

Hamilton?

Hamiltonian? Waterloo?
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Hamilton - Waterloo

3rd Ontario Combinatorics Workshop
McMaster University, Hamilton, Ontario, Feb. 1988.
University of Waterloo, Waterloo, Ontario, Oct. 1987;
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Hamilton - Waterloo?

3rd Ontario Combinatorics Workshop
McMaster University, Hamilton, Ontario, Feb. 1988.
University of Waterloo, Waterloo, Ontario, Oct. 1987;

Organizers

Alex Rosa Charlie Colbourn

McMaster University University of Waterloo
Hamilton, Ontario Waterloo, Ontario
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The Problem

Generalise to OP(F4, ..., F)

Given 2—factors Fq, Fo, ..., F; order n and
non-negative integers a1, as, ..., a; such that

11 nodd
o +ag+- o= n
122 neven

N

Find a 2-factorisation of Kj,, or K, — I if unis even, in which there are
exactly «; 2-factors isomorphicto F;fori=1,2,...,t
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Generalise to other Graphs G, OP(G; F1, ..., F)

We can also consider Factorisations of other graphs G.

Of particular interest is the case when G = K}, the multipartite
complete graph with r parts of size n.

In order for G = K, to have a factorisation into 2—factors Fq, ..., F;is
that every vertex is of even degree (n(r — 1) is even).
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What is known about OP(F)

It is known that there is no solution to OP(F) for

F <{[3,3],[4,5],[3,3,5],[3,3,3,3]},

A solution is known for all other instances with n < 40.

Deza, Franek, Hua, Meszka, Rosa (2010), Adams & Bryant (2006),
Franek & Rosa (2000), Bolstad (1990), Huang, Kotzig & A. Rosa
(1979).

The case where all the cycles in F are of the same length has been
solved.

Govzdjak (1997), Alspach & Haggkvist (1985), Alspach, Schellenberg,
Stinson & D. Wagner (1989), Hoffman & Schellenberg (1991), Huang,
Kotzig & A. Rosa (1979), Ray-Chaudhuri & Wilson (1971).
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What is known about Hamilton - Waterloo

It is known that the following instances of the Hamilton-Waterloo
Problem have no solution.

HW([3,4],[7];2,1) HW([3,5],[4%];2,1) HW([3,5],[4%];1,2)
HW([3%],[4,5];2,2)
HW([3%], F;3,1) for F € {[4,5],[3,6],[9]} and
HW([3°], F;6,1) for F € {[32,4,5],[3,5,7],[5%],[4%,7].]7,8]}.

Every other instance of the Hamilton-Waterloo Problem has a solution
when n < 17 and odd and when n < 10 and even Adams, Bryant
(2006), Franek, Rosa (2000, 2004).

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 18/61



What is known about Hamilton - Waterloo

Theorem (Danziger, Quottrocchi, Stevens (2009))

If Fy is a collection of 3—cycles and F» is a collection of 4—cycles then
OP(Fy, F2) exists if and only if n = 0 mod 12, with 14 possible
exceptions.

Theorem (Horak, Nedela, Rosa (2004), Dinitz, Ling (2009))

If Fy is a collection of 3—cycles and F» is a Hamiltonan cycle and

n # 0 mod 6 then OP(F4, Fy) exists, except whenn =9, ap, = 1, with
13 possible exceptions. (The case n = 0 mod 6 is still open.)
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Generalised OP and Haggkuvist

Theorem (Haggkvist (1985))

Letn=2mod 4, and F4, ..., F; be bipartite 2—factors of order n then
OP(Fy, ..., Ft) has solution, with an even number of factors isomorphic
fo each F;.

v

Corollary (t = 1)

Let n =2 mod 4, and F be a bipartite 2—factor of order n then OP(F)
has solution.

Corollary (t = 2)

Let n=2 mod 4, and Fy, F> be bipartite 2—factors of order n then
OP(Fy, F2) (Hamilton-Waterloo) has solution where there are an even
number of each of the factors. (Both «y and oo are even)

v
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Doubling

For any given graph G, the graph G is defined by
V(G®) = V(G) x Zs,
E(G®) = {{(x,a),(y,b)} : {x,y} € E(G), a,b € Zy}.
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Doubling

For any given graph G, the graph G is defined by
V(G®) = V(G) x Zy,
E(G®) = {{(x,a),(y,b)} : {x,y} € E(G), a,b € Zy}.

c®
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Factoring C)

Lemma (Haggkvist (1985))

For any m > 1 and for each bipartite 2-regular graph F of order 2m,

there exists a 2-factorisation of C,(,f) in which each 2-factor is
isomorphic to F.
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Factoring C)
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Haggkvist and Doubling

Let mbe odd, and n = 2m = 2 mod 4.

Given bipartite 2—factors Fq,..., Fm_1, of order 2m
2
(not necessarily distinct).

Since mis odd, K, has a factorisation into Hamiltonian cycles H;,
1<i< ot

Now doubling, we have a H® factorisation of K\

We can factor the square of the /i Hamiltonian cycle H,.(Z) into 2 copies
of F; by Haggkvist doubling as above.

Result is a factorisation of K,(,,Z) =~ Ko, into pairs of factors each

isomorphicto Fj, i =1,... 721,
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Results

Theorem (Bryant, Danziger (2011))

Ifn=0mod 4 and Fy, F», ..., F; are bipartite 2-regular graphs of
order n and a1, ao, . . ., i @re non-negative integers such that

@ artag+---t+ap= %2’

@ «jisevenfori=2,3,...,1,

@ oy > 3isodd,
then OP(F, ..., F;) has a solution with «; 2-factors isomorphic to F; for
i=1,2,...,t

v
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Results ...and so...

Corollary (t = 1)

Let n be even and F be a bipartite 2—factor of order n then OP(F) has
solution.

Corollary (t = 2)

Let n be even and F;, F» be bipartite 2—factors of order n then
OP(Fy, F2) (Hamilton-Waterloo) has solution, except possibly in the
case where all but one of the 2-factors are isomorphic (ay =1 or
Qo = 1 )
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To Show:

Theorem (Bryant, Danziger (2011))
Ifn=0mod 4 and Fy, F», ..., F; are bipartite 2-regular graphs of

order n and a1, ao, . . ., i @re non-negative integers such that
@ aytagt+ - Far= %2’
@ «jisevenfori=2,3,...,1,

@ oy > 3 is odd,

then OP(F, ..., F;) has a solution with «; 2-factors isomorphic to F; for
i=1,2,...,t

v
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The Plan

When n = 0 mod 4 we don’t have the Hamiltonian Factorisation of Kg
for Haggkvist doubling.

Idea is to decompose Kg into Hamiltonian Cycles, Hy, ..., Hs,s,and a
2
known 3-regular Graph G.

Use the factorisation above to factor K 52) as follows:

2
Factor the Doubled Hamiltonian Cycles, H1(2), e Hg, into pairs
isomorphic to F», ..., F; by Haggkvist doubling.

Factor the 7-regular graph G U {(xp, x1)} into copies of F; and a
1-factor /.
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Notation

A Cayley graph on a cyclic group is called a circulant graph.
We will always use vertex set Z,,.

The length of an edge {x, y} in a graph is defined to be either x — y or
y — x, whicheverisin {1,2,...,[ 3]}

We denote by (S), the graph with vertex set Z, and edge set the
edges of length sforeach s € S.

We call {{x,x+ s} :x=0,2,...,n— 2} the even edges of length s.
We call {{x,x+s}:x=1,8,...,n— 1} the odd edges of length s.

If we wish to include in our graph only the even edges of length s then
we give s the superscript e.

If we wish to include only the odd edges of length s then we give s the
superscript o.
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Example ({1,2°,5°})12 0N Zq2
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Factoring Circulants

Lemma

For each even m > 8 there is a factorisation of K, into ™ 4 Hamilton
cycles and a copy of G = ({1,3°}) .

We can create factors from the Hamiltonian cycles using the Haggkvist
doubling construction.

It remains to factor Gpr, = G® U 1 = (({1,3})m) @ U L.
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Factorisations of the graph Jo,

The Graph Jo,

For each even r > 2 we define the graph Jo, by
V(J2/') = {u17U27--~7ur+2}U{V1, V27"')VI‘+2}
E(dor) = {{ui,vi}:i=3,4,....,r+2}U

{{uis tiga b {vi, Vi b s Viga 3 {Vis Ui} 1 1= 2,3, 1 +1}
{H{ui, uizs} {vi, vies Hui, vigs b {vi uips} 1 i = 1,8, ..., r =1}

U o us Uy Us Ur—1 ur Ur41 Ury2
. /
Nt
Vi Vo V3 Va Vs Vr—1 Vr Vi1 Vrt2
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Factorisations of the graph Jo,

If we identify vertices vy with , Uo With u, o, v4 with ,and v
with v, o, then the resulting graph is isomorphic to Gp,.

Ur—1 ur Ury2 o us Uy Us

Vr2 Vo V3 Vs Vs
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Factorisations of the graph Jo,

If we identify vertices vy with , Uo With u, o, v4 with ,and v
with v, o, then the resulting graph is isomorphic to Gp,.

[ 1 /N ] =

Uri2
u: u; u. u:
— 2 3 4 5
e o o / e o o
g N
_/
Vo V3 V4 Vs
Vri2
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The @ Operation on J

Similarly, by J>, & Jog we mean adjoining Jo, to a copy of Jos which has
been shifted by r, to obtain J(, ).

Ury2 Uryo Urys Urig Urys Uys—1  Urys  Urpstil
. /
Nt
Vri2 Vryo Vry3 Vrta Vrys Vits—1  Vits  Vrgsyth
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The @ Operation on J

Similarly, by J>, & Jog we mean adjoining Jo, to a copy of Jos which has

been shifted by r, to obtain J(, ).

Ury2 Urys Urys Urys Urys—1 Urys  Urpsi1lUrisyo
. /
N
Vry2 Vr+3 Vrta Vrys Vits—1  Vris  Vrpsi1Vigsy2
J2(r+s)
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Decompositions J — F

Given a factor F the idea is to divide it into smaller factors F; of order
2m; and to divide Gaj, into edge disjoint Jp,, so that @; Jm, = G, with
the identification above at the ends.

We then factor each of the Jy, into F; and join up the results.

Since Gy, is 7—regular we require a factorisation of each Jp, (k) into
three partial cycle factors, H;, j € {0,1,2} and a 1—factor, Hs.

Index j

Missed points in Jp(k)

0

U,‘,V,',ie {172}

2

{u1, Uz, Vi1, Viego}

1—factor

up, v, i€ {1,2}
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Decomposition of J +— [16] + [16] + [16]

Index j | Missed points in Jn(k)
0 Ui,Vi,i€{1,2}

2 {U17U27 VI’+17 VI’+2}
1—factor | u;,v;, i € {1,2}
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Joining Decompositions

Lemma

If F and F' are 2-regular graphs such that J — F and J — F’, then
J — F” where F" is the union of vertex-disjoint copies of F and F’.

[12] +[12] +[12] ) [12] +[12] +[12]

=[12,12] 4+ [12,12] + [12,12]
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Factorisations of the graph Jo,

Lemma 10 - Ingredient Decompositions J — F

Lemma (10)

For each graph F in the following list we have J — F.
@ [m] foreach m € {8,12,16,...}
@ [4,m| foreachm e {4,8,12,...}
@ [m,m'| foreach m,m’ € {6,10,14,...}
@ [4,m,m'| foreach m,m’ € {6,10,14,...}
@ [4,4,4]
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Factoring Go

Lemma

If F is a bipartite 2-regular graph of order 2m where m > 8 is even,
then there is a factorisation of G, into three 2-factors each
isomorphic to F, and a 1-factor.

Proof We show that there is a decomposition of F into bipartite
2-regular subgraphs F, F», ..., Fs such that Lemma 10 covers J — F;
fori=1,2,...,s.

We then use & to join these Factorisations into J — F.

Finally we identify endpoints to obtain the required factorisation of Goy.
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Main Theorem

Theorem

If Fy, Fo, ..., F; are bipartite 2-regular graphs of order n and

aq, o, ..., are non-negative integers such that

ot +ag+ - +ar = 52, oy > 3 is odd, and « is even for
i=2,3,...,1t, then there exists a 2-factorisation of K, — | in which
there are exactly o; 2-factors isomorphic to F; fori=1,2,... L.

Proof The conditions guarantee that n = 0 mod 4.

Factor Kj into Hamiltonian factors and ({1,36}>g.

Factor C'?)

»intopairsof Fj, i=1,... L
2

Remaining edges of ng) are isomorphic to G, which we can factor
2
into 3 copies of F.
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Lemma 10 - Ingredient Decompositions J — F

We now want to prove

Lemma (10)

For each graph F in the following list we have J — F.
@ [m] foreach m € {8,12,16,...}
@ [4,m] foreachm € {4,8,12,...}
@ [m,m'] foreachm,m’ € {6,10,14,...}
@ [4,m,m'| foreachm,m € {6,10,14,...}
° [4,4,4]
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Cycle Lengthm=0mod 4, m > 4

We describe the three cycle factors in three parts.

A left hand end [¢, consisting of an ¢—path

A continuing part ¢ that consist of two paths whose total length is c.
The continuing part is designed so that it can be repeated.

And a right hand end r], consisting of an r—path.

We use @ to adjoin these parts:

[lecocar=[l+c+c+T)
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Blue Factor

Left Continuation Right
4 3]

—— X— X

@ 4 @ 4 ©3 = [16]

/]
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Green Factor

Left Continuation Right
[5 4 3]
[5 ® 4 @ 4 @ 3] = [16]
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Red Factor

Left Continuation Right
[8 4 4]

8 e 4 ® 4 = [16]
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Putting it Together

(B+5+8)((44)+ +4)3(3]+3|+4]) =[16]+ +[16]
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[m,m], m=m =2mod 4

5,7
5,7
2,6
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The Join

(B+5+[8)®(4+4+4)®(5,7+5.7+2,6)®(04+0+4+0) B (3] +3]+4])
=[14,10] + +[14,10]

—
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Remaining Cases

The cases [4, m] are dealt with using a special left end.

The following are dealt with as special cases:
(8], [12], 4, 8], [4,12], [4, 4], [4, 4, 4]
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Hamilton-Waterloo (Two Factors F; and F»)

When nis even

If n =2 mod 4 then ”%2 is even and a4 and a» have the same parity.
i.e. Either both «1, as are even or both are odd.

If n = 0 mod 4 thenthen ;2 is odd and so a4 and a have opposite
parity. i.e. one of aq, as is even and the other is odd.

Corollary (t = 2)

Let n be even and Fy, F, be bipartite 2—factors of order n then
OP(Fy, F2) (Hamilton-Waterloo) has solution, except possibly in the
case where all but one of the 2-factors are isomorphic (a1 =1 or
Qo = 1 )
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Hamilton-Waterloo

Refinement

Definition

Given two 2-regular graphs F; and Fo,

F; is called a refinement of F, if F{ can be obtained from by replacing
each cycle of F, with a 2-regular graph on the same vertex set

Example
@ [4,4] is a refinement of [8]
@ [4,8%,10%,12] is a refinement of [4,16, 18, 22],
@ [4,182,20] is not a refinement of [4,16, 18, 22].
@ Every 2-regular graph of order nis a refinement of an n-cycle.

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 50/ 61



General result, n =2 mod 4

Theorem (Bryant, Danziger, Dean (2012))

If Fy, Fo, ..., F; are bipartite 2-regular graphs of order n = 2 mod 4,
and oy, as, ..., a; are positive integers such that

@ F; is a refinement of Fo;
@ aojevenfori=3,4...,t;

® artagt--tar="35%

2 J
then K, has a factorisation into «;; copies of Fj fori=1,2,... tand a
1-factor.
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General result, n =0 mod 4

Theorem (Bryant, Danziger, Dean (2012))

Ift>3, F, F, ..., F are bipartite 2-regular graphs of order n, and
aq, o, ..., o are positive integers such that

@ F; is a refinement of Fo;

@ o4, ap, ag are odd with ag > 3;

@ ajisevenfori=4,5,...t;

® aqtopttap="52;

e F ¢ {[4,4,4],[4,8],[12],[4,6,6],[6,10]}, and
@ F3¢ {[6"],[4,6"] : r=2mod 4};

then K, has a factorisation into «;; copies of Fj fori =1,2,... t and a
1-factor.
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Hamilton Waterloo

Theorem (Bryant, Danziger, Dean (2012))

If F> is a bipartite 2-regular graph of order n and F; is a bipartite
refinement of F,, then for all non-negative o1, ap satisfying

a1 +as = %2 there is a factorisation of K, into a1 copies of Fy, as
copies of F», and a 1-factor.

Corollary

Let Fi, F» be bipartite 2—factors of order n such that F a refinement
of Fo then OP(Fy, Fo) (Hamilton-Waterloo) has solution.
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Multipartite Graphs - One Factor F

Multipartite Graphs - One Factor F

We wish to consider factorisations of the complete multipartite graph
K,y into a single biparite 2—factor F.

Ths is the multipartite case of the original Oberwolfach problem.
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Necessary Conditions

Recall In order for the complete multipartite graph K- to have a
factorisation into 2—factors Fy, ..., F; we require that every vertex is of
even degree, i.e. n(r — 1) is even.

Now we only have one bipartite factor F, of even order nr,
But n(r — 1) is also even,so:

Theorem

In order for the complete multipartite graph Ky, r > 2, to have a
factorisation into a single bipartite 2—factor, n must be even.
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What is known

Theorem (Auerbach and Laskar (1976))

A complete multipartite graph has a Hamilton decomposition if and
only if it is reqular of even degree.

Theorem (Piotrowski (1991))

If F is a bipartite 2—regular graph of order 2n, then the complete
bipartite graph, Kn,n has a 2—factorisation into F except when n = 6
and F = [6, 6].

Theorem (Liu (2003))

The complete multipartite graph Ky, r > 2, has a 2—factorisation into
2—factors composed of k—cycles ifand only if k | rn, (r — 1)n is even,
further k is even whenr = 2, and
(k,r,n) ¢{(3,3,2),(3,6,2),(3,3,6),(6,2,6)}.
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What is known

It is known that there is no 2-factorisation of Kg g into [6, 6].

Corollary ((Bryant, Danziger (2010), t = 1)

If F is a bipartite 2—regular graph of order 2r, then the complete
multipartite graph Kor has a 2—factorisation into F.

Corollary (Bryant, Danziger, Dean (2012))

Let n= 0 mod 4 with n > 12. For each bipartite 2-regular graph F of
order n, there is a factorisation of ({1, 39}>f,2/?2 into three copies of F;
except possibly when F € {[6'],[4,6"] : r =2 mod 4}.
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Setting up

Note that when n =2m

Ky = K@
Also 1
rm m—
Ko =2 {({1,2,...,—=—}F\{r.2r,...,——r})m.
2 2
Lemma

For each even r > 4 and each odd m > 1, except (r, m) = (4,1), there
is a factorisation of Ky into % Hamilton cycles and a copy of

{1,3%})rm.
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Necessary Conditions are Sufficient

Theorem (Bryant, Danziger, Pettersson (2013))

If F is a bipartite 2-regular graph of order rn, then there exists a
2-factorisation of Ky, r > 2, into F if and only if n is even; except that
there is no 2-factorisation of Kg ¢ into [6, 6].
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Necessary Conditions are Sufficient

Theorem (Bryant, Danziger, Pettersson (2013))

If F is a bipartite 2-regular graph of order rn, then there exists a
2-factorisation of Ky, r > 2, into F if and only if n is even; except that
there is no 2-factorisation of Kg ¢ into [6, 6].

If mis even or ris odd, then Ky, has even degree, and hence has a
Hamilton decomposition by Auerbach and Laskar’s result. If n=2m

then Ky = K,f,) and we can complete the proof using Haggkvist’'s
doubling.

n=2 and r = 2 are done above.
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Proof - Sketch

Assume m > 3is odd and r > 4 is even.

By the Lemma there is a factorisation of K into “—)"=% Hamilton
cycles and a copy of ({1,3°})m.

Double, use Haggkvist doubling on the Hamiltonian cycles Cﬁ,i) and
the second corollary on ({1, 36}>$§7).

This leaves the case r > 4 is even, m= J > 3 is odd, and
F = [4,6%%2] for some x > 1, which is done as a special case.
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The End

Thank You

NSERC

CRSNG R\F RC;ON U NIVE RC, Iy
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