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The Problem

The Oberwolfach problem

The Oberwolfach problem was posed by Ringel in the 1960s.
At the Conference center in Oberwolfach, Germany

The Oberwolfach problem was originally motivated as a seating
problem:
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The Problem

The Oberwolfach problem

Given n attendees at a conference with t circular tables
each of which which seat ai , i = 1, . . . , t people

(∑t
i=1 ai = n

)
.

Find a seating arrangement so that every person sits next to each
other person around a table exactly once over the r days of the
conference.
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The Problem

Factors

Definition
A k-factor of a graph G is a k -regular spanning subgraph of G.

Definition
Given a factor F , an F−Factorisation of a graph G is a decomposition
of the edges of G into copies of F .

Definition
Given a set of factors F , an F−Factorisation of a graph G is a
decomposition of the edges of G into copies of factors F ∈ F .
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The Problem

Example n = 5
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The Problem

The Oberwolfach problem

When n is odd, the Oberwolfach problem OP(F ) asks for a factorisation
of Kn into a specified 2−factor F of order n.(

r = n−1
2

)
When n is even, the Oberwolfach problem OP(F ) asks for a
factorisation of Kn − I into a specified 2−factor F of order n.
Where Kn − I is the complete graph on n vertices with the edges of a
1-factor removed.(

r = n−2
2

)
We will use the notation [m1,m2, . . . ,mt ] to denote the 2-regular graph
consisting of t (vertex-disjoint) cycles of lengths m1,m2, . . . ,mt .

The Oberwolfach problem can be thought of as a generalisation of
Kirkman Triple Systems, which are the case F = [3,3, . . . ,3].
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The Problem

Example n = 8, F = [4,4]
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The Problem

Example n = 8, F = [4,4]
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A F−Factorisation of K8 with a 1−factor remaining
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The Problem

Hamilton - Waterloo: Include the Pub
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The Problem

Hamilton-Waterloo

In the Hamilton-Waterloo variant of the problem the conference has
two venues

The first venue (Hamilton) has circular tables corresponding to a
2−factor F1 of order n.

The second venue (Waterloo) circular tables each corresponding to a
2−factor F2 of order n.
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The Problem

Hamilton-Waterloo

The Hamilton-Waterloo problem thus requires a factorisation of Kn or
Kn − I if n is even into two 2-factors, with α1 classes of the form F1 and
α2 classes of the form F2. Here the number of days is

r = α1 + α2 =

{
n−1

2 n odd
n−2

2 n even
.

When n is even

If n ≡ 2 mod 4 then n−2
2 is even and α1 and α2 have the same parity.

i.e. Either both α1, α2 are even or both are odd.

If n ≡ 0 mod 4 thenthen n−2
2 is odd and so α1 and α2 have opposite

parity. i.e. one of α1, α2 is even and the other is odd.
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The Problem

Example n = 8, F1 = [8], α1 = 2, F2 = [4,4], α2 = 1

@
@

@
@

@
@
@
@

�
�
�
�

�
�
�
�

s s
s s

s s
s s

An F1−Factor of K8

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 11 / 61



The Problem

Example n = 8, F1 = [8], α1 = 2, F2 = [4,4], α2 = 1
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The Problem

Example n = 8, F1 = [8], α1 = 2, F2 = [4,4], α2 = 1
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The Problem

Example n = 8, F1 = [8], α1 = 2, F2 = [4,4], α2 = 1
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A Solution to the given Hamilton-Waterloo Problem
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The Problem

Hamilton? - Waterloo?

Hamilton?
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The Problem

Hamilton? - Waterloo?

Hamilton?

Hamiltonian?
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The Problem

Hamilton? - Waterloo?

Hamilton?

Hamiltonian? Waterloo?
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The Problem

Hamilton - Waterloo

3rd Ontario Combinatorics Workshop
McMaster University, Hamilton, Ontario, Feb. 1988.
University of Waterloo, Waterloo, Ontario, Oct. 1987;
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The Problem

Hamilton - Waterloo?

3rd Ontario Combinatorics Workshop
McMaster University, Hamilton, Ontario, Feb. 1988.

University of Waterloo, Waterloo, Ontario, Oct. 1987;

Organizers

Alex Rosa
McMaster University
Hamilton, Ontario

Charlie Colbourn
University of Waterloo

Waterloo, Ontario
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The Problem

Generalise to OP(F1, . . . ,Ft)

Given 2−factors F1,F2, . . . ,Ft order n and
non-negative integers α1, α2, . . . , αt such that

α1 + α2 + · · ·+ αt =

{ n−1
2 n odd

n−2
2 n even

Find a 2-factorisation of Kn, or Kn − I if un is even, in which there are
exactly αi 2-factors isomorphic to Fi for i = 1,2, . . . , t .
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The Problem

Generalise to other Graphs G, OP(G;F1, . . . ,Ft)

We can also consider Factorisations of other graphs G.

Of particular interest is the case when G = Knr , the multipartite
complete graph with r parts of size n.

In order for G = Knr to have a factorisation into 2−factors F1, . . . ,Ft is
that every vertex is of even degree (n(r − 1) is even).
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Results

What is known about OP(F )

It is known that there is no solution to OP(F ) for

F ∈ {[3,3], [4,5], [3,3,5], [3,3,3,3]},

A solution is known for all other instances with n ≤ 40.
Deza, Franek, Hua, Meszka, Rosa (2010), Adams & Bryant (2006),
Franek & Rosa (2000), Bolstad (1990), Huang, Kotzig & A. Rosa
(1979).

The case where all the cycles in F are of the same length has been
solved.
Govzdjak (1997), Alspach & Häggkvist (1985), Alspach, Schellenberg,
Stinson & D. Wagner (1989), Hoffman & Schellenberg (1991), Huang,
Kotzig & A. Rosa (1979), Ray-Chaudhuri & Wilson (1971).
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Results

What is known about Hamilton - Waterloo

It is known that the following instances of the Hamilton-Waterloo
Problem have no solution.

HW([3,4], [7];2,1) HW([3,5], [42];2,1) HW([3,5], [42];1,2)
HW([33], [4,5];2,2)

HW([33],F ;3,1) for F ∈ {[4,5], [3,6], [9]} and

HW([35],F ;6,1) for F ∈ {[32,4,5], [3,5,7], [53], [42,7], [7,8]}.

Every other instance of the Hamilton-Waterloo Problem has a solution
when n ≤ 17 and odd and when n ≤ 10 and even Adams, Bryant
(2006), Franek, Rosa (2000, 2004).
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Results

What is known about Hamilton - Waterloo

Theorem (Danziger, Quottrocchi, Stevens (2009))

If F1 is a collection of 3−cycles and F2 is a collection of 4−cycles then
OP(F1,F2) exists if and only if n ≡ 0 mod 12, with 14 possible
exceptions.

Theorem (Horak, Nedela, Rosa (2004), Dinitz, Ling (2009))

If F1 is a collection of 3−cycles and F2 is a Hamiltonan cycle and
n 6≡ 0 mod 6 then OP(F1,F2) exists, except when n = 9, α2 = 1, with
13 possible exceptions. (The case n ≡ 0 mod 6 is still open.)
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Results

Generalised OP and Häggkvist

Theorem (Häggkvist (1985))

Let n ≡ 2 mod 4, and F1, . . . ,Ft be bipartite 2−factors of order n then
OP(F1, . . . ,Ft) has solution, with an even number of factors isomorphic
to each Fi .

Corollary (t = 1)

Let n ≡ 2 mod 4, and F be a bipartite 2−factor of order n then OP(F )
has solution.

Corollary (t = 2)
Let n ≡ 2 mod 4, and F1,F2 be bipartite 2−factors of order n then
OP(F1,F2) (Hamilton-Waterloo) has solution where there are an even
number of each of the factors. (Both α1 and α2 are even)
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Results

Doubling

For any given graph G, the graph G(2) is defined by
V (G(2)) = V (G)× Z2,
E(G(2)) = {{(x ,a), (y ,b)} : {x , y} ∈ E(G), a,b ∈ Z2}.

C t t t t t t
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Doubling

For any given graph G, the graph G(2) is defined by
V (G(2)) = V (G)× Z2,
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Results

Factoring C(2)
n

Lemma (Häggkvist (1985))

For any m > 1 and for each bipartite 2-regular graph F of order 2m,
there exists a 2-factorisation of C(2)

m in which each 2-factor is
isomorphic to F .

C(2)
m
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Results

Factoring C(2)
n
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Results

Häggkvist and Doubling

Let m be odd, and n = 2m ≡ 2 mod 4.

Given bipartite 2−factors F1, . . . ,F m−1
2

, of order 2m
(not necessarily distinct).

Since m is odd, Km has a factorisation into Hamiltonian cycles Hi ,
1 ≤ i ≤ m−1

2 .

Now doubling, we have a H(2) factorisation of K (2)
m

We can factor the square of the i th Hamiltonian cycle H(2)
i into 2 copies

of Fi by Häggkvist doubling as above.

Result is a factorisation of K (2)
m
∼= K2m into pairs of factors each

isomorphic to Fi , i = 1, . . . m−1
2 .
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Results

Results

Theorem (Bryant, Danziger (2011))

If n ≡ 0 mod 4 and F1,F2, . . . ,Ft are bipartite 2-regular graphs of
order n and α1, α2, . . . , αt are non-negative integers such that

α1 + α2 + · · ·+ αt =
n−2

2 ,

αi is even for i = 2,3, . . . , t ,
α1 ≥ 3 is odd,

then OP(F1, . . . ,Ft) has a solution with αi 2-factors isomorphic to Fi for
i = 1,2, . . . , t .
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Results

Results ...and so...

Corollary (t = 1)

Let n be even and F be a bipartite 2−factor of order n then OP(F ) has
solution.

Corollary (t = 2)
Let n be even and F1,F2 be bipartite 2−factors of order n then
OP(F1,F2) (Hamilton-Waterloo) has solution, except possibly in the
case where all but one of the 2-factors are isomorphic (α1 = 1 or
α2 = 1).
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Factoring Kn

To Show:

Theorem (Bryant, Danziger (2011))

If n ≡ 0 mod 4 and F1,F2, . . . ,Ft are bipartite 2-regular graphs of
order n and α1, α2, . . . , αt are non-negative integers such that

α1 + α2 + · · ·+ αt =
n−2

2 ,

αi is even for i = 2,3, . . . , t ,
α1 ≥ 3 is odd,

then OP(F1, . . . ,Ft) has a solution with αi 2-factors isomorphic to Fi for
i = 1,2, . . . , t .
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Factoring Kn

The Plan

When n ≡ 0 mod 4 we don’t have the Hamiltonian Factorisation of K n
2

for Häggkvist doubling.

Idea is to decompose K n
2

into Hamiltonian Cycles, H1, . . . ,H n−4
2

, and a
known 3-regular Graph G.

Use the factorisation above to factor K (2)
n
2

as follows:

Factor the Doubled Hamiltonian Cycles, H(2)
1 , . . . ,H(2)

n−4
2

, into pairs

isomorphic to F2, . . . ,Ft by Häggkvist doubling.

Factor the 7-regular graph G(2) ∪ {(x0, x1)} into copies of F1 and a
1-factor I.
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Factoring Kn

Notation

A Cayley graph on a cyclic group is called a circulant graph.
We will always use vertex set Zn.

The length of an edge {x , y} in a graph is defined to be either x − y or
y − x , whichever is in {1,2, . . . , bn

2c}

We denote by 〈S〉n the graph with vertex set Zn and edge set the
edges of length s for each s ∈ S.

We call {{x , x + s} : x = 0,2, . . . ,n − 2} the even edges of length s.
We call {{x , x + s} : x = 1,3, . . . ,n − 1} the odd edges of length s.

If we wish to include in our graph only the even edges of length s then
we give s the superscript e.
If we wish to include only the odd edges of length s then we give s the
superscript o.
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Factoring Kn

Example 〈{1,2o,5e}〉12 on Z12

H
HHH

HHHH

A
A
A
A

A
A
A
A

�
�
�
�

�
�
�
�

��
��

�
��
�

@
@
@
@
@@

@
@
@
@
@@

�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
��

   
   

   

   
   

   

T
T
T
T
T
T
T
T
T
T
T
T
TT

T
T
T
T
T
T
T
T
T
T
T
T
TT

�
�
�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�
�
�
�
��

s s

s s

s s

s s

s s
s s

0 1

2

3

4

5

67

8

9

10

11

Peter Danziger (RU) 2-Factorisations of the Complete Graph Monash, 2013 29 / 61



Factoring Kn

Factoring Circulants

Lemma

For each even m ≥ 8 there is a factorisation of Km into m−4
2 Hamilton

cycles and a copy of G = 〈{1,3e}〉m.

We can create factors from the Hamiltonian cycles using the Häggkvist
doubling construction.

It remains to factor G2m = G(2) ∪ I = (〈{1,3e}〉m)(2) ∪ I.
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Factorisations of the graph J2m

The Graph J2r

For each even r ≥ 2 we define the graph J2r by

V (J2r ) = {u1,u2, . . . ,ur+2} ∪ {v1, v2, . . . , vr+2}

E(J2r ) = {{ui , vi} : i = 3,4, . . . , r + 2} ∪
{{ui ,ui+1}, {vi , vi+1}, {ui , vi+1}, {vi ,ui+1} : i = 2,3, . . . , r + 1} ∪
{{ui ,ui+3}, {vi , vi+3}{ui , vi+3}, {vi ,ui+3} : i = 1,3, . . . , r − 1}.
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Factorisations of the graph J2m

If we identify vertices u1 with ur+1, u2 with ur+2, v1 with vr+1, and v2
with vr+2, then the resulting graph is isomorphic to G2r .
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Factorisations of the graph J2m

If we identify vertices u1 with ur+1, u2 with ur+2, v1 with vr+1, and v2
with vr+2, then the resulting graph is isomorphic to G2r .
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Factorisations of the graph J2m

The
⊕

Operation on J

Similarly, by J2r ⊕ J2s we mean adjoining J2r to a copy of J2s which has
been shifted by r , to obtain J2(r+s).

J2r J2s (+r)
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Factorisations of the graph J2m

The
⊕

Operation on J

Similarly, by J2r ⊕ J2s we mean adjoining J2r to a copy of J2s which has
been shifted by r , to obtain J2(r+s).

J2(r+s)
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Factorisations of the graph J2m

Decompositions J 7→ F

Given a factor F the idea is to divide it into smaller factors Fi of order
2mi and to divide G2n into edge disjoint Jmi , so that

⊕
i Jmi

∼= Gn, with
the identification above at the ends.

We then factor each of the Jmi into Fi and join up the results.

Since G2m is 7−regular we require a factorisation of each Jmi (k) into
three partial cycle factors, Hj , j ∈ {0,1,2} and a 1−factor, H3.

Index j Missed points in Jm(k)
0 ui , vi , i ∈ {1,2}
1 {v1, v2,ur+1,ur+2}
2 {u1,u2, vr+1, vr+2}

1−factor ui , vi , i ∈ {1,2}
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Factorisations of the graph J2m

Decomposition of J 7→ [16] + [16] + [16]
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Index j Missed points in Jm(k)
0 ui , vi , i ∈ {1,2}
1 {v1, v2,ur+1,ur+2}
2 {u1,u2, vr+1, vr+2}

1−factor ui , vi , i ∈ {1,2}
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Factorisations of the graph J2m

Joining Decompositions

Lemma

If F and F ′ are 2-regular graphs such that J 7→ F and J 7→ F ′, then
J 7→ F ′′ where F ′′ is the union of vertex-disjoint copies of F and F ′.
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Factorisations of the graph J2m

Lemma 10 - Ingredient Decompositions J 7→ F

Lemma (10)

For each graph F in the following list we have J 7→ F.
[m] for each m ∈ {8,12,16, . . .}
[4,m] for each m ∈ {4,8,12, . . .}
[m,m′] for each m,m′ ∈ {6,10,14, . . .}
[4,m,m′] for each m,m′ ∈ {6,10,14, . . .}
[4,4,4]
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Factorisations of the graph J2m

Factoring G2m

Lemma

If F is a bipartite 2-regular graph of order 2m where m ≥ 8 is even,
then there is a factorisation of G2m into three 2-factors each
isomorphic to F , and a 1-factor.

Proof We show that there is a decomposition of F into bipartite
2-regular subgraphs F1,F2, . . . ,Fs such that Lemma 10 covers J 7→ Fi
for i = 1,2, . . . , s.

We then use
⊕

to join these Factorisations into J 7→ F .

Finally we identify endpoints to obtain the required factorisation of G2m.
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Factorisations of the graph J2m

Main Theorem

Theorem
If F1,F2, . . . ,Ft are bipartite 2-regular graphs of order n and
α1, α2, . . . , αt are non-negative integers such that
α1 + α2 + · · ·+ αt =

n−2
2 , α1 ≥ 3 is odd, and αi is even for

i = 2,3, . . . , t , then there exists a 2-factorisation of Kn − I in which
there are exactly αi 2-factors isomorphic to Fi for i = 1,2, . . . , t .

Proof The conditions guarantee that n ≡ 0 mod 4.

Factor K n
2

into Hamiltonian factors and 〈{1,3e}〉 n
2
.

Factor C(2)
n
2

into pairs of Fi , i = 1, . . . , t .

Remaining edges of K (2)
n
2

are isomorphic to Gn, which we can factor
into 3 copies of F1.
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Lemma 10

Lemma 10 - Ingredient Decompositions J 7→ F

We now want to prove

Lemma (10)

For each graph F in the following list we have J 7→ F.
[m] for each m ∈ {8,12,16, . . .}
[4,m] for each m ∈ {4,8,12, . . .}
[m,m′] for each m,m′ ∈ {6,10,14, . . .}
[4,m,m′] for each m,m′ ∈ {6,10,14, . . .}
[4,4,4]
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Lemma 10

Cycle Length m ≡ 0 mod 4, m > 4

We describe the three cycle factors in three parts.

A left hand end [`, consisting of an `−path

A continuing part c that consist of two paths whose total length is c.

The continuing part is designed so that it can be repeated.

And a right hand end r ], consisting of an r−path.

We use ⊕ to adjoin these parts:

[`⊕ c ⊕ c ⊕ r ] = [(`+ c + c + r)]
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Lemma 10

Blue Factor

Left Continuation Right
[5 4 3]
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Lemma 10

Green Factor

Left Continuation Right
[5 4 3]
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Lemma 10

Red Factor

Left Continuation Right
[8 4 4]
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Lemma 10

Putting it Together

([5+[5+[8)⊕ ((4⊕ 4)+(4⊕ 4)+4)⊕ (3]+3]+4]) = [16]+ [16]+ [16]
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Lemma 10

[m,m′], m ≡ m′ ≡ 2 mod 4
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Lemma 10

The Join

([5+[5+[8)⊕ (4+4+4)⊕ (5,7+5,7+2,6)⊕ (0+0+0)⊕ (3]+3]+4])

= [14,10] + [14,10] + [14,10]
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Lemma 10

Remaining Cases

The cases [4,m] are dealt with using a special left end.

The following are dealt with as special cases:
[8], [12], [4,8], [4,12], [4,4], [4,4,4]
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Hamilton-Waterloo

Hamilton-Waterloo (Two Factors F1 and F2)

When n is even

If n ≡ 2 mod 4 then n−2
2 is even and α1 and α2 have the same parity.

i.e. Either both α1, α2 are even or both are odd.

If n ≡ 0 mod 4 thenthen n−2
2 is odd and so α1 and α2 have opposite

parity. i.e. one of α1, α2 is even and the other is odd.

Corollary (t = 2)
Let n be even and F1,F2 be bipartite 2−factors of order n then
OP(F1,F2) (Hamilton-Waterloo) has solution, except possibly in the
case where all but one of the 2-factors are isomorphic (α1 = 1 or
α2 = 1).
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Hamilton-Waterloo

Refinement

Definition
Given two 2-regular graphs F1 and F2,
F1 is called a refinement of F2 if F1 can be obtained from by replacing
each cycle of F2 with a 2-regular graph on the same vertex set

Example

[4,4] is a refinement of [8]
[4,83,102,12] is a refinement of [4,16,18,22],
[4,182,20] is not a refinement of [4,16,18,22].
Every 2-regular graph of order n is a refinement of an n-cycle.
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Hamilton-Waterloo

General result, n ≡ 2 mod 4

Theorem (Bryant, Danziger, Dean (2012))

If F1,F2, . . . ,Ft are bipartite 2-regular graphs of order n ≡ 2 mod 4,
and α1, α2, . . . , αt are positive integers such that

F1 is a refinement of F2;
αi even for i = 3,4 . . . , t ;
α1 + α2 + · · ·+ αt =

n−2
2 ;

then Kn has a factorisation into αi copies of Fi for i = 1,2, . . . , t and a
1-factor.
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Hamilton-Waterloo

General result, n ≡ 0 mod 4

Theorem (Bryant, Danziger, Dean (2012))

If t ≥ 3, F1,F2, . . . ,Ft are bipartite 2-regular graphs of order n, and
α1, α2, . . . , αt are positive integers such that

F1 is a refinement of F2;
α1, α2, α3 are odd with α3 ≥ 3;
αi is even for i = 4,5, . . . , t ;
α1 + α2 + · · ·+ αt =

n−2
2 ;

F2 /∈ {[4,4,4], [4,8], [12], [4,6,6], [6,10]}; and
F3 /∈ {[6r ], [4,6r ] : r ≡ 2 mod 4};

then Kn has a factorisation into αi copies of Fi for i = 1,2, . . . , t and a
1-factor.
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Hamilton-Waterloo

Hamilton Waterloo

Theorem (Bryant, Danziger, Dean (2012))

If F2 is a bipartite 2-regular graph of order n and F1 is a bipartite
refinement of F2, then for all non-negative α1, α2 satisfying
α1 + α2 = n−2

2 there is a factorisation of Kn into α1 copies of F1, α2
copies of F2, and a 1-factor.

Corollary
Let F1,F2 be bipartite 2−factors of order n such that F1 a refinement
of F2 then OP(F1,F2) (Hamilton-Waterloo) has solution.
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Multipartite Graphs - One Factor F

Multipartite Graphs - One Factor F

We wish to consider factorisations of the complete multipartite graph
Knr into a single biparite 2−factor F .

Ths is the multipartite case of the original Oberwolfach problem.
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Multipartite Graphs - One Factor F

Necessary Conditions

Recall In order for the complete multipartite graph Knr to have a
factorisation into 2−factors F1, . . . ,Ft we require that every vertex is of
even degree, i.e. n(r − 1) is even.

Now we only have one bipartite factor F , of even order nr ,

But n(r − 1) is also even,so:

Theorem
In order for the complete multipartite graph Knr , r ≥ 2, to have a
factorisation into a single bipartite 2−factor, n must be even.
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Multipartite Graphs - One Factor F

What is known

Theorem (Auerbach and Laskar (1976))
A complete multipartite graph has a Hamilton decomposition if and
only if it is regular of even degree.

Theorem (Piotrowski (1991))
If F is a bipartite 2−regular graph of order 2n, then the complete
bipartite graph, Kn,n has a 2−factorisation into F except when n = 6
and F = [6,6].

Theorem (Liu (2003))
The complete multipartite graph Knr , r ≥ 2, has a 2−factorisation into
2−factors composed of k−cycles if and only if k | rn, (r − 1)n is even,
further k is even when r = 2, and
(k , r ,n) 6∈ {(3,3,2), (3,6,2), (3,3,6), (6,2,6)}.
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Multipartite Graphs - One Factor F

What is known

It is known that there is no 2-factorisation of K6,6 into [6,6].

Corollary ((Bryant, Danziger (2010), t = 1)

If F is a bipartite 2−regular graph of order 2r , then the complete
multipartite graph K2r has a 2−factorisation into F .

Corollary (Bryant, Danziger, Dean (2012))

Let n ≡ 0 mod 4 with n ≥ 12. For each bipartite 2-regular graph F of
order n, there is a factorisation of 〈{1,3e}〉(2)n/2 into three copies of F ;
except possibly when F ∈ {[6r ], [4,6r ] : r ≡ 2 mod 4}.
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Multipartite Graphs - One Factor F

Setting up

Note that when n = 2m
Knr ∼= K (2)

mr

Also
Kmr ∼= 〈{1,2, . . . ,

rm
2
} \ {r ,2r , . . . ,

m − 1
2

r}〉rm.

Lemma
For each even r ≥ 4 and each odd m ≥ 1, except (r ,m) = (4,1), there
is a factorisation of Kmr into (r−1)m−3

2 Hamilton cycles and a copy of
〈{1,3e}〉rm.
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Multipartite Graphs - One Factor F

Necessary Conditions are Sufficient

Theorem (Bryant, Danziger, Pettersson (2013))

If F is a bipartite 2-regular graph of order rn, then there exists a
2-factorisation of Knr , r ≥ 2, into F if and only if n is even; except that
there is no 2-factorisation of K6,6 into [6,6].

If m is even or r is odd, then Kmr has even degree, and hence has a
Hamilton decomposition by Auerbach and Laskar’s result. If n = 2m
then Knr ∼= K (2)

mr and we can complete the proof using Häggkvist’s
doubling.

n = 2 and r = 2 are done above.
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Multipartite Graphs - One Factor F

Proof - Sketch

Assume m ≥ 3 is odd and r ≥ 4 is even.

By the Lemma there is a factorisation of Kmr into (r−1)m−3
2 Hamilton

cycles and a copy of 〈{1,3e}〉rm.

Double, use Häggkvist doubling on the Hamiltonian cycles C(2)
rm and

the second corollary on 〈{1,3e}〉(2)rm .

This leaves the case r ≥ 4 is even, m = n
2 ≥ 3 is odd, and

F = [4,64x+2] for some x ≥ 1, which is done as a special case.

�
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Multipartite Graphs - One Factor F

The End

Thank You
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