2-Factorisations of the Complete Graph

Peter Danziger ¹ Joint work with Darryn Bryant and various others

Department of Mathematics, Ryerson University, Toronto, Canada

Monash University, March 2013

The Oberwolfach problem

The Oberwolfach problem was posed by Ringel in the 1960s. At the Conference center in Oberwolfach, Germany

The Oberwolfach problem was originally motivated as a seating problem:

The Oberwolfach problem

Given n attendees at a conference with t circular tables each of which which seat a_i , i = 1, ..., t people $\left(\sum_{i=1}^t a_i = n\right)$.

Find a seating arrangement so that every person sits next to each other person around a table exactly once over the $\it r$ days of the

conference.

Factors

Definition

A *k-factor* of a graph *G* is a *k*-regular spanning subgraph of *G*.

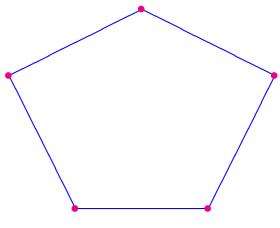
Definition

Given a factor F, an F-Factorisation of a graph G is a decomposition of the edges of G into copies of F.

Definition

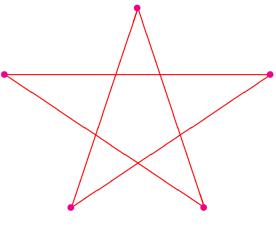
Given a set of factors \mathcal{F} , an \mathcal{F} -Factorisation of a graph G is a decomposition of the edges of G into copies of factors $F \in \mathcal{F}$.

Example n = 5



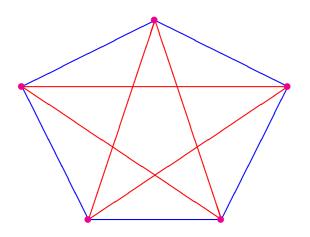
A 2-Factor of K₅

Example n = 5



A 2-Factor of K₅

Example n = 5



A 2-Factorisation of K_5

The Oberwolfach problem

When n is odd, the Oberwolfach problem OP(F) asks for a factorisation of K_n into a specified 2–factor F of order n.

$$\left(r = \frac{n-1}{2}\right)$$

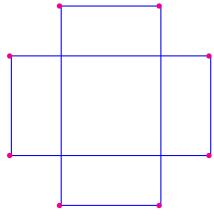
When n is even, the Oberwolfach problem OP(F) asks for a factorisation of $K_n - I$ into a specified 2-factor F of order n. Where $K_n - I$ is the complete graph on n vertices with the edges of a 1-factor removed.

$$\left(r=\frac{n-2}{2}\right)$$

We will use the notation $[m_1, m_2, ..., m_t]$ to denote the 2-regular graph consisting of t (vertex-disjoint) cycles of lengths $m_1, m_2, ..., m_t$.

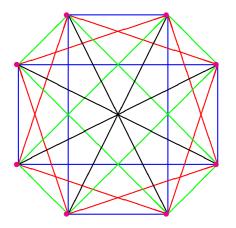
The Oberwolfach problem can be thought of as a generalisation of Kirkman Triple Systems, which are the case F = [3, 3, ..., 3].

Example n = 8, F = [4, 4]



An F-Factor of K8

Example n = 8, F = [4, 4]



A F-Factorisation of K₈ with a 1-factor remaining

Hamilton - Waterloo: Include the Pub

Hamilton-Waterloo

In the Hamilton-Waterloo variant of the problem the conference has two venues

The first venue (Hamilton) has circular tables corresponding to a 2-factor F_1 of order n.

The second venue (Waterloo) circular tables each corresponding to a 2-factor F_2 of order n.

Hamilton-Waterloo

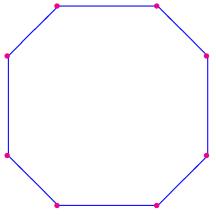
The Hamilton-Waterloo problem thus requires a factorisation of K_n or $K_n - I$ if n is even into two 2-factors, with α_1 classes of the form F_1 and α_2 classes of the form F_2 . Here the number of days is

$$r = \alpha_1 + \alpha_2 = \begin{cases} \frac{n-1}{2} & n \text{ odd} \\ \frac{n-2}{2} & n \text{ even} \end{cases}$$
.

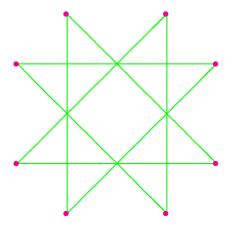
When n is even

If $n \equiv 2 \mod 4$ then $\frac{n-2}{2}$ is even and α_1 and α_2 have the same parity. i.e. Either both α_1, α_2 are even or both are odd.

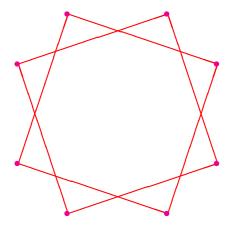
If $n \equiv 0 \mod 4$ thenthen $\frac{n-2}{2}$ is odd and so α_1 and α_2 have opposite parity. i.e. one of α_1, α_2 is even and the other is odd.



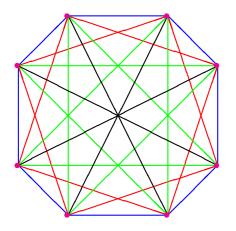
An F₁-Factor of K₈



An F₁-Factor of K₈



An F₂-Factor of K₈



A Solution to the given Hamilton-Waterloo Problem

Hamilton? - Waterloo?

Hamilton?

Hamilton? - Waterloo?

Hamilton?

Hamiltonian?

Hamilton? - Waterloo?

Hamilton?

Hamiltonian?

Waterloo?

Hamilton - Waterloo

3rd Ontario Combinatorics Workshop McMaster University, **Hamilton**, Ontario, Feb. 1988. University of Waterloo, **Waterloo**, Ontario, Oct. 1987;

Hamilton - Waterloo?

3rd Ontario Combinatorics Workshop McMaster University, **Hamilton**, Ontario, Feb. 1988. University of Waterloo, **Waterloo**, Ontario, Oct. 1987;

Organizers

Alex Rosa McMaster University **Hamilton**, Ontario

Charlie Colbourn
University of Waterloo
Waterloo. Ontario

Generalise to $OP(F_1, \ldots, F_t)$

Given 2-factors F_1, F_2, \dots, F_t order n and non-negative integers $\alpha_1, \alpha_2, \dots, \alpha_t$ such that

$$\alpha_1 + \alpha_2 + \dots + \alpha_t = \begin{cases} \frac{n-1}{2} & n \text{ odd} \\ \frac{n-2}{2} & n \text{ even} \end{cases}$$

Find a 2-factorisation of K_n , or $K_n - I$ if u_n is even, in which there are exactly α_i 2-factors isomorphic to F_i for i = 1, 2, ..., t.

Generalise to other Graphs G, $OP(G; F_1, ..., F_t)$

We can also consider Factorisations of other graphs G.

Of particular interest is the case when $G = K_{n^r}$, the multipartite complete graph with r parts of size n.

In order for $G = K_{n^r}$ to have a factorisation into 2–factors F_1, \dots, F_t is that every vertex is of even degree (n(r-1)) is even).

What is known about OP(F)

It is known that there is no solution to OP(F) for

$$F \in \{[3,3],[4,5],[3,3,5],[3,3,3,3]\},$$

A solution is known for all other instances with $n \le 40$. Deza, Franek, Hua, Meszka, Rosa (2010), Adams & Bryant (2006), Franek & Rosa (2000), Bolstad (1990), Huang, Kotzig & A. Rosa (1979).

The case where all the cycles in *F* are of the same length has been solved.

Govzdjak (1997), Alspach & Häggkvist (1985), Alspach, Schellenberg, Stinson & D. Wagner (1989), Hoffman & Schellenberg (1991), Huang, Kotzig & A. Rosa (1979), Ray-Chaudhuri & Wilson (1971).

What is known about Hamilton - Waterloo

It is known that the following instances of the Hamilton-Waterloo Problem have no solution.

$$\begin{split} & \text{HW}([3,4],[7];2,1) \quad \text{HW}([3,5],[4^2];2,1) \quad \text{HW}([3,5],[4^2];1,2) \\ & \quad \quad \text{HW}([3^3],[4,5];2,2) \end{split}$$

$$& \quad \quad \text{HW}([3^3],F;3,1) \text{ for } F \in \{[4,5],[3,6],[9]\} \quad \text{and} \\ & \quad \quad \text{HW}([3^5],F;6,1) \text{ for } F \in \{[3^2,4,5],[3,5,7],[5^3],[4^2,7],[7,8]\}. \end{split}$$

Every other instance of the Hamilton-Waterloo Problem has a solution when $n \le 17$ and odd and when $n \le 10$ and even Adams, Bryant (2006), Franek, Rosa (2000, 2004).

What is known about Hamilton - Waterloo

Theorem (Danziger, Quottrocchi, Stevens (2009))

If F_1 is a collection of 3-cycles and F_2 is a collection of 4-cycles then $OP(F_1, F_2)$ exists if and only if $n \equiv 0 \mod 12$, with 14 possible exceptions.

Theorem (Horak, Nedela, Rosa (2004), Dinitz, Ling (2009))

If F_1 is a collection of 3—cycles and F_2 is a Hamiltonan cycle and $n \not\equiv 0 \mod 6$ then $OP(F_1, F_2)$ exists, except when $n = 9, \alpha_2 = 1$, with 13 possible exceptions. (The case $n \equiv 0 \mod 6$ is still open.)

Generalised OP and Häggkvist

Theorem (Häggkvist (1985))

Let $n \equiv 2 \mod 4$, and F_1, \ldots, F_t be bipartite 2-factors of order n then $OP(F_1, \ldots, F_t)$ has solution, with an even number of factors isomorphic to each F_i .

Corollary (t = 1)

Let $n \equiv 2 \mod 4$, and F be a bipartite 2-factor of order n then OP(F) has solution.

Corollary (t = 2)

Let $n \equiv 2 \mod 4$, and F_1 , F_2 be bipartite 2-factors of order n then $OP(F_1, F_2)$ (Hamilton-Waterloo) has solution where there are an even number of each of the factors. (Both α_1 and α_2 are even)

Doubling

For any given graph G, the graph $G^{(2)}$ is defined by

$$V(G^{(2)}) = V(G) \times \mathbb{Z}_2,$$

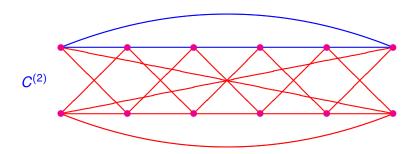
 $E(G^{(2)}) = \{\{(x, a), (y, b)\} : \{x, y\} \in E(G), a, b \in \mathbb{Z}_2\}.$

Doubling

For any given graph G, the graph $G^{(2)}$ is defined by

$$V(G^{(2)}) = V(G) \times \mathbb{Z}_2,$$

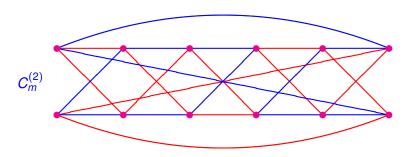
 $E(G^{(2)}) = \{\{(x, a), (y, b)\} : \{x, y\} \in E(G), a, b \in \mathbb{Z}_2\}.$



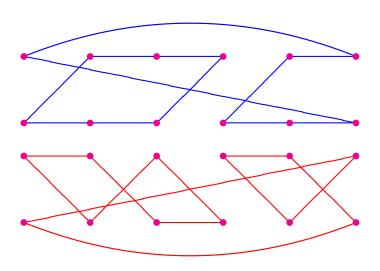
Factoring $C_n^{(2)}$

Lemma (Häggkvist (1985))

For any m > 1 and for each bipartite 2-regular graph F of order 2m, there exists a 2-factorisation of $C_m^{(2)}$ in which each 2-factor is isomorphic to F.



Factoring $C_n^{(2)}$



Häggkvist and Doubling

Let *m* be odd, and $n = 2m \equiv 2 \mod 4$.

Given bipartite 2-factors $F_1, \ldots, F_{\frac{m-1}{2}}$, of order 2m (not necessarily distinct).

Since m is odd, K_m has a factorisation into Hamiltonian cycles H_i , $1 \le i \le \frac{m-1}{2}$.

Now doubling, we have a $H^{(2)}$ factorisation of $K_m^{(2)}$

We can factor the square of the i^{th} Hamiltonian cycle $H_i^{(2)}$ into 2 copies of F_i by Häggkvist doubling as above.

Result is a factorisation of $K_m^{(2)} \cong K_{2m}$ into pairs of factors each isomorphic to F_i , $i = 1, \dots \frac{m-1}{2}$.

Results

Theorem (Bryant, Danziger (2011))

If $n \equiv 0 \mod 4$ and F_1, F_2, \dots, F_t are bipartite 2-regular graphs of order n and $\alpha_1, \alpha_2, \dots, \alpha_t$ are non-negative integers such that

- $\bullet \ \alpha_1 + \alpha_2 + \cdots + \alpha_t = \frac{n-2}{2},$
- α_i is even for $i = 2, 3, \ldots, t$,
- $\alpha_1 \geq 3$ is odd,

then $OP(F_1, ..., F_t)$ has a solution with α_i 2-factors isomorphic to F_i for i = 1, 2, ..., t.

Results ... and so...

Corollary (t = 1)

Let n be even and F be a bipartite 2-factor of order n then OP(F) has solution.

Corollary (t = 2)

Let *n* be even and F_1 , F_2 be bipartite 2-factors of order *n* then $OP(F_1, F_2)$ (Hamilton-Waterloo) has solution, except possibly in the case where all but one of the 2-factors are isomorphic ($\alpha_1 = 1$ or $\alpha_2 = 1$).

To Show:

Theorem (Bryant, Danziger (2011))

If $n \equiv 0 \mod 4$ and F_1, F_2, \dots, F_t are bipartite 2-regular graphs of order n and $\alpha_1, \alpha_2, \dots, \alpha_t$ are non-negative integers such that

- $\bullet \ \alpha_1 + \alpha_2 + \cdots + \alpha_t = \frac{n-2}{2},$
- α_i is even for $i = 2, 3, \ldots, t$,
- $\alpha_1 \geq 3$ is odd,

then $OP(F_1, ..., F_t)$ has a solution with α_i 2-factors isomorphic to F_i for i = 1, 2, ..., t.

The Plan

When $n \equiv 0 \mod 4$ we don't have the Hamiltonian Factorisation of $K_{\frac{n}{2}}$ for Häggkvist doubling.

Idea is to decompose $K_{\frac{n}{2}}$ into Hamiltonian Cycles, $H_1, \ldots, H_{\frac{n-4}{2}}$, and a known 3-regular Graph G.

Use the factorisation above to factor $K_{\frac{n}{2}}^{(2)}$ as follows:

Factor the Doubled Hamiltonian Cycles, $H_1^{(2)}, \ldots, H_{\frac{n-4}{2}}^{(2)}$, into pairs isomorphic to F_2, \ldots, F_t by Häggkvist doubling.

Factor the 7-regular graph $G^{(2)} \cup \{(x_0, x_1)\}$ into copies of F_1 and a 1-factor I.

Notation

A Cayley graph on a cyclic group is called a *circulant graph*. We will always use vertex set \mathbb{Z}_n .

The length of an edge $\{x, y\}$ in a graph is defined to be either x - y or y - x, whichever is in $\{1, 2, ..., \lfloor \frac{n}{2} \rfloor\}$

We denote by $\langle S \rangle_n$ the graph with vertex set \mathbb{Z}_n and edge set the edges of length s for each $s \in S$.

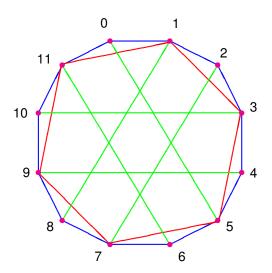
```
We call \{\{x, x + s\} : x = 0, 2, ..., n - 2\} the even edges of length s. We call \{\{x, x + s\} : x = 1, 3, ..., n - 1\} the odd edges of length s.
```

If we wish to include in our graph only the even edges of length s then we give s the superscript e.

If we wish to include only the odd edges of length *s* then we give *s* the superscript o.

Example

$\langle \{1,2^{o},5^{e}\} \rangle_{12} \text{ on } \mathbb{Z}_{12}$



Factoring Circulants

Lemma

For each even $m \ge 8$ there is a factorisation of K_m into $\frac{m-4}{2}$ Hamilton cycles and a copy of $G = \langle \{1,3^e\} \rangle_m$.

We can create factors from the Hamiltonian cycles using the Häggkvist doubling construction.

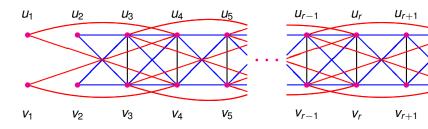
It remains to factor $G_{2m} = G^{(2)} \cup I = (\langle \{1,3^e\} \rangle_m)^{(2)} \cup I$.

The Graph J_{2r}

For each even $r \ge 2$ we define the graph J_{2r} by

$$V(J_{2r}) = \{u_1, u_2, \dots, u_{r+2}\} \cup \{v_1, v_2, \dots, v_{r+2}\}$$

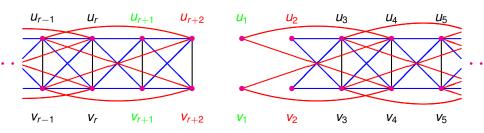
$$E(J_{2r}) = \begin{cases} \{u_i, v_i\} : i = 3, 4, \dots, r+2\} \cup \\ \{\{u_i, u_{i+1}\}, \{v_i, v_{i+1}\}, \{u_i, v_{i+1}\}, \{v_i, u_{i+1}\} : i = 2, 3, \dots, r+1\} \\ \{\{u_i, u_{i+3}\}, \{v_i, v_{i+3}\}, \{v_i, u_{i+3}\}, \{v_i, u_{i+3}\} : i = 1, 3, \dots, r-1\}. \end{cases}$$



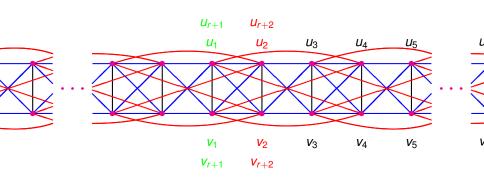
 V_{r+2}

 U_{r+2}

If we identify vertices u_1 with u_{r+1} , u_2 with u_{r+2} , v_1 with v_{r+1} , and v_2 with v_{r+2} , then the resulting graph is isomorphic to G_{2r} .

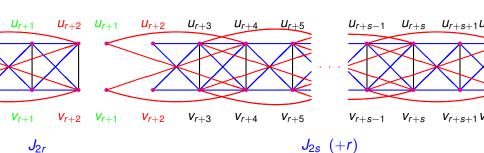


If we identify vertices u_1 with u_{r+1} , u_2 with u_{r+2} , v_1 with v_{r+1} , and v_2 with v_{r+2} , then the resulting graph is isomorphic to G_{2r} .



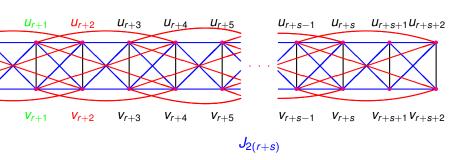
The \bigoplus Operation on J

Similarly, by $J_{2r} \oplus J_{2s}$ we mean adjoining J_{2r} to a copy of J_{2s} which has been shifted by r, to obtain $J_{2(r+s)}$.



The \bigoplus Operation on J

Similarly, by $J_{2r} \oplus J_{2s}$ we mean adjoining J_{2r} to a copy of J_{2s} which has been shifted by r, to obtain $J_{2(r+s)}$.



Decompositions $J \mapsto F$

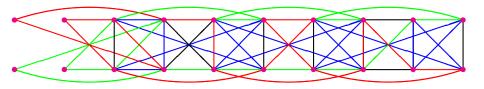
Given a factor F the idea is to divide it into smaller factors F_i of order $2m_i$ and to divide G_{2n} into edge disjoint J_{m_i} , so that $\bigoplus_i J_{m_i} \cong G_n$, with the identification above at the ends.

We then factor each of the J_{m_i} into F_i and join up the results.

Since G_{2m} is 7-regular we require a factorisation of each $J_{m_i}(k)$ into three partial cycle factors, H_j , $j \in \{0, 1, 2\}$ and a 1-factor, H_3 .

Index j	Missed points in $J_m(k)$
0	$u_i, v_i, i \in \{1, 2\}$
1	$\{v_1, v_2, u_{r+1}, u_{r+2}\}$
2	$\{u_1, u_2, v_{r+1}, v_{r+2}\}$
1-factor	$u_i, v_i, i \in \{1, 2\}$

Decomposition of $J \mapsto [16] + [16] + [16]$



Index j	Missed points in $J_m(k)$
0	$u_i, v_i, i \in \{1, 2\}$
1	$\{v_1, v_2, u_{r+1}, u_{r+2}\}$
2	$\{u_1, u_2, v_{r+1}, v_{r+2}\}$
1-factor	$u_i, v_i, i \in \{1, 2\}$

Joining Decompositions

Lemma

If F and F' are 2-regular graphs such that $J \mapsto F$ and $J \mapsto F'$, then $J \mapsto F''$ where F'' is the union of vertex-disjoint copies of F and F'.

$$[12] + [12] + [12]$$

$$[12] + [12] + [12]$$

$$= [12, 12] + [12, 12] + [12, 12]$$

Lemma 10 - Ingredient Decompositions $J \mapsto F$

```
Lemma (10)
```

For each graph F in the following list we have $J \mapsto F$.

- [m] for each $m \in \{8, 12, 16, \ldots\}$
- [4, m] for each $m \in \{4, 8, 12, \ldots\}$
- [m, m'] for each $m, m' \in \{6, 10, 14, \ldots\}$
- [4, m, m'] for each $m, m' \in \{6, 10, 14, \ldots\}$
- **•** [4, 4, 4]

Factoring G_{2m}

Lemma

If F is a bipartite 2-regular graph of order 2m where $m \ge 8$ is even, then there is a factorisation of G_{2m} into three 2-factors each isomorphic to F, and a 1-factor.

Proof We show that there is a decomposition of F into bipartite 2-regular subgraphs F_1, F_2, \ldots, F_s such that Lemma 10 covers $J \mapsto F_i$ for $i = 1, 2, \ldots, s$.

We then use \bigoplus to join these Factorisations into $J \mapsto F$.

Finally we identify endpoints to obtain the required factorisation of G_{2m} .

Main Theorem

Theorem

If F_1, F_2, \ldots, F_t are bipartite 2-regular graphs of order n and $\alpha_1, \alpha_2, \ldots, \alpha_t$ are non-negative integers such that $\alpha_1 + \alpha_2 + \cdots + \alpha_t = \frac{n-2}{2}, \alpha_1 \geq 3$ is odd, and α_i is even for $i = 2, 3, \ldots, t$, then there exists a 2-factorisation of $K_n - I$ in which there are exactly α_i 2-factors isomorphic to F_i for $i = 1, 2, \ldots, t$.

Proof The conditions guarantee that $n \equiv 0 \mod 4$.

Factor $K_{\frac{n}{2}}$ into Hamiltonian factors and $\langle \{1,3^e\} \rangle_{\frac{n}{2}}$.

Factor $C_{\frac{n}{2}}^{(2)}$ into pairs of F_i , i = 1, ..., t.

Remaining edges of $K_{\frac{n}{2}}^{(2)}$ are isomorphic to G_n , which we can factor into 3 copies of F_1 .

Lemma 10 - Ingredient Decompositions $J \mapsto F$

We now want to prove

Lemma (10)

For each graph F in the following list we have $J \mapsto F$.

- [m] for each $m \in \{8, 12, 16, ...\}$
- [4, m] for each $m \in \{4, 8, 12, \ldots\}$
- [m, m'] for each $m, m' \in \{6, 10, 14, \ldots\}$
- [4, m, m'] for each $m, m' \in \{6, 10, 14, \ldots\}$
- **●** [4, 4, 4]

Cycle Length $m \equiv 0 \mod 4$, m > 4

We describe the three cycle factors in three parts.

A left hand end $[\ell]$, consisting of an ℓ -path

A continuing part c that consist of two paths whose total length is c.

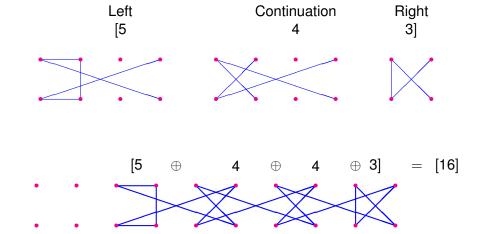
The continuing part is designed so that it can be repeated.

And a right hand end r], consisting of an r—path.

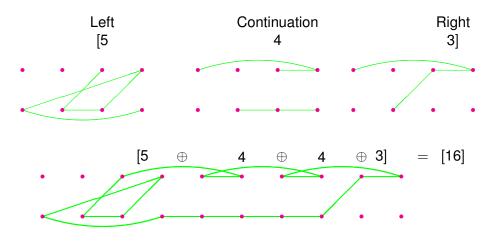
We use \oplus to adjoin these parts:

$$[\ell \oplus c \oplus c \oplus r] = [(\ell + c + c + r)]$$

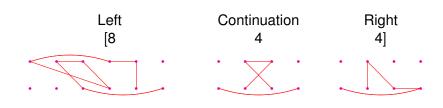
Blue Factor

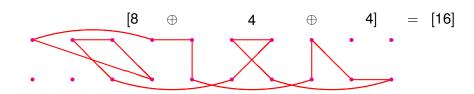


Green Factor



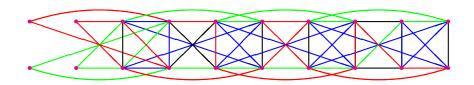
Red Factor



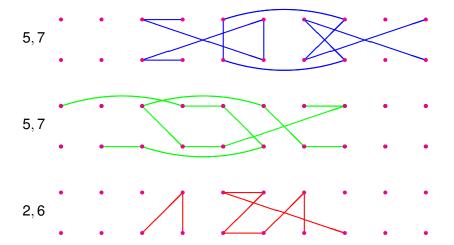


Putting it Together

$$([5+[5+[8)\oplus((4\oplus4)+(4\oplus4)+4)\oplus(3]+3]+4])=[16]+[16]+[16]$$



$[m, m'], m \equiv m' \equiv 2 \mod 4$



The Join

$$([5+[5+[8)\oplus(4+4+4)\oplus(5,7+5,7+2,6)\oplus(0+0+0)\oplus(3]+3]+4])$$
$$=[14,10]+[14,10]+[14,10]$$

Remaining Cases

The cases [4, m] are dealt with using a special left end.

The following are dealt with as special cases:

Hamilton-Waterloo (Two Factors F_1 and F_2)

When *n* is even

If $n \equiv 2 \mod 4$ then $\frac{n-2}{2}$ is even and α_1 and α_2 have the same parity. i.e. Either both α_1, α_2 are even or both are odd.

If $n \equiv 0 \mod 4$ thenthen $\frac{n-2}{2}$ is odd and so α_1 and α_2 have opposite parity. i.e. one of α_1, α_2 is even and the other is odd.

Corollary (t = 2)

Let n be even and F_1 , F_2 be bipartite 2-factors of order n then $OP(F_1, F_2)$ (Hamilton-Waterloo) has solution, except possibly in the case where all but one of the 2-factors are isomorphic ($\alpha_1 = 1$ or $\alpha_2 = 1$).

Refinement

Definition

Given two 2-regular graphs F_1 and F_2 , F_1 is called a refinement of F_2 if F_1 can be obtained from by replacing

each cycle of F_2 with a 2-regular graph on the same vertex set

Example

- [4, 4] is a refinement of [8]
- \bullet [4, 8³, 10², 12] is a refinement of [4, 16, 18, 22],
- [4, 18², 20] is not a refinement of [4, 16, 18, 22].
- Every 2-regular graph of order *n* is a refinement of an *n*-cycle.

General result, $n \equiv 2 \mod 4$

Theorem (Bryant, Danziger, Dean (2012))

If $F_1, F_2, ..., F_t$ are bipartite 2-regular graphs of order $n \equiv 2 \mod 4$, and $\alpha_1, \alpha_2, ..., \alpha_t$ are positive integers such that

- F_1 is a refinement of F_2 ;
- α_i even for $i = 3, 4 \dots, t$;
- $\bullet \ \alpha_1 + \alpha_2 + \cdots + \alpha_t = \frac{n-2}{2};$

then K_n has a factorisation into α_i copies of F_i for i = 1, 2, ..., t and a 1-factor.

General result, $n \equiv 0 \mod 4$

Theorem (Bryant, Danziger, Dean (2012))

If $t \ge 3$, F_1, F_2, \ldots, F_t are bipartite 2-regular graphs of order n, and $\alpha_1, \alpha_2, \ldots, \alpha_t$ are positive integers such that

- F₁ is a refinement of F₂;
- α_1 , α_2 , α_3 are odd with $\alpha_3 \geq 3$;
- α_i is even for $i = 4, 5, \ldots, t$;
- $\bullet \ \alpha_1 + \alpha_2 + \cdots + \alpha_t = \frac{n-2}{2};$
- $F_2 \notin \{[4, 4, 4], [4, 8], [12], [4, 6, 6], [6, 10]\};$ and
- $F_3 \notin \{[6^r], [4, 6^r] : r \equiv 2 \mod 4\};$

then K_n has a factorisation into α_i copies of F_i for i = 1, 2, ..., t and a 1-factor.

Hamilton Waterloo

Theorem (Bryant, Danziger, Dean (2012))

If F_2 is a bipartite 2-regular graph of order n and F_1 is a bipartite refinement of F_2 , then for all non-negative α_1, α_2 satisfying $\alpha_1 + \alpha_2 = \frac{n-2}{2}$ there is a factorisation of K_n into α_1 copies of F_1 , α_2 copies of F_2 , and a 1-factor.

Corollary

Let F_1 , F_2 be bipartite 2-factors of order n such that F_1 a refinement of F_2 then $OP(F_1, F_2)$ (Hamilton-Waterloo) has solution.

Multipartite Graphs - One Factor F

We wish to consider factorisations of the complete multipartite graph $K_{0'}$ into a single biparite 2–factor F.

Ths is the multipartite case of the original Oberwolfach problem.

Necessary Conditions

Recall In order for the complete multipartite graph K_{n^r} to have a factorisation into 2–factors F_1, \ldots, F_t we require that every vertex is of even degree, i.e. n(r-1) is even.

Now we only have one bipartite factor F, of even order nr,

But n(r-1) is also even,so:

Theorem

In order for the complete multipartite graph K_{n^r} , $r \ge 2$, to have a factorisation into a single bipartite 2–factor, n must be even.

What is known

Theorem (Auerbach and Laskar (1976))

A complete multipartite graph has a Hamilton decomposition if and only if it is regular of even degree.

Theorem (Piotrowski (1991))

If F is a bipartite 2-regular graph of order 2n, then the complete bipartite graph, $K_{n,n}$ has a 2-factorisation into F except when n = 6 and F = [6, 6].

Theorem (Liu (2003))

The complete multipartite graph K_{n^r} , $r \ge 2$, has a 2-factorisation into 2-factors composed of k-cycles if and only if $k \mid rn$, (r-1)n is even, further k is even when r = 2, and $(k, r, n) \notin \{(3, 3, 2), (3, 6, 2), (3, 3, 6), (6, 2, 6)\}.$

What is known

It is known that there is no 2-factorisation of $K_{6,6}$ into [6, 6].

Corollary ((Bryant, Danziger (2010), t = 1)

If F is a bipartite 2-regular graph of order 2r, then the complete multipartite graph K_{2r} has a 2-factorisation into F.

Corollary (Bryant, Danziger, Dean (2012))

Let $n \equiv 0 \mod 4$ with $n \ge 12$. For each bipartite 2-regular graph F of order n, there is a factorisation of $\langle \{1,3^e\} \rangle_{n/2}^{(2)}$ into three copies of F; except possibly when $F \in \{[6^r], [4,6^r] : r \equiv 2 \mod 4\}$.

Setting up

Note that when n = 2m

$$K_{n^r}\cong K_{m^r}^{(2)}$$

Also

$$K_{m^r}\cong \langle \{1,2,\ldots,\frac{rm}{2}\}\setminus \{r,2r,\ldots,\frac{m-1}{2}r\}\rangle_{rm}.$$

Lemma

For each even $r \ge 4$ and each odd $m \ge 1$, except (r, m) = (4, 1), there is a factorisation of K_{m^r} into $\frac{(r-1)m-3}{2}$ Hamilton cycles and a copy of $(\{1,3^e\})_{rm}$.

Necessary Conditions are Sufficient

Theorem (Bryant, Danziger, Pettersson (2013))

If F is a bipartite 2-regular graph of order rn, then there exists a 2-factorisation of K_{n^r} , $r \ge 2$, into F if and only if n is even; except that there is no 2-factorisation of $K_{6,6}$ into [6,6].

If m is even or r is odd, then $K_{m'}$ has even degree, and hence has a Hamilton decomposition by Auerbach and Laskar's result. If n=2m then $K_{n'}\cong K_{m'}^{(2)}$ and we can complete the proof using Häggkvist's doubling.

n=2 and r=2 are done above.

Necessary Conditions are Sufficient

Theorem (Bryant, Danziger, Pettersson (2013))

If F is a bipartite 2-regular graph of order rn, then there exists a 2-factorisation of K_{n^r} , $r \ge 2$, into F if and only if n is even; except that there is no 2-factorisation of $K_{6,6}$ into [6,6].

If m is even or r is odd, then $K_{m'}$ has even degree, and hence has a Hamilton decomposition by Auerbach and Laskar's result. If n = 2m then $K_{n'} \cong K_{m'}^{(2)}$ and we can complete the proof using Häggkvist's doubling.

n=2 and r=2 are done above.

Proof - Sketch

Assume m > 3 is odd and r > 4 is even.

By the Lemma there is a factorisation of K_{m^r} into $\frac{(r-1)m-3}{2}$ Hamilton cycles and a copy of $\langle \{1,3^e\} \rangle_{rm}$.

Double, use Häggkvist doubling on the Hamiltonian cycles $C_{rm}^{(2)}$ and the second corollary on $\langle \{1,3^e\}\rangle_{rm}^{(2)}$.

This leaves the case $r \ge 4$ is even, $m = \frac{n}{2} \ge 3$ is odd, and $F = [4, 6^{4x+2}]$ for some $x \ge 1$, which is done as a special case.

The End

Thank You

RYERSON UNIVERSITY