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Interval graph > Polynomial
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3 rooms 5 requirements
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Considered problems: list coloring

Graph G = (V, F). Set K ={1,...,k} of colors.

k-coloring: each vertex v 1s associated with a color ¢(v) € K.

If uv € E then c(u) # c(v).

List coloring: each vertex v has a list L(v) of possible colors.

List k-coloring: list coloring with k colors: Vv € V, L(v) C K
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Choosability

Given a graph G = (V, E) and a function f : V — N,

G 1s called f-choosable if 1t has a list coloring
for every list system L satisfying Vv € V, |L(v)| = f(v).

I[fVv eV, f(v)=¢ G 1s just called ¢-choosable.

If G = (BUW,FE) is bipartite and f is defined by:

p for veB

f(v)z{ g for veW

G 1s called (p, g)-choosable.
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Choosability: first remarks

It is a hereditary property:
if GG 1s k-choosable, then any subgraph is k-choosable.

k-choosable = k-colorable.
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First examples in grid graphs
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A grid G(6,7).
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First examples in grid graphs
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Grids are not (2,3)-choosable

(MD, de Werra, 2013)
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Grids are not (2,3)-choosable

(MD, de Werra, 2013)

1,2 — 1,23 — 4,2

1,23 — 23 —— 134

43 — 1,24—— 1,3
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Grids are not (2,3)-choosable

(MD, de Werra, 2013)
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(MD, de Werra, 2013)
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Grids are not (2,3)-choosable

(MD, de Werra, 2013)
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Grids are not (2,3)-choosable
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Grids are not (2,3)-choosable

(MD, de Werra, 2013)
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Grids are not (2,3)-choosable
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Grids are not (2,3)-choosable

(MD, de Werra, 2013)
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(MD, de Werra, 2013)

2/06/2015 13:01



® RMIT

UNIVERSITY

Grids are not (2,3)-choosable

(MD, de Werra, 2013)
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(MD, de Werra, 2013)
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Grids are not (2,3)-choosable

(MD, de Werra, 2013)
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1) 123 42 124 13
23— 23 — 134 —— 12 — 123
43 —— 124—— 13 —— 234 14
124—— 21 ——1,2,3
13 —— 234 14
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(MD, de Werra, 2013)

Acyclic orientation s.t.
d*(x)<1,xEV,
d*(x)=3,xEV,

Number vertices by eliminating
Vertices s.t. d " (x) =0
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Choosability of bipartite graphs

Theorem (Alon, Tarsi, Combinatorica 12, 1992)

A

A
A bipartite graph of maximum degree A is ( 7

+1, 5} + 1) -choosable

N. Alon, M. Tarsi, Colorings and orientations of graphs, Combi-
natorica 12 (2) (1992) 125-134.
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Characterization of 2-choosability

P. Erdos, A.L. Rubin, H. Taylor, Choosability in graphs, in Proc. of West Coast
Conference on Combinatorics, Graph Theory and Computing, Arcata, Congressus
Numerantium, 26, (1979), 125-157.

The core of G is obtained by repeatedly removing a vertex of degree 1
together with its incident edge until the graph contains only isolated
vertices and vertices of degree at least 2

(G 1s 2-choosable if and only if its core is 2-choosable.
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Characterization of 2-choosability

P. Erdos, A.L. Rubin, H. Taylor, Choosability in graphs, in Proc. of West Coast
Conference on Combinatorics, Graph Theory and Computing, Arcata, Congressus
Numerantium, 26, (1979), 125-157.
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T ={Ki,Com12,0229m,m > 1}
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Characterization of 2-choosability
Sketch of proof:

1 GG connected and without vertices of degree less than 2,
if G is not in T then it contains either:

l. An odd cycle.

2. Two node disjoint even cycles connected by a path.

3. Two even cycles having exactly one node in common.
4. O where a#2 and b#2.

1GC-O-
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Characterization of 2-choosability

Sketch of proof (cont.):
2 | Graphs of type 1., 2., 3., 4., 5. are not 2-choosable.

G G’

G’ not 2-choosable = G not 2-choosable
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Characterization of 2-choosability

Sketch of proof (cont.):

3| It remains to show that the following graphs are not 2-choosable

G500 O &
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Characterization of 2-choosability

Sketch of proof (cont.):

3| It remains to show that the following graphs are not 2-choosable
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Planar: 4-colorable (four colors theorem, Appel and Haken 1977)

Triangle-free planar: 3-colorable (Grotzsch’s theorem, 1959)

Planar: 5-choosable

C. Thomassen, Every planar graph is 5-choosable, J. Combin.
Theory Ser. B 62 (1994) 180-181.

Planar+bipartite:3-choosable
N. Alon, M. Tarsi, Colorings and orientations of graphs, Combi-

natorica 12 (2) (1992) 125-134.

Planar+triangle free:4-choosable

Jan Kratochvil and Zsolt Tuza. Algorithmic complexity of list colorings|
Discrete Appl. Math., 50(3):297-302, 1994.

Planar + no 3- and 4-cycles:3-choosable
C. Thomassen, 3-list-coloring planar graph of girth 5, J. Combin.
Theory Ser. B 64 (1995) 101-107.
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Which relevant complexity class?

At least as hard as colorability
Not always in NP = 3PP, but in II§ = VF3FP.

SAT problem IT§-complete:
YUy ---YUR3IVy - - -3V, P

® is a formula in conjunctive normal form
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Main known results

{2,3}-CH is H’Q’-complete in bipartite graphs of maximum degree 4.

P. Erdos, A.L. Rubin, H. Taylor, Choosability in graphs, in Proc. of West Coast
Conference on Combinatorics, Graph Theory and Computing, Arcata, Congressus

Numerantium, 26, (1979), 125-157.

{2,3}-CH is II5-complete in planar bipartite graphs

of maximum degree 5.

S. Gutner, The complexity of planar graph choosability, Discrete Mathematics, 159:
119-130, 1996.
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Choosability with fixed number of colors

(MD., D. de Werra, 2015)

Given a graph G = (V, E) and a function f : V — N,

G is called [f, k|-choosable if it has a list k-coloring

for every list system L satisfying Vv € V| |L(v)| = f(v).

If Yo eV, f(v) =¥, then G is simply called [, k|-choosable.

[k, k]-choosable <= k-colorable
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|
I Grids are not [(2,3),4]-choosable

(MD, de Werra, 2013)

2/06/2015 12:58

1,2 — 1,23 —— 42 —124 — 1,3
1,23—— 23 —134 —- 12 ——1,2,3
43 — 1,24—- 13 —— 234—- 14
1,2,4— 2,1 ——1,2,3
1,3 —— 234—- 14

Bipartite graphs are [(2,3),3]- choosable
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2-choosability revisited

GG 1s 2-choosable if and only if its core is in

T ={K1,Comi2,0229m,m > 1}
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Characterization of 2-choosability
(remind ...)

B 6
@/\ ee? ©
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2-choosability revisited

G is 2-choosable if and only if its core is in

T ={K;1,Coni2,0229m,m > 1}

<= [2,4]-choosable
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2-choosability revisited

G is 2-choosable if and only if its core is in

T ={K1,Coni2,0229m,m > 1}

<= [2,4]-choosable

A graph is [2, 3]-choosable if and only if its core belongs to
{Kl, Com+2, 92,2,2m, Kom,m € IN}

2/06/2015 13:33
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k-choosability vs (k+1)-choosability

2, k]-choosable, k > 4 <= [2,4]-choosable
<= 2-choosable

What about /-choosability, £ > 27
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k-choosability vs (k+1)-choosability

2, k]-choosable, k > 4 <= [2,4]-choosable
<= 2-choosable

What about /-choosability, £ > 27

For any ¢ > 3 and any k > 2¢ — 2, there is a bipartite graph

that is £, k]-choosable but not [¢, k + 1]-choosable
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{2,3}-CH is ITI5-complete in planar bipartite graphs

of maximum degree 5.

S. Gutner, The complexity of planar graph choosability, Discrete Mathematics, 159:
119-130, 1996.
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{2,3}-CH is II5-complete in planar bipartite graphs

of maximum degree 5.

S. Gutner, The complexity of planar graph choosability, Discrete Mathematics, 159:
119-130, 1996.

[{2,3}, 7]-CH is II§-complete in planar bipartite graphs
of maximum degree 5.

I[{2 3},4]-CH is IT5-complete in planar bipartite graphs.
of maximum degree 5. I
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Complexity with few colors
{2,3}-CH is ITI5-complete in planar bipartite graphs

of maximum degree 5.

S. Gutner, The complexity of planar graph choosability, Discrete Mathematics, 159:
119-130, 1996.

[{2,3}, 7]-CH is II5-complete in planar bipartite graphs
of maximum degree 5.

|[{2 3},4]-CH is IT5-complete in planar bipartite graphs.
of maximum degree 5. I

|F0r any k > 3, [{2,3}, k]-CH is II5-complete in subgm’ds.l

|F0r any k > 5, [{2,3,5},k|-CH is H’;’-complete in grids.l
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1,4

No list coloring

1,2,4 1,24

1,2,4 1,24
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1,4

No list coloring

1,2,4

aa b: 3 ¢ {a"b}

1,2,4
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1,4 3

No list coloring

1,2,4

3,a,b, 3 ¢ {a,b}

1,2,4

3 will never be used
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14 3
No list coloring 0
1,24

3,a,b, 3 ¢ {a,b}

3,24

1,2,4

3 will never be used

2

1,2,3

13,4]-CH is H’Q’-complete in 3-colorable planar graphs of degree 7, Cy;, 1-
free for i > 4 and such that every odd cycle Cy or Cs has 2 short chords.
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No list coloring




® RMIT , , :
e Complexity with few colors: triangle-free planar graphs

Color 3 forbidden for 4 i CC\

1,3 (F/

3, 5]-CH 1is II5-complete in triangle-free planar graphs

of maximum degree 13.
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This allows to construct a not [3,5]-choosable triangle-free planar graph
with 148 vertices.

Gutner gave a triangle-free graph with 164 vertices not 3-choosable.




An exercise: is this graph 2-choosable?
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