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Motivation 1: stacking problem
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Stacking problem
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Stacking problem
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Stacking problem
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Stacking problem
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Stacking problem
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Stacking problem
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Stacking problem
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Stacking problem
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Related graph problem
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Related graph problem: incompatibility graph

Overlap graph

18 19 20 26 27 28 30 5/10
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Overlap graphs as intersection graphs of chords
(circle graphs)
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Related graph problem: min colouring

Overlap graph

18 19 20 26 27 28 30 5/10
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Motivation 2: track assignment
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A particular case
2N
ﬁs 6

Midnight condition W

< Permutation graph
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A particular case
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< Permutation graph
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Stacking problem / track assignment

« Assign each item on a stack
« Allays put / remove items on the top a stack (Last in first out)
« The related incompatibility graph is an overlap / permutation graph

« Minimising the number of stacks

|

Minimum colouring overlap / permutation graphs
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On-line stacking / track assignment

« Nothing is known about the future
(items are known when they arrive)

* Departure time known at arrival

« Assign stack at arrival, never on top of an item leaving earlier

]

On-line colouring overlap / permutation graphs
« Eventually additional constraints: e.g. fixed capacity for each stack

« Graph defines by intervals revealed from left to right
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H-colouring in overlap graphs

R interval system

G gr: overlap graph associated with R

G g: Interval graph associated with R

Load of R: clique number of G R_

a(R): independence number of Gg

L: largest interval length, ¢: smallest interval length

M. Demange — Monash Discrete Math Research Group meeting — 18/09/2018



H-colouring in overlap graphs

Minimum H-colouring problem in an interval system

— H: hereditary property

— Instance: interval system R

— Solution: proper colouring of G g, where each colour class satisfies H
— Objective: minimise the number of colours
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H-colouring in overlap graphs

Minimum H-colouring problem in an interval system

— H: hereditary property

— Instance: interval system R

— Solution: proper colouring of G g, where each colour class satisfies H
— Objective: minimise the number of colours

Problem Property H satisfied by each colour class R’ ¢ R
colouring G'rr is an independent set (no overlap) .
b-bounded colouring G rs 1s an independent set and |R'| < b.
clique covering G is a clique (every two intervals overlap).
b-bounded clique covering|G g is a clique and |R’| < b.
b-bounded load colouring |G g+ is an independent set and R’ is of load at most b.

Table 1: Examples of H-colouring problems in an overlap graph defined by R.
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Competitive ratio

Problem A pproximation (left to right)

colouring
clique covering
b-bounded colouring

1

2 —

b-bounded clique covering m“‘(b’X )
Table 2: Known results in permutation graphs

(D,di Stefano,Leroy-B 2012)

) ) Competitive ratio
Problem A pproximation (left to right)
colouring logn O( ) 1(013 ?,S ,L-B 2012)
(Cerny 2007) O(opiem) (E=1)
. . 2(1 + loga(R)) p
clique covering Shahrokhi 2015 |
b-bounded colouring ? ?
b-bounded clique covering ? ?

Table 3: Best known results in overlap graphs
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Competitive ratio

Problem A pproximation (left to right)
colouring logn O(%) 1gD CIIJS ,L-B 2012)
(Cerny 2007) O( logglog -) (£=1)

2(1 + log &(R))

cligue covering Shahrokhi 2015 ’
b-bounded colouring ? ?
? ?

b-bounded clique covering

Table 3: Best known results in overlap graphs
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Competitive ratio

Problem A pproximation (left to right)
colouring logn O( ) 193 cIIJS ,L-B 2012)
(Cerny 2007) O(log on 7) (£=1)
. : 2(1 + loga(R
P |
b-bounded colouring ? ?
? ?

b-bounded clique covering

Table 3: Best known results in overlap graphs

Problem

Approximation

Competitive ratio

(left to right)

colouring

clique covering

loga(R) + ¢

2 Llog‘z(%)J +7

b-bounded colouring

b-bounded clique covering

b-bounded load colouring

2(loga(R) +¢) (2 [logz(%”
o = min{b, B(R)}

Table 4: Our results
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Main ingredient: the BBQ strategy

A brochette N
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Main ingredient: the BBQ strategy

A BBQ arrangement

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

_________________________________________________________________________________________________________________________________

...................... N S < R S < R

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

———————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————————

_________________________________________________________________________________________________________________________________

“““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““““
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Main ingredient: the BBQ strategy

1 6 9
3 4 10
2 5 8
>
2 3—1 S 4 6 8 10\9/7

Fig.1: BBQ arrangement B of intervals (above) and the related permutation
graph (below) associated with the permutation 7p = (2,3,1,5,4,6,8,10,9,7) or
equivalently, for instance, the list Qp = (0.5,1.5,0,2.5,2.1,3.5,4.5,5.5,5.3,4.1).
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Main ingredient: the BBQ strategy

1 6 9
3 4 10
2 5 8
>
2 3—1 S 4 6 8 10 9 7

\/

Fig.1: BBQ arrangement B of intervals (above) and the related permutation
graph (below) associated with the permutation 7p = (2,3,1,5,4,6,8,10,9,7) or
equivalently, for instance, the list Qp = (0.5,1.5,0,2.5,2.1,3.5,4.5,5.5,5.3,4.1).

Proposition. BBQ arrangements always induce permutation graphs.
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The BBQ strategy: main idea
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The BBQ strategy: main idea
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BBQ strategy: slice the steak into BBQ arrangements

Proposition. (Partition into permutation graphs)

Algorithm 1 described below is a polynomial online algorithm that partitions an
overlap graph defined by an interval system presented from left to right into at
most (2 [logQ( %)J + 7) permutation graphs defined by a BB(Q arrangement.
Moreover, if L is known in advance, a simplified version of the algorithm guar-

antees a number of at most (LlogQ(%)J - 4) permutation graphs in the decom-
position.
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The BBQ strategy:

« Partition any instance into a minimum number of BBQ arrangements
« Solve independently each arrangement using a specific colour set
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Decomposition strategy: (assume first L and £ are known)

define ky = [logz (%)] +1 and k, = [logQ (%)J +1

S; =0 fori < —kr ori > kg

S_g, C...C Sy C...CS5,

Let us then define P; as the set of intervals that intersect S; but do not
intersect S;_1

Vei1,290 € S;, 11,10 € P; - [:Bl celi Nxo € In N 21 #:L‘Q] = [1 NI =0

There are kf, + ke +1 < |_log2 (%)J + 4 permutation graphs
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Decomposition strategy

time

>

Fig.2: The steak is sliced into intervals to be dropped on several layers P; of
brochettes. Active skews are thick, in particular (s,1),(s,0) and (s,—1) are in-
active if s € S_5. If the distance between the brochettes in the top layer is at
least 2L then each P; is a BB(Q) arrangement.
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On-line algorithm: (unknown  and p)

Algorithm 1 Partition into Permutation Graphs

Require: An overlap graph G = (Z, E') presented online from left to right (the
maximum length L is not known in advance).

Ensure: A partition of Z, (P4,...,P,) such that G[P;] is a permutation graph.
1: Ti+0,ieZ
2 R; + 0,2 e Z
3 L+ AL+ A
4: When the first interval I is presented, set A as its length and add I to 7y
5: for each new interval I = [ay, by] do

¢ + min{b; — ay, ¢}, L + max{b; —ay,L}

kr < [logy (£)] 4+ 1,ke < [logy (3)] +1

j <—min{z’€ {—kr,... ke}: [21{”1 < {T%J}

if j = —k;, then

10: Add I to R;

® ® NP

11: else

12: Add I to T;
13:  end if

14: end for

15: The final partition is (7_g, +1,---, Tk, ) U (R—k,,---, Ro)

M. Demange — Monash Discrete Math Research Group meeting — 18/09/2018



On-line reduction

Theorem. (Online reduction)

For any online algorithm for a H-Colouring problem quaranteeing a competi-
tive ratio of p on permutation graphs defined by a BB(Q arrangement presented
from left to right, there is an online algorithm for the same problem on overlap
graphs defined by an interval system presented from left to right guaranteeing
the competitive ratio (2 [logQ(%)J - 7) p. If L is known in advance the ratio is
(Llogg(%)J +4) p.

Moreover, if the former online algorithm is polynomial, then the latter is poly-
nomzial as well.
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Competitive ratio

Problem A pproximation (left to right)
colouring logn O( ) 193 cIIJS ,L-B 2012)
(Cerny 2007) O(log on 7) (£=1)
. : 2(1 + loga(R
P |
b-bounded colouring ? ?
? ?

b-bounded clique covering

Table 3: Best known results in overlap graphs

Problem

Approximation

Competitive ratio

(left to right)

colouring

clique covering

loga(R) + ¢

2 Llog‘z(%)J +7

b-bounded colouring

b-bounded clique covering

b-bounded load colouring

2(loga(R) +¢) (2 [logz(%”
o = min{b, B(R)}

Table 4: Our results
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Application to approximation

Proposition. Given an interval system R of size n and € > 0, we can modify
R in O(nlogn)-time, preserving the relative position of intervals (containment,
overlapping and disjoint relation), so that in the new system R’, the maximum

length L(R') and the minimum length ¢(R') satisfy é’((g,’)) < (2+¢)a(R).
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Hardness result

Theorem. (D, di Stefano, Leroy-Beaulieu 2012).

There exists a constant k such that there is no (K, log log %)-competz’tz've online

algorithm for colouring overlap graphs defined by an interval system presented
from left to right.
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Hardness result

Theorem. (D, di Stefano, Leroy-Beaulieu 2012).

There exists a constant k such that there is no (K: log log %)-competz’tz've online

algorithm for colouring overlap graphs defined by an interval system presented
from left to right.

. log( & ., ) :
Theorem There is no 5(7) — | -competitive algorithm exists,
2log log(T‘) '

even on bipartite instances.
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Hardness result

Lemma 13. For any K > 3, £ > 0. and any online algorithm for colouring
overlap graphs defined by an interval system presented from left to right, there
is an interval system Ry such that it is possible to force K different colours on
an independent set By C Ry of at least K interval such that:

1. GR, 1s bipartite and moreover there is a 2-colouring of Gg, for which
By is monochromatic;

2. By is a brochette and there istr,, € ()| I such that intervals in Rx \ Bk
IeBg
have a right endpoint less than tg, ;

3. forall K > 3, W(Rk) = vk x K! with (7K)K23 an increasing sequence
varying from + + £ to £+e— I, ((Rk) > 1 and L(Rg) < Wi, —2(K —3).
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Hardness result Case K =3

[EO R {1

Iy

SR € R ¢ O n .

Iy | Is |

1] z T L

el a s IR

o I i § — §

5 § § ) i

7 >® i L : 5
Case 1.2 Case 1.1

Figure 4: The interval system R3 to force three colours in a bipartite overlap graph. In the
Case 1.2 the algorithm colours I; with 1 and I with 2 - in the Case 1.1 the algorithm colours
both I1 and Is> with the same colour 1.
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Hardness result

Lemma 13. For any K > 3, ¢ > 05 and any online algorithm for colouring
overlap graphs defined by an interval system presented from left to right, there
is an interval system Ry such that it is possible to force K different colours on
an independent set Bg C Ry of at least K interval such that:

1. Gg, is bipartite and moreover there is a 2-colouring of Gg, for which
By is monochromatic;

2. Bk is a brochette and there istr,, € ()| I such that intervals in Rk \ Bk
IEBK
have a right endpoint less than tg, ;

3. forall K > 3, W(Rk) = 7k x K! with (vk )y ~3 an increasing sequence
varying from % +5 toz+e— %, ((Rik) > 1 and L(Rk) < W) —2(K —3).

{ W(Rk+1) = (K+1)W(Rk)+1,K >3
W (R3) (2+¢)
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Hardness result

Lemma 13. For any K > 3, ¢ > 04 and any online algorithm for colouring
overlap graphs defined by an interval system presented from left to right, there
is an interval system Ry such that it is possible to force K different colours on
an independent set Bg C Ry of at least K interval such that:

1. Gg, is bipartite and moreover there is a 2-colouring of Gg, for which
By is monochromatic;

2. Bk is a brochette and there istr,, € ()| I such that intervals in Rk \ Bk
IeBg
have a right endpoint less than tgr, ;

3. forall K > 3, W(Rk) = 7k x K! with (vk )y ~3 an increasing sequence
varying from 2+ % to £+e— %, ((Rk) > 1 and L(Rk) < Wi —2(K —3).

W(Rk+1) = (K+1)W(Rk)+1,K >3
W(R3) = (2+¢)
K
2 1
VK > 3,W(Ri) = K\yic with 7 = | —— + 3 =
6 — 7!
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Hardness result

. log( & - . :
Theorem There is no 5(7) — | -competitive algorithm exists,
2log log(Tf) ‘

even on bipartite instances.

N > e° %—I—e—%:l KxK!>N
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Hardness result

. log( & - . :
Theorem There is no 5(7) — | -competitive algorithm exists,
2log log(Tf) ‘

even on bipartite instances.

N > e° %—I—e—%:l KxK!>N
AMGRr,0) > K and x(Ggr) =2

L(Rk)
((Rik) —

L(KR)
({(KRr)

—(2+5)><K><K'>N < K!
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Hardness result

2log log(%)
even on bipartite instances.

N > e* %-I—e—%:l KxK!'>N

. log( & - . :
Theorem There is no < 5(7) )-competztwe algorithm exists,

AMGRr,0) > K and x(Ggr) =2

L(Rk)
((Rk) —

L(KR)

({(KR) <K

—(2+5)><K><K'>N

(Kr)
log(e(KR)) o log(K) _  KlogK

— |
log log (Jg:))) loglog(K!) ~ log K + loglog K

< K
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Competitive ratio

Problem A pproximation (left to right)
colouring logn O( ) 193 cIIJS ,L-B 2012)
(Cerny 2007) O(log on 7) (£=1)
. : 2(1 + loga(R
P |
b-bounded colouring ? ?
? ?

b-bounded clique covering

Table 3: Best known results in overlap graphs

Problem

Approximation

Competitive ratio

(left to right)

colouring

clique covering

loga(R) + ¢

2 Llog‘z(%)J +7

b-bounded colouring

b-bounded clique covering

b-bounded load colouring

2(loga(R) +¢) (2 [logz(%”
o = min{b, B(R)}

Table 4: Our results
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Polynomial Approximation

Proposition 16. Given an interval system R of size n and € > 0, we can mod-
ify R in O(nlogn)-time, preserving the relative position of intervals (contain-
ment, overlapping and disjoint relation), so that in the new system R', the mazx-

imum length L(R') and the minimum length ¢(R’) satisfy E(R') < (24¢)a(R).
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Conclusion

» Improves the competitive ratio for online colouring overlap graphs from
linear to a logarithmic factor

« Competitive results for new colouring problems

* Narrows the gap between competitive results and hardness result

* New problem: partionning an overlap graph into permutation graphs
« Competitive-preserving online reduction

* Works on the graph and its complement

» Future work: other generalised colouring problems (split & cocouloring)
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On going project: excluding some interval configurations

2TowerT, edge
3:5 _?? R;an non
Right 'I: T, #T, (or T,,) ??
:t T; bridge ;-r vertex
3T, (or T, ,,)

2T, (or Ty,)

Dolmen (full)

Dolmen (strict)
Left Cannon 3-dique K,
T,+T,(orT,,) Vertex + edge

Figure 1: The different systems of size two and three.
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On going project: excluding some interval configurations

R Gnr % R-free class left to right competitivity of the R-free class
T> (2-Tower) | 2-independent set | any Unitary interval graphs 1-competitive
Edge Ko any Independent set 1-competitive
T11 2-independent set | any | brochette (permutation graph) 1-competitive
T3 3-independent set | any not perfect not < %—competitive (Proposition 1)
(includes C')
2-competitive (Proposition 6)
3/2-competitive in bipartite case (Remark 2)
3-stair edge+vertex any perfect (Proposition 7) 1-competitive (Proposition 7)
Bridge Py any permutation 1-competitive
Right cannon Py any perfect (Proposition 8) 1-competitive (Proposition 8)
Strict dolmen | 3-independent set | > 2 not perfect not < %-competitive (Proposition 1)

(includes C')

w-competitive (Proposition 9)
3/2-competitive in bipartite)
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