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The Metric Dimension problem

Given G(V, E) its metric dimension, 3(G) is the cardinality of the
smallest L C V s.t. Vx,y € V, 3z € L with dg(x, z) # dg(y, 2).
The set L is called a resolving set.

Harary, Melter, (1976), Slater, (1974)
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The Metric Dimension problem

Given G(V, E) its metric dimension, 3(G) is the cardinality of the
smallest L C V s.t. Vx,y € V, 3z € V with dg(x, z) # dg(y, 2).
The set L is called a resolving set.

Harary, Melter, (1976), Slater, (1974)
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Characterizations of MD for some particular graphs

e 3(G) =1iff G is a path. s e e e

e 3(G) = n—1iff G isa n-clique.

e If 5(G) =2 = G does not contain K33 or Ks
Khuller,Raghavachari,Rosenfeld (1996)

o If T a tree, L the set of leaves and F the set of
fathers of L with degree > 3 =

B(T)=|L|— |F|. (Slater 1975) 7 )/O>@\F. )



MD and graph properties

e Metric dimension of certain Cartesian product of graphs:
For different examples of G and H produce UB and LB to the
MD of GOH. They gave an example of a G with bounded MD,
where GOG has unbounded MD.
Caceres,Hernandez,Mora, Pelayo Puertas,Sera,D.Wood (2007)

e If G has diameter D, n < DP(G)=1 1 3(G).
KhuIIer,Raghavacharl,Rosenfeld (1996)

e Let Ggp be the class of graphs with MD= /3 and diameter=D,
the authors determine the max. number of vertices for G € Gz p.
Hernando,Mora,Pelayo,Seara, Wood (2010)



Complexity of Metric Dimension

e NPC for general graphs, Garey,Johnson (1979)
e P for trees, Khuller,Raghavachari,Rosenfeld (1996)

e NPC for bounded degree planar graphs
Diaz, Pottonen, Serna, Van Leeuwen, (2012)

e NPC for Gabriel graphs Hoffman, Wanke (2012)

G is Gabriel Yu,v € V(G) are adjacent if the closed disc of
which line segment uv is diameter contains no w € V(G).

= Unit Disks Graphs are NPC

e NPC for weighted MD for a variety of graphs
Epstein, Levin, Woeginger (2012)



NPC for bounded degree planar graphs:Sketch

Consider the 1-Negative Planar 3-SAT problem: Given a sat
formula ¢ s.t.

» every variable occurs exactly once negatively and once or
twice positively,
> every clause contains two or three distinct variables,

> every clause with three distinct variables contains at least one
negative literal,
» the clause-variable graph G is planar.

decide if it is SAT.
1-Negative Planar 3-SAT problem is NPC: reduction from
Planar-SAT.

1-Negative Planar 3-SAT problem <, decisional MD bounded
degree planar graphs.



Aproximability to MD

e There is a 2log n-approximation for general graphs, Khuller*

e If P# NP, there is not a o(2log n)-approximation,
Beliova,Eberhard,Erlebach,Hall,Hoffmann,Mihdlak,Ram (2006)

e Ve > 0, There is no (1 — €) log n for general graphs, unless
NPC DTIME (n'°g'°g”), Hauptmann,Scmhied,Viehmann(12)

e If P#£ NP, not o(log n)-approximation for general graphs with
maximum degree 3, Hartung,Nichterlein (2013)



MD is in P for outerplanar graphs

An undirected G is said to be an
outerplanar graph if it can be drawn in the
plane without crossings in such a way that
all of the vertices belong to the unbounded
face of the drawing.

For k > 1, G is said to be an k-outerplanar
graph if removing the vertices on the outer
face results in a (k — 1)-outerplanar
embedding.




MD € P for outer-planar graphs

1. Characterize the resolving sets by giving 2 conditions: one
over the vertices and another over the faces

2. Define a T where the vertices are the cut vertices and faces of
G and the edges in T correspond to inner edges and bridges
(separators) of G. Notice as size of an inner face could be
arbitrarily large, the width of T could be arbitrary.

Explore T in bottom-up fashion using two data structures:

2.1 Boundary conditions
2.2 Configurations



Algorithm for outerplanar

Even the number of vertices in G represented by v € V(T) could
be unbounded, the total number of configurations is polynomial.

The algorithm works in O(n®) (plenty of room for possible
improvement)




Open probelms on the complexity of MD

Prob. 1: Find if MD for K-outerplanar graphs is in P or in NPC.

Baker’s Technique (1994):

The technique aims to produce FPTAS for problems that are
known to be NPC on planar graphs. They decompose the planar
realization into k-outerplanar, get an exact solution for each
k-outerplanar slice and combine them. Solving for each
k-outerplanar using DP on a tree decomposition, that for each
vertex separator of size at most 2k.

Prob. 2: We know that unless NPC DTIME (n'°8'°6™) MD has
tor PTAS in planar graphs € PTAS for planar graphs. Is it in
APX-hard?



Why MD is difficult? 1

e Strongly non-local. A vertex in L can resolve vertices very far
away.

e Non-closed under vertex addition, subtraction, or subdivision.
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Why MD is difficult?

e MD does not have the bidimensionality behavior.

A problem is bidimensional if it does not increase when performing
certain operations as contraction of edges, and the solution value
for the problem on a n x n-grid is Q(n?) Demaine, Fomin,
Hajiaghayi, Thilikos (2005)

Bidimensionality has been used as a tool to find PTAS for
bidimensional problems that are NPC on planar graphs. Demaine,
Hajiaghayi (2005).

Examples: feedback vertex set, minimum maximal matching, face
cover, edge dominating set .. ..



Background on parametrized complexity

The Tree-width of G = (V, E) is a tree ({X;}, T}):
» UX; =V
» Vec E,di:e€ X;
» If v.e X;iNXj then VX, € X; ~ X; we have v € X

The tree width of a graph G is the size of its largest set |X;| — 1.

Treewidth =2



Parametrized complexity

Classify the problems according to their difficulty with respect to
the input size n an input parameter k of the problem.
Downey, Fellows (1999)

Fixed parameter tractable: FPT is the class of problems solvable in
time f(k)poly(n) (where f(k) = 2K)

e Ex. (k-vertex cover) Given (G, k), does G have a VC < k?
Time of k-VC = (kn+ 1.2%). - k-VC € FPT.

e Another ex. SAT with m clauses and k variables it can be
checked in time O(m2%).

PCFPTCW[I]CW[2]C- - CXP



Metric Dimension and parametrized complexity

e WI[2]-complete for general graphs, Hartung, Nichterlein (2013)

Courcelle's Theorem Any problem definable by Monadic Second
Order Logic is FPT when parametrized by tree width and the
length of the formula.

So far, it seems to be difficult to formulate MD as an

MSOL-formula = Courcelle’s Theorem can't apply.

Prob. 3: Prove formally that MD can not be expressed as an
MSOL formula.

Prob. 4: Show if MD € P (or not) for bounded tree-width graphs.

Prob. 5: Study the parametrized complexity of MD on planar
graphs.



Binomial Graphs G(n, p)

G € G(n,p) if given n
vertices V(G), each
possible edge e is
included independently
with probability

p = p(n).

Whp |E(G)| = p(;’) and the expected degree of a vertex: d = np.
Giant component threshold: p; = (1 + €)1

Connectivity threshold: p. = (1 + e)"’%.



Expected 5(G) in G(n, p)

Bollobas, Mitsche, Pralat (2013)
Given G € G(n, p), choose randomly the resolving set L C V' and
bound Pr[3u, v not separated by L].
8
O(n) N
n'?logn—

/
n'3logn—

"
n'*logn—

logn - N\N. 3

T T T T T T T T T
o(1) logn log’n logn /o pl/t plBpl/2 p(1—¢) d=np

Prob. 6: Find if there is a E[3(G)] for ©(1/n) < p < log®n/n



Random t-regular Graphs G(n, t)

G € G(n, t) if it is uniformly
sampled from the set of all
graphs with n vertices and
degree t. Assume t = ©(1).

Let G € G(n, t):
» For t > 3 aas G is strongly connected Cooper (93).

» For t > 3 aas G is Hamiltonian Robinson,Wormald (92,93),
Cooper, Frieze (94).

» For t > 3 aas the diameter of G = log,_; +o(log n) Bollobas,
Fernandez de la Vega (81)

» For t >3, G is an expander, i.e. 3¢ > 1s.t. VS C V(G) with
1<[S[< 2, N (S)=clS].



Expected 5(G) for G(n, t)
Given G € G(n,t), |[V| =nand 2 < t = ©(1), then whp

E[3(G)] = ©(log n)

Given G € G(n,t),ve V(G), let S, = {uec V(G)|dg(v.u) =i}

¢ =t —1)° tt—17° ﬂf’ﬁﬁl, O aian
-

() SQ(U)SJ({)) 77777777777 S,(v) """

I (with 0 < o < 1)

Given v € V(G), for any pair (u,w) € V2
v does not separate v and w if u,w € S;, and
v separates u and w if u € S5; & w € Sj11 (or vice versa).



Expected 5(G) for G(n, t)

Therefore, Pr[v separates u&w] > 2«41, and
Pr[v does not separate u&v] > o? + o2, |,
where «; and ;1 are constants between 0 and 1.
(1 — ajair1) > Pr[v separates u&w| > 2ajajt1q
— S——

Upper Bound
Randomly choose a resolving L C V/(G) with |L| = Clog n, for
large constant C > 0.

Then for a particular pair of vertices u, w
Pr[L does not separate u&w] < a€'%e" ~ o(%) (union bound)
Let X¢c = be the number of pairs not separated by L,

E[Xc] < n*a€®8" 5 0= Pr[Xc > 0] -0



Expected 5(G) for G(n, t): Lower Bound

Randomly choose a resolving set L C V/(G) with |L| = clog n, for
small constant ¢ > 0.
Pr[L does not separate u&w] > a/€'°8" ~ w(%)

= If X = number pairs not separated by L, then

E[X] > n?a/€'8" s 0o = PrX. > 0] =1 — o(1)

Therefore, IB(G) = O(log n) ‘

Prob. 7: Find the constant in E[3(G)] = ©(log n)
For t = 3, empirically 3(G) = 1.13log n.



Random Geometric Graphs G(n, r(n))

Given a square Q = [0,+/n]? and a
real r(n) > 0 define a random
geometric graph G € G(n, r) by
scattering n expected vertices V' on
Q according to a Poisson distribution
with intensity 1, and for any P Y
u,veV, (uv) e Eiff de(u,v) <r. o

It is known: (1) The giant component appears at r; = ©(1).
(2) There is a sharp connectivity threshold at r. = ©+/log n.
(3) For v € V, the expected degree d(v) = 7 log n.

M. Penrose: Random Graphs. Oxford (2002)



Expected metric dimension on G(n, r(n))

Given G € G(n, r(n)) what can we say about E [5]?
If e =0(1) = B(G) = 0O(n)
Given v, u € V(G) how can they be separated?



E [3(G)] for re = cy/logn

Let G € G(n,r.) and let u,v € V(G)? with dg(u,v) = x
Define the crowns:
Ci(u,v) :={w e V(G): de(u,w) =i and de(v,w) =i+ 1}

W

LB: Compute the number of pairs for which C; = 0.
Area of C1 = 4xre = Pr[Cy = (] = e=¥""

Number of (u,v) with C; =0 is 27 n? for xe Axren dfy — Iogn




E [3(G)] for re = cy/logn

Divide the pairs (u, v) in two groups : those with x < xp and the

remaining ones.

For the first group, E[|(u, v) < x0|] = O(W)

For the second group choose a random resolving L C V(G), with
_ n

L1 = Gogmr

If d(u,v) > x there are sufficiently large numbers of crowns each

with enough vertices assure us each C;(u, v) intersects L.

Therefore at ro = ©(y/281):

n

logn —



Expected metric dimension on G(n, r(n))
What we know and don't know:

>

>

>

If r=0(1) = B(G)=0(n) v
If1<<r<<\/W:>B( ) = O(ne ™) v
If r=Cy/logn (G )_m
Iflogngrg(nlog n)1/4:>r—’;§5( )g"'c;i%z"?
If (nlog'/3 n)1/4 < r < Y7 = B(G) = ©(r2/3n'/3) 7
If r > 2 = B(G) = ©(n) ?

O(n) -1 p——

O(n/logn
B(G), G e W
O(n?/3)

O(vn)

0(1)  Vloglogn /logn i/t N



Thank you for your attention



