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Our goal Is to embed the complete graph K,
on a surface (orientable closed 2-manifold)
So that each face Is either an s-cycle or a
t-cycle and each edge bounds exactly one
face of each size.



A famous example

This is K, embedded on the torus.

Here we decompose K into two sets of 3-cycles
(black and white) and each edge borders exactly
one black and one white triangle.



Each face Is a triangle and there are 14
faces.

.
There are 7 vertices and @ edges so

Vv—e+f=7-21+14=0

So 0=2-(2x ) (where isthe genus of the
surface).

So the and thus we see (again)
that this embedding is on the torus.



What else i1s known??
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Heffter systems

A of order n is a collection of
disjoint k-subsets S; of Z,\{0} (n odd) satisfying:

1) For each subsetS, ) cqsa = 0. (the elements sum to 0)

2) X IsIn a subset if and only if —x Is not in any subset.

Example: a Heffter 4-system in Z,s\{0}
{1, -2, 11,-10}, {7,-4,9,-12}, {-8,6,5,-3}



Orthogonal Heffter systems

A Heffter s-system S and a Heffter t-system T on
Z,+4+1\{0} are If each subsetin S
Intersects each subset in T in exactly one symbol.

The rows form a Heffter 4-system and the
columns form a Heffter 3-system (both In Z,<).




Tight Heffter Arrays H(s,t)

A tight Heffter array IS an s x t rectangular array with
entries a;; satisfying

) {l&a;l}={12...,st}, thatis, we use the first st numbers
up to sign and

2) every row and column sum is O (termed an

or if that is not possible, relax to sums to O modulo 2st + 1.

1 -2 11 —10
An H(3,4) 7T -4 9 12

-8 6 5 =3

The name “Heffter array” comes from a relation to solutions to Heffter’s
difference problems that will be explained shortly.



So a tight s X t Heffter array iIs equivalent to a
Heffter s-system S and an Heffter

t- system T both on the symbols of Z, .., \{0}.



How to make the embedding

by example ( 1 -2 11 —10"

7 —4 9 —12

6 5 -3

Starting with an H(3,4)

We will embed K,: (25 =2 x 3 x4 + 1) on a surface such that each face
IS either a triangle or a 4-cycle and each edge borders exactly one
triangle and one 4-cycle.

First generate the 3-cycles by developing the columns in Z,¢

From first column  The second The third The fourth
we get the 3- column gives column gives column gives
cycles the 3-cycles the 3-cycles the 3-cycles
(0,1,8) (0,23,19), (0,11,20), (0,15,3),
(1,2,9) (1,24,20) (1,12,21) (1,12,21)

(2,3,10) (2,0,21) (2,13,22) (2,13,22)

(24,0,7) (24,22,18) (24,10,19) (24,14,2)



Note that this is a “difference construction® and hence since each
difference from Z, is used exactly once, we have developed all of
the edges of K,z and each edge is in exactly one 3-cycle. So the

rows generate a (a cyclic Steiner triple system).
Now do the same with the rows to get all the 4-cycles. 1 -2 11 -10°
Note that each edge is on exactly one 4-cycle, too. o —_1; )
The first row The second row The third row
generates the 4- generates the 4- generates the 4-
cycles cycles cycles
(0,1,24,10) (0,7,3,12) (0,17,23,3)
(1121 Oa 11) (1’8’4’13) (1,18,24,4)
2,3, 1, 12) (2,9,5,14) (2,19,25,5)
(24,0,23,9) (24,6,2,11) (24,16,22,2)

Similar to how the columns generate a cyclic 3-cycle system, we see
that the rows generate a

From the construction, we have that a pair of edges that are in a triangle together
in the 3-cycle system are in a 4-cycle together and vice versa.



One final condition ¢

For an H(s,t) to give the It must also
be the case that the of each row and
each column are all distinct (modulo 2st+1).

1 =2 11 —10"
7T —4 9 =12

-8 6 5 =3

In this example,
the partial sums of row 1 are 1,-1,10, O,
the partial sums of row 2 are 7,3,12, 0
the partial sums of row 3 are -8,-2, 3,0
The columns are all ok too.

More on this later.



Why have this condition?

It is key that when each row and column is developed
modulo 2st+1, that it generates a simple cycle and not a
closed walk.

The condition that the sum is zero implies that it is a closed
walk, while the partial sum condition guarantees that it is a
simple closed walk (a cycle).

An H(s,t) (s,t not both even) creates an
embedding of K,,; on an orientable surface provided the
rows and columns can all be ordered with all partial sums
distinct.



To summarize (from design theory):

If there exists a Heffter array(s,t), and the rows and
columns can be ordered so that all the partial sums are

distinct, then there exists a S and
a T, both on 2st+1 points.

Furthermore, If two edges are together in an s-cycle of
S, they are not together in any t-cycle in T (and vice
versa).

A Heffter s-system is orthogonal to a Heffter t-system if
each set in the s-system intersects each set in the
t-system exactly once. The existence Is equivalent to
an H(s,t).




Back to embeddings

Need to show that each vertex is ok. We use current graphs.

1 -2 11 10"
T —4 9 12 Gives the current graph

This can be embedded on a surface with only one face.

Use the ordering of edges from that face to get the ordering of
edges around each vertex.



The embedding theorem

Theorem: An H(s,t) (s,t not both even) creates
an embedding of K., on an orientable surface
with each face either an s-cycle or a t-cycle and
each edge bordering exactly one s-cycle and
one t-cycle provided the rows and the columns
can be ordered with all partial sums distinct.
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I\/IagiC Squares: (a slight digression)

= N x narray with entries 1...n? such that the row and column sums
are all the same number n(n? +1)/2, called the magic constant.
Usually required the two long diagonal sums are also this magic
constant

m Two early magic squares: an iron plate from the Yuan Dynasty
(1271-1368) and a detail from Melencolia | by Albrecht Durer (1541)
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Construction of magic squares

m Oldest reference is from the 4" century BCE China, but
legend dates it back to 23 century BCE

= In the 13" century Islamic mathematicians gave several
construction techniques

m Related to orthogonal Latin Squares
m Known to exist for all n

m For details see Section VI.34 “Magic Squares” by
Joseph Kudrle and Sarah Menard in (where else) The
Handbook of Combinatorial Designs (Vol 2).

m So in some sense Heffter Arrays are “signed magic
rectangles.”



Necessary conditions for the existence of an
H(s,t) (especially for integer sums)

m S,t=3 (orelse you get either O or
both X, —x In the array)

B If an integer s x t Heffter
array exists, then s xt = 0,3 (mod 4)

6 7 -8
) 10 11 12
13 —14 15 16

m Proof: Reduce the entries in the array
modulo 2. Each row and column sums
to O so it contains an even number of
odd numbers. Hence

, giving
the parity condition.



Main Result # 1: Integer solutions

There Is an s x t integer Heffter
array whenever s,t23ands xt= 0,3 mod 4

The proof is constructive relying on a combination of
difference techniques when s or t is small and
recursive constructions for larger values.

Different constructions are used depending on
congruence conditions.



Main result #2: Modulo solutions

There Is an s x t Heffter array modulo 2st+1
for all s,t = 3.

The proof is similar to that of the first main result
relying on a combination of difference and
recursive constructions.

Conjecture: For all s,t there is a Heffter array where all
but one row and one column sum to O in the
Integers.

(We may have this)



The easy case: s,t = 0 (mod 4)

m Consider the 4 x 4 square A shown on the right
with { |a;;| } = 1,...,16
m Add 16 to the magnitude of each entry, I.e.,
b;;=a;; + 16 If a;; Is positive,
b;; = a;; — 16 if a;; Is negative.

m Since there are the same number of positive
and negative entries in each row and column,
the result B

and

Define a shiftable Heffter array if all rows and columns have the same
nﬁmbglr of positive and negative entries. The H(4,4) shown is
shiftable.



Fitting 4 x 4's to make an s x t

Let's make an H(8,12).

Start with the shiftable H(4,4), A =

Now make the 8 x 12 array:

or

A

A+ 16

A + 48

A+64

10
~14

11
—15

—8

12
16

Note that the table
entries are 1 — 96
(in absolute value)
and each row and
column adds to O.

Hence it is an
integer H(8,12)



Next easiest: s=0, t=2 mod 4

The proof is similar. The array below is a 4 x 6
Heffter array.

1 -2 3 -4 11 -9
-/ 8 -12 10 -5 6

-13 14 -15 16 -23 21
19 -20 24 -22 17 -18

We can piece together shifts of this 4 x 6 array and 4 x 4
arrays to cover the above congruence classes.



An example: An H(12,14)

123410

STV W-N= - s 12 10 5 o a shiftable H(4,6)
13| 14 |15 | 16 | 23| 21
19 20 24 -22 17 -18

and B =

our shiftable H(4,4)
10 11

13 -14 -15 16

This array has row and
column sums equal to
0 and contains the

To get A B + 72 symbols 1 .. 168 (in
absolute value)

At?24 B + 88
A+ 48 B £104




Now assume s.,t =2 mod 4

There is no shiftable H(6,6).

5 -15
We start with the 11 12 -13 -26
6 x 6 aHeffter array, A, shown at the 8 || 9 [ | =8
I i - 21 -32 -33 20
right. Use this to cover entries
ENER 26 -17 -24 -30 28 34
5 ...,30 .

-29 27 35 23

Pack with shiftable 4 x 6 and 4 x 4
arrays to fill out the s x t square.

We give an example.



§)

4 x6
shiftable

4 x 6
shiftable

4 x 6
shiftable

4

6x4
shiftable

4 x4
shiftable

4 x4
shiftable

4 x4
shiftable

Example: An H(18,14)

4

6x4
shiftable

4 x4
shiftable

4 x4
shiftable

4 x4
shiftable




So we have constructed a tight integer
Heffter array H(s,t) for all even values of

s.t=4.



3 x t Heffter arrays

Possible over the integers if t = 0,1 mod 4.
Over the integers modulo 6t+1, otherwise.

6t+1 sure looks familiar (think STS) — this is
where the term Heffter arrays came from. It
relates to Heffter’s first difference problem

from 1897.



Heffter’s first difference problem

Can one partition the set {1,2,...3n} Into
n triples {a,b,c} such that

atb=c
or a+b+c=0(modo6n+l) ?

The answer is yes for alln = 1. Proved by
Peltesohn (1939). Closely relates to Skolem
sequences.



A solution to Heffter’s first difference

problem can be used to form a cyclic Steiner
triple system (STS) of order 6t+1.

For each triple {a;, b; ,c; } in the solution to
Heffter's, construct the new triple

0, a;, a+ by).

The collection of these triples gives the base
blocks for a cyclic STS(6n+1). Look familiar?



A Heffer array (3,t) is an arrangement of the triples
solving Heffters first difference problem (on the set {+1,

+2,... =3t}) Into a 3 x t array such that the triples are In
the columns and each row sum is O (mod 6t+1).

Below is an integer H(3,9)

/7 12 18 6 3 | -5 |-13|-27| -1

10 9 -14 -26 22 16 -2 8 -23
-17  -21 -4 20 -25 -11 -15 19 24

Note that a column containing a,b andchasa+b=-cora+b=c.
The rows add to O.



heorem: Heffter Arrays H(3,t) exist t 3.

Here’s an integer H(3,12) coming from a
solution to Heffter’s difference problem

13 16 34 -5 7 -35 -18 -1 -23 -12 21 3
& 11 -8 33 -22 10 -2 -30 14 -24 -17 29

| -19 -27 -26 -28 15 25 20 31 9 36 4 _32,




Construction method

Use the known solutions to Heffter's
difference problem (coming from Skolem
sequences) and do a pretty long computer
search to sort out an appropriate row pattern.



Got a program for that!

Run program for 3 x n



Sample code for finding 3 X t,
t=5mod 8

(* The case t = 8m + 5, any nonnegative m *)

heffter5[m_] := Module[{partial} (* the local variables *),
(* start with the sporadic blocks *)

partial :=
{{8*m + 6, -16*m - 9, 8*m + 3},
{10*m + 7, 8*m + 5, -18*m - 12},
{-16*m - 10, 4*m + 2, 12*m + 8},
{-4*m - 4, -18*m - 11, 22*m + 15},
{4*m + 1, 18*m + 13, -22*m - 14}};
(* and add in the 4 infinite classes *)
Do[partial = Join[partial,
{-(8*m - 2*r + 1)*(-1)r , (16*m - r + 8)*(-1)", -(8*m + r + 7)*(-1)"}},
{-(14*m - r + 8)*(-1)™r, 2*(2*m - n*(-1)r , (10*m + r + 8)*(-1)"r}},
{@6*m + r + 11)*(-1)"™, 2*(4*m - r + 2)*(-1)", -(24*m - r + 15)*(-1)"}},
{(4*m - 2*r - 1)*(-1) , (18*m + r + 14)*(-1)™r, -(22*m - r + 13)*(-1)}}]
,{r, 0, 2m - 1}];
partial ] (* end \
module *)



Just showing off

0 - -1
105 15 16 -1

6 -145 -56 -84 117

This is an H(3,50) -- check it ©



Canget 2/l H(s,t) with s =3 and t = 0 mod 4

Similar method as before. Place the H(3,t)
on top and fill in with shiftable H(4,4).

Example: An H(11,12)

3 H(3,12)
shiftable shiftable shiftable

4 H(4,4) H(4,4) H(4,4)
shiftable shiftable shiftable




The 5 x t case

There exist 5 x t Heffter arrays for all t = 3.

An 8-part difference construction depending
on t mod 8 with some small sporadics. Even more
searching on the computer for general patterns.



The beginning of a proof:

Subject: Jxn
Date:Mon, 4 Now 2013 10:23:33 0800 (PF5T)
From:Tom Boothby <tboothbw @ sfun ca=
To:Dan Archdeacon =darchd sa Farrn adhas

Dan,

I hawve & potential construction for Sxd4n. 2As always, I'll share some sketchy details and rough
them out owver the next few days, hopefully into a proper construction.

Beczll that a2 k-near Skolem sequence has pairs of 2ll lengths except k. So a2 l-near Skolem
sequence of length Zn has pairs of lengths (2,3,4,-..,04l).

Tzke your favorite l-near Skolem sequence of length 28n. For example, with n=4,
34532425
noW starting with nt3, £ill in a new row:

3.4 5 3 2 4 2 5
7.8 %10 11 12 13 14

now, add 1 to everybody in the top row:

4 5 & 4 3 5 3 &
7.8 910 11 12 13 14

and procesed to make 2 3xn array as before,

3.4 5 8
1.1 8 3
13 10 12 14

and notice that we've partitioned (3,4,...,3nt+2) inmto triples of the form (g b.c) with gth-c =
The remaining symbols are [1,_"&J§;g+3,3n+4 Lon) ... so pair them off at distance 1 to finish the
rows

2.4 %5 8
1.1 8 3
13 10 1z 14
115 17 1%
2 16 12 20

Wikh signs. ..

i 4 s
1 7 8
-12 -10
i1z 17
-2 -1¢ -18




Turned Into a cc




Here is a solution to the case where n = 8m+7. Each 5-tuple (a,b,c,d,e)
adds to O and all other conditions are satisfied too (note a+b+c = +1).
Each 5 tuple below generates m columns in the H(5,n).

Do[partial = Join[partial,

{{-4%xx+4xm+1, 2%x+1Bxm+21, 2%xxr-22+m-21, 2% +24+m+36, -2%xxr-24%m-237
{4%*r-8xm-4, -2%xr-16xm-19, -2%xr+24xm+22, -2%xr-26xm-36, 2%xxr+26+xm+ 37},
{-4%xr+4xm+2, 2%*r+10+m+13, 2%r-14xm-14, 2%x +28Bxm+ 36, -2%xr-28+m-37},
{4%r-8xm-5, -2%xr-8x+m-11, -2%r +16+m+15, -2%r-30%«m-36, 2%x+30xm+ 37},
{4%xr-4xm+1l, -2%x-18+xm-22, -2%r+22x«xm+20, -2%xr-32x«m-36, 2%xxr+32+m+ 37},
{-4%xr+Bxm+2, 2% r+16+m+20, 2%r-24sxm-21, 2%x +34%xm+ 36, -2%xr-34+m-37},
{dxr-4xm, -2%r-10xm-14, -2%r+14d+m+13, -2%xr-36+m-36, 2%xxr+36+xm+ 37},
{-4%xr+Bxm+3, 2% +8xm+12, 2%r-16+m-14, 2%xr+38+m+36, -2%«xr-3Bxm-37}}

1
, {xr, 0, m-1}];

A few more special columns have to be added.

{({Bxm+9, 10%«+m+11, -18%*m-19, 1, -2},
{-4%xm-5, 1l6xm+17, -12%+m-13, -24%*m-24, 24 %m+ 25},
{(24%m+ 27, -24%xm-26, -Bxm-8, 20%*xm+21, -12%m- 14},
{-4%xm-3, 22%«m+22, 24%xm+ 29, -18%«m-20, -24 %+ m - 28},
{-24%+m-31, -24+«+m-23, 8+m+6, 1l6+m+ 18, 24 +%+m+ 30},
{(-24%m-32, 24%*m+ 33, 14%m+ 15, -10%«m-12, -4 % m -4},
{24%m+ 35, -24%xm-34, -Bxm-10, 16%*m+16, -8xm-T}};




H(s,t) withs=1and t =0 mod 4

There exist an integer s x t Heffter
array H(s,t) foralls =1, t=0mod 4 (s = 5).

Again place the H(5,t) on top and fill
In with shiftable H(4,4). Use induction on s Iin
steps of size 4 by adding shiftable 4 x 4
arrays.



Last case for integer Heffter arrays:
s=1mod4,t=3 mod4

Use an construction with a border of 5 rows
and 3 columns and fill in with shiftable H(4,4).

3

5 that satisfies the needed properties

H(4.4) H(4.4) H(4.4) H(4,4) H(4 4) H(4.4)
| thf['lble thf'["lble thf["lble H]llf["ible e thf['lble




The non-integer (modular)
congruence classes

he remaining congruence classes can not
have all rows and columns adding to 0, some
must add to 0 mod 2st+1.

These cases are:

ES=t=1 mod 4, 5 rows and 5 col. border with shiftable H(4,4)
mS=11t=2mMod4 Hes,s)above shiftable H(4,6) and H(4,4)
BS=3,1t=2mMod4 H@g,s)above shiftable H(4,6) and H(4,4)

mS=3,t=3 Mod 4 3rowsand 3 col. border with shiftable H(4,4)



A computer program

Tom Boothby wrote a program in python
which finds tight H(s,t) for all s,t = 3.

A demo



The Theorems:

Theorem 1: There is an s x t integer Heffter
array whenever, s,t23ands xt = 0,3 mod 4

Theorem 2: There is an s x t Heffter array
modulo 2st+1 for all s,t = 3.

Conjecture: For all s,t there Is a Heffter array
H(s,t) where all but one row and all but one
column sum to O In the integers.



Remember embeddings

The last condition was the partial sum
condition: It must also be the case that the

partial sums of each row and column are all
distinct.

Do our Heffter arrays satisfy this??

as each shiftable H(4,4) and
H(4,6) adds to O.



Knowing the exact structure of the solutions
we think that we can indeed find orderings of
the row and columns that satisfy the partial
sum condition.

But the question leads to some very
Interesting general conjectures about
seguencing subsets of Z,,.

We’'d love a big theorem here.



Partial sums In cyclic groups

Let A € Z, \{O} with |A| = k. Let (a4, a,, ...a;) be
an ordering_ of the elements of A. The

_ ] . . .
are s; = );_, a; (arithmetic all in Z,,).

Say that A is If It can be ordered so
that the partial sums are distinct.

n=10,k=6,A={1,2,4,6,7,8).

Note that (1,2,4,6,7,8) Is not a sequencing of A, but
(1,2,4,7,6,8) has partial sums (1,3,7,4,0,8) and
hence



Sequenceable groups

Well studied, but no one seems to have looked at sequencing
arbitrary subsets of groups.

A sequencing of a group GG of order n is an ordering ap = €, a1, a2, ....a,—1 of the
elements of G such that all of the partial products by = ag = e, by = agay. by =
apaias ,...,b,_1 = agayas - --a,_q are distinct. A group is sequenceable if it pos-

sesses a sequencing. The sequence (bg, by, ..., b,_1) is a basic directed terrace.

Since the first element is e, the entire group can’t add to O

since that would be both the first and last partial sum. So

there must be an element of order 2. The following covers all
groups.

An abelian group Is
sequenceable if and only if it has a unique element of order 2.



It is conjectured that all nonabelian groups of order at least
10 are sequenceable (none less than 10 are).

This conjecture has been proven in the following cases:

. All nonabelian groups of order n, 10 < n < 32.
2. As, S5, and all dihedral groups D, of order at least 10.
) 1k = mn
3. Solvable groups with a unique element of order 2.

. Some nonsolvable groups with a unique element of order 2.
5. Some groups of order pq, p, and g odd primes.




An R-sequencing of a group G of order n is an ordering ag = e,ay,as,...,a,_1 of
the elements of G such that the partial products by = ag = e, by = agay., b =
agaias ,...,b,_o = apaias - - -a,_o are distinct and apaias---a,_1 = e. A group is
R-sequenceable if it possesses an R-sequencing.

Theorem The following groups are R-sequenceable.
1. Zn, n odd.

2. Abelian groups of order n with ged(n,6) = 1.
3. D, n even.

. (o, if n + 1 is a prime of the form 4% + 1, for which —2 is a primitive root.
5. Nonabelian groups of order pg, p < g odd primes, with 2 a primitive root of p.

A nice reference for this (besides the Handbook) is

Matt Ollis, Sequenceable Groups and Related Topics, The Electronic
Journal of Combinatorics 20(2) (2013)



We present some conjectures (and results) on

. Any of
these would satisfy our condition for the

Heffter array to give an embedding s-cycles
and t-cycles.



Conjecture 1

We have checked this conjecture for every subset
of Z,, \ {0} up to

We also prove it true for k < 5 (all n).

We now give successively weaker conjectures that would
still solve our problem for Heffter arrays.



Conjecture 2

This Is the row and column sum of a Heffter
array.



Conjecture 3

Conjecture 2 (or Conjecture 1) holds with
the additional condition that a; # —a; for

any two elementsof Aand k < (n — 1)/2.

Again this is true for all Heffter arrays.



Conjecture 4

This Iis the maximum number of symbols that can be in
any row or column of a Heffter array. So this would also
solve the sequencing problem for Heffter arrays.

As a start: find a ¢ such that if kK < cn, then Conjecture 1
holds.



A probabilistic result

Let A be a randomly chosen k-subset
of Z,, \{0}. Then the probabillity that A can not be

sequenced Is at most (I;) X %

Basically there are (12() “runs” and each has probability of

at most % that it's sum is O.

It follows that if k = \/™/, , then the probability that a

randomly chosen k —subsest of Z,, \{0} is sequenceable
IS at least Y.



Other Heffter arrays

A Heffter s-system S and a Heffter t-system T are
If any subset of S and any subset in

T intersect in a unique element

Example: .
Use upper sign In

row sums, lower
sign in column
sums

Mod 25

This gives an embedding of the complete
graph with s-cycles and t-cycles on a nonorientable

surface.



Other Heffter Arrays

Say that a Heffter s-system S and a Heffter t-system T

are If any subset of S and any subset In
T intersect In (So ).
Example:

17

F6 22 -19
-4  F21
—23 +£18 -2

Mod 49

This array embeds K,q in a nonorientable surface
where each edge bounds a 3-cycle and a 4-cycle.



Found last week! (by Diane Donovan)

It is a shiftable 5 x 5 Heffter array with 4 filled cells In
each row and each column. There are two positive and
two negative numbers in each row and column.

We can use this to get an n x n Heffter array with 4k
filled cells in each row and each column for all k and all

n = 4Kk.



A 9 x 9 Heffter Array with 8 filled
cells In each row and each
column
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A bonus picture (courtesy of Tom Johnson)
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