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Heffter Arrays: 

Biembeddings of Cycle 

Systems on Surfaces 



Our goal is to embed the complete graph Kn 

on a surface (orientable closed 2-manifold) 

so that each face is either an s-cycle or a     

t-cycle and each edge bounds exactly one 

face of each size. 



A famous example 

This is K7 embedded on the torus.   

 

 

 

 

 

 

Here we decompose K7 into two sets of 3-cycles 

(black and white) and each edge borders exactly 

one black and one white triangle. 



Each face is a triangle and there are 14 

faces. 

There are 7 vertices and       edges so 

 

v – e + f = 7 – 21 + 14 = 0   
 

So  0 = 2 – (2 x g)   (where g is the genus of the 

surface). 

 

So the genus is 1 and thus we see (again) 

that this embedding is on the torus. 
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What else is known?? 





Heffter systems 

A Heffter k-system of order n is a collection of 

disjoint k-subsets Sj of ℤ𝑛\{0} (n odd) satisfying: 
 

1)  For each subset S ,   𝑎 = 0.𝑎∈𝑆    (the elements sum to 0) 

 

2)  x is in a subset if and only if –x is not in any subset. 

 

Example: a Heffter 4-system in ℤ25\{0} 
 

{1, -2, 11,-10},   {7,-4,9,-12},  {-8,6,5,-3} 

 



Orthogonal Heffter systems 

A Heffter s-system S and a Heffter t-system T on 

ℤ2𝑠𝑡+1\{0} are orthogonal if each subset in S 

intersects each subset in T in exactly one symbol.  

 

 

Example: The rows form a Heffter 4-system and the 

columns form a Heffter 3-system (both in ℤ25). 



Tight Heffter Arrays  H(s,t) 

A tight Heffter array H(s,t) is an s  t rectangular array with 

entries ai,j satisfying  

1) { | ai,j | } = {1,2,…,st},  that is, we use the first st numbers 

up to sign and 

2) every row and column sum is 0 (termed an integer Heffter 

array),   

     or if that is not possible, relax to sums to 0 modulo 2st + 1. 

 

Example:  An H(3,4)     

 

 

The name “Heffter array” comes from a relation to solutions to Heffter’s 

difference problems that will be explained shortly. 

Tight refers to the fact that each cell is filled – we will have other examples 

where this is not the case. 



So a tight 𝑠 × 𝑡 Heffter array is equivalent to a 

Heffter s-system S and an orthogonal Heffter 

t- system T both on the symbols of ℤ2𝑠𝑡+1\{0}. 



How to make the embedding 

Starting with an H(3,4) 

We will embed K25   (25 = 2  3  4 + 1) on a surface such that each face 

is either a triangle or a 4-cycle and each edge borders exactly one 

triangle and one 4-cycle. 
 

First generate the 3-cycles by developing the columns in Z25 
 

by example 

From first column 
we get the 3-
cycles          

(0,1,8)  

(1,2,9)  

(2,3,10) 

…  

 

(24,0,7) 

 

The second 
column gives 
the 3-cycles   

(0,23,19), 
(1,24,20) 

(2,0,21)  

… 

 

(24,22,18)  

 

The third 
column gives 
the 3-cycles   

(0,11,20), 
(1,12,21) 

(2,13,22)  

… 

 

(24,10,19)   

 

The fourth 
column gives 
the 3-cycles   

(0,15,3), 
(1,12,21) 

(2,13,22)  

… 

 

(24,14,2)   

 



Now do the same with the rows to get all the 4-cycles.  

Note that each edge is on exactly one 4-cycle, too. 

Note that this is a “difference construction” and hence since each 

difference from Z25 is used exactly once, we have developed all of 

the edges of K25 and each edge is in exactly one 3-cycle.   So the 

rows generate a cyclic 3-cycle system (a cyclic Steiner triple system). 

The first row 
generates the 4-
cycles          

(0,1,24,10)  

(1,2, 0, 11)  

(2,3, 1, 12) 

…  

 

(24,0,23,9) 

The second row 
generates the 4-
cycles          

(0,7,3,12)  

(1,8,4,13)  

(2,9,5,14) 

…  

 

(24,6,2,11) 

The third row 
generates the 4-
cycles          

(0,17,23,3)  

(1,18,24,4)  

(2,19,25,5) 

…  

 

(24,16,22,2) 

Similar to how the columns generate a cyclic 3-cycle system, we see 

that the rows generate a cyclic 4-cycle system.  

From the construction, we have that a pair of edges that are in a triangle together  

in the 3-cycle system are not in a 4-cycle together and vice versa.  



One final condition (partial sum condition) 

For an H(s,t) to give the cycle systems it must also 

be the case that the partial sums of each row and 

each column are all distinct (modulo 2st+1). 

 

 

In this example,  

 the partial sums of row 1 are  1,-1,10, 0,  

 the partial sums of row 2 are 7,3,12, 0 

 the partial sums of row 3 are  -8,-2, 3, 0 

 The columns are all ok too. 

More on this later. 



Why have this condition? 

It is key that when each row and column is developed 

modulo 2st+1, that it generates a simple cycle and not a 

closed walk.   

 

The condition that the sum is zero implies that it is a closed 

walk, while the partial sum condition guarantees that it is a 

simple closed walk (a cycle).   

 

Theorem: An H(s,t) (s,t not both even) creates an 

embedding of K2st+1 on an orientable surface provided the 

rows and columns can all be ordered with all partial sums 

distinct. 

 



To summarize (from design theory): 

If there exists a Heffter array(s,t), and the rows and 

columns can be ordered so that all the partial sums are 

distinct, then there exists a cyclic s-cycle system S and 

a cyclic t-cycle system T, both on 2st+1 points. 

 

Furthermore, if two edges are together in an s-cycle of 

S, they are not together in any t-cycle in T (and vice 

versa). 

 

A Heffter s-system  is orthogonal to a Heffter t-system if 

each set in the s-system intersects each set in the         

t-system exactly once.  The existence is equivalent to  

an H(s,t). 



Back to embeddings 
Need to show that each vertex is ok.  We use current graphs. 

 

 
           Gives the current graph 

This can be embedded on a surface with only one face. 

Use the ordering of edges from that face to get the ordering of 
edges around each vertex. 



The embedding theorem 

Theorem:  An H(s,t) (s,t not both even) creates 

an embedding of K2st+1 on an orientable surface 

with each face either an s-cycle or a t-cycle and 

each edge bordering exactly one s-cycle and 

one t-cycle provided the rows and the columns 

can be ordered with all partial sums distinct. 
 





Magic Squares:   (a slight digression) 

 n  n array with entries 1…n2  such that the row and column sums 

are all the same number n(n2 +1)/2, called the magic constant. 

Usually required the two long diagonal sums are also this magic 

constant 

 Two early magic squares: an iron plate from the Yuan Dynasty 

(1271-1368) and a detail from Melencolia I by Albrecht Durer (1541) 



Construction of magic squares 

 Oldest reference is from the 4th century BCE China, but 

legend dates it back to 23rd century BCE  

 In the 13th century Islamic mathematicians gave several 

construction techniques 

 Related to orthogonal Latin Squares 

 Known to exist for all n 

 For details see Section VI.34 “Magic Squares” by 

Joseph Kudrle and Sarah Menard in (where else) The 

Handbook of Combinatorial Designs (Vol 2). 

 So in some sense Heffter Arrays are “signed magic 

rectangles.” 



Necessary conditions for the existence of an 

H(s,t)   (especially for integer sums) 

 s,t ≥ 3 (or else you get either 0 or 

both x, –x in the array) 

 

 Lemma: If an integer s  t Heffter 

array exists, then s  t  0,3 (mod 4) 

 

 Proof: Reduce the entries in the array 

modulo 2. Each row and column sums 

to 0 so it contains an even number of 

odd numbers. Hence the number of 

odds from 1,…,st must be even, giving 

the parity condition. 

An H(4,4) 



Main Result # 1: Integer solutions 

Theorem: There is an s  t integer Heffter 

array whenever s,t ≥ 3 and s  t  0,3 mod 4 

 

The proof is constructive relying on a combination of 

difference techniques when s or t is small and 

recursive constructions for larger values.  

Different constructions are used depending on 

congruence conditions. 



Main result #2: Modulo solutions 

Theorem: There is an s  t Heffter array modulo 2st+1 

for all s,t ≥ 3. 

 

The proof is similar to that of the first main result 

relying on a combination of difference and 

recursive constructions. 

 

Conjecture: For all s,t there is a Heffter array where all 

but one row and one column sum to 0 in the 

integers. 

  (We may have this) 

 



The easy case: s,t  0 (mod 4) 

 Consider the 4 x 4 square A shown on the right 

with { |ai,j | } = 1,…,16 

 Add 16 to the magnitude of each entry, i.e.,      

 bi,j = ai,j + 16 if ai,j is positive,  

 bi,j = ai,j – 16 if ai,j is negative. 

 Call the new array B = A  16 

 Since there are the same number of positive 

and negative entries in each row and column, 

the result B has row and columns sums equal 

to 0 and has entries 17…32 . 

 

Define a shiftable Heffter array if all rows and columns have the same 
number of positive and negative entries. The H(4,4) shown is 
shiftable. 

 



Fitting 4  4’s to make an s  t 

Let’s make an H(8,12). 

Start with the shiftable H(4,4),   A =   

 

Now make the 8  12 array: 

 

 

or  

 

 

A  A  16 A  32 

A  48 A  64 A  80 

1 -2 -3 4 

-5 6 7 -8 

-9 10 11 -12 

13 -14 -15 16 

17 -18 -19 20 

-21 22 23 -24 

-25 26 27 -28 

29 -30 -31 32 

49 -50 -51 52 

-53 54 55 -56 

-57 58 59 -60 

61 -62 -63 64 

65 -66 -67 68 

-69 70 71 -72 

-73 74 75 -76 

77 -78 -79 80 

81 -82 -83 84 

-85 86 87 -88 

-89 90 91 -92 

93 -94 -95 96 

33 -34 -35 36 

-37 38 39 -40 

-42 42 43 -44 

45 -46 -47 48 

Note that the table 
entries are 1 – 96 
(in absolute value) 
and each row and 
column adds to 0. 

 

Hence it is an 
integer H(8,12) 



Next easiest: s  0,  t  2 mod 4 

The proof is similar. The  array below is a shiftable 4  6 

Heffter array. 

 

 

 

 

 

We can piece together shifts of this 4  6 array and 4  4 

arrays to cover the above congruence classes. 

1 -2 3 -4 11 -9 

-7 8 -12 10 -5 6 

-13 14 -15 16 -23 21 

19 -20 24 -22 17 -18 



An example:  An H(12,14) 

Begin with A =                                 

 

 

and B =                                           

 

 

To get  

1 -2 3 -4 11 -9 

-7 8 -12 10 -5 6 

-13 14 -15 16 -23 21 

19 -20 24 -22 17 -18 

A B  72 B 120 

A  24 B  88 B 136 

A  48 B 104 B 152 

1 -2 -3 4 

-5 6 7 -8 

-9 10 11 -12 

13 -14 -15 16 

This array has row and 
column sums equal to 
0 and contains the 
symbols 1 .. 168 (in 
absolute value) 

 

Hence it is an H(12,14) 

a shiftable H(4,6) 

our shiftable H(4,4) 

6                   4             4 

4 

4 

4 



Now assume  s,t  2 mod 4 

There is no shiftable H(6,6). 

 

We start with the non-shiftable          

6 x 6 aHeffter array, A, shown at the 

right.    Use this to cover entries                     

| ai,j | = 1,…,36 . 

 

Pack with shiftable 4  6 and 4  4 

arrays to fill out the s x t square. 

 

We give an example. 

  

1 2 3 4 5 -15 

6 10 11 12 -13 -26 

7 14 18 19 -22 -36 

8 16 21 -32 -33 20 

9 -17 -24 -30 28 34 

-31 -25 -29 27 35 23 



Example:  An H(18,14) 

A 
6  4 

shiftable 

6  4 

shiftable 

4  6 

shiftable 

4  4 

shiftable 

4  4 

shiftable 

4  6 

shiftable 

4  4 

shiftable 

4  4 

shiftable 

4  6 

shiftable 

4  4 

shiftable 

4  4 

shiftable 

            6                        4                     4 
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4 

 

 

4 

 

 

4 



So we have constructed a tight integer 

Heffter array H(s,t) for all even values of  

s,t ≥ 4. 

 

Next we tackle ones with odd side. 



3  t  Heffter arrays 

Possible over the integers if t  0,1 mod 4.  

Over the integers modulo 6t+1, otherwise. 

 

6t+1 sure looks familiar (think STS) – this is 

where the term Heffter arrays came from.  It 

relates to Heffter’s first difference problem 

from 1897. 

 

 

 



Heffter’s first difference problem 

Can one partition the  set {1,2,…3n} into 

n triples {a,b,c} such that  

 a + b = c  

or a + b +c  0 (mod 6n+1) ? 

 

The answer is yes for all n ≥ 1.   Proved by 

Peltesohn (1939).  Closely relates to Skolem 

sequences. 



A solution to Heffter’s first difference 

problem can be used to form a cyclic Steiner 

triple system (STS) of order 6t+1. 

 

For each triple {ai , bi ,ci } in the solution to 

Heffter’s, construct the new triple 

             (0, ai , ai + bi ). 

 

The collection of these triples gives the base 

blocks for a cyclic STS(6n+1).  Look familiar? 



A Heffer array (3,t) is an arrangement of the triples 

solving Heffters first difference problem (on the set {1, 

2,… 3t}) into a 3  t array such that the triples are in 

the columns and each row sum is 0 (mod 6t+1). 

Wow! 
Below is an integer H(3,9)  

 

 
    

     Note that a column containing a,b and c has a + b = -c or a + b = c. 

     The rows add to 0. 

7 12 18 6 3 -5 -13 -27 -1 

10 9 -14 -26 22 16 -2 8 -23 

-17 -21 -4 20 -25 -11 -15 19 24 



Theorem: Heffter Arrays H(3,t) exist for all t ≥3. 

 

Wow! 
 

Here’s an integer H(3,12) coming from a 

solution to Heffter’s difference problem 

 



Construction method 

Use the known solutions to Heffter’s 

difference problem (coming from Skolem 

sequences) and  do a pretty long computer 

search to sort out an appropriate row pattern. 

 



Got a program for that! 

Run program for 3  n 



Sample code for finding 3 x t, 

 t  5 mod 8 

(* The case t = 8m + 5, any nonnegative m *) 

 

heffter5[m_] := Module[{partial} (* the local variables *), 

  (* start with the sporadic blocks *) 

    

  partial := 

    {{8*m + 6, -16*m - 9, 8*m + 3}, 

     {10*m + 7, 8*m + 5, -18*m - 12}, 

     {-16*m - 10, 4*m + 2, 12*m + 8}, 

     {-4*m - 4, -18*m - 11, 22*m + 15}, 

     {4*m + 1, 18*m + 13, -22*m - 14}}; 

  (* and add in the 4 infinite classes *) 

  Do[partial = Join[partial, 

      {{-(8*m - 2*r + 1)*(-1) r̂ , (16*m - r + 8)*(-1) r̂, -(8*m + r + 7)*(-1) r̂}}, 

      {{-(14*m - r + 8)*(-1) r̂, 2*(2*m - r)*(-1) r̂ , (10*m + r + 8)*(-1)^r}}, 

      {{(16*m + r + 11)*(-1) r̂, 2*(4*m - r + 2)*(-1) r̂, -(24*m - r + 15)*(-1) r̂}}, 

      {{(4*m - 2*r - 1)*(-1)^r , (18*m + r + 14)*(-1) r̂, -(22*m - r + 13)*(-1) r̂}}]       

    , {r, 0, 2 m - 1}]; 

  partial ] (* end \ 

module *) 



Just showing off 

This is an H(3,50)  -- check it  



Can get all H(s,t) with s  3 and t  0 mod 4 

Similar method as before. Place  the H(3,t) 

on top and fill in with shiftable H(4,4). 
 

Example: An H(11,12) 

H(3,12) 

H(4,4) 

shiftable 

H(4,4) 

shiftable 

H(4,4) 

shiftable 

H(4,4) 

shiftable 

H(4,4) 

shiftable 

H(4,4) 

shiftable 

3 

 

4 

 

4 

4                      4                    4 



The 5  t case 

 

Theorem: There exist 5  t Heffter arrays for all t ≥ 3. 

 

Proof: An 8-part difference construction depending 

on t mod 8 with some small sporadics.  Even more 

searching on the computer for general patterns. 

 

  

 

 



The beginning of a proof: 



Turned into a constructive proof 



Here is a solution to the case where n = 8m+7.  Each 5-tuple (a,b,c,d,e) 

adds to 0 and all other conditions are satisfied too (note a+b+c = 1).   

Each 5 tuple below generates m columns in the H(5,n). 

A few more special columns have to be added. 



H(s,t) with s  1 and t  0 mod 4 

Theorem: There exist an integer s  t Heffter 

array H(s,t) for all s  1,  t  0 mod 4 (s ≥ 5). 

 

Proof: Again place  the H(5,t) on top and fill 

in with shiftable H(4,4). Use induction on s in 

steps of size 4 by adding shiftable 4  4 

arrays. 

 



Last case for integer Heffter arrays:   

s  1 mod 4, t  3 mod 4 

Use an “ell” construction with a border of 5 rows 

and 3 columns and fill in with shiftable H(4,4). 
 

                      3 

 

              5 

 



The non-integer (modular) 

congruence classes 

The remaining congruence classes can not 

have all rows and columns adding to 0, some 

must add to 0 mod 2st+1. 

 

These cases are:  

 s  t  1 mod 4,     5 rows and 5 col. border with shiftable H(4,4) 

 s  1, t  2 mod 4   H(5,s) above shiftable H(4,6) and H(4,4) 

 s  3, t  2 mod 4   H(3,s) above shiftable H(4,6) and H(4,4) 

 s  3, t  3  mod 4  3 rows and 3 col. border with shiftable H(4,4) 



A computer program 

Tom Boothby wrote a program in python 

which finds tight H(s,t) for all s,t  3. 

 

A demo 



The Theorems: 

Theorem 1: There is an s  t integer Heffter 

array whenever, s,t ≥ 3 and s  t  0,3 mod 4 

 

Theorem 2: There is an s  t Heffter array 

modulo 2st+1 for all s,t ≥ 3. 

 

Conjecture: For all s,t there is a Heffter array 

H(s,t) where all but one row and all but one 

column sum to 0 in the integers. 

 

 

 

 

 



Remember embeddings 

The last condition was the partial sum 

condition:  It must also be the case that the 

partial sums of each row and column are all 

distinct. 

 

Do our Heffter arrays satisfy this?? 

NO!! 

Not even close as each shiftable H(4,4) and 

H(4,6) adds to 0. 



Knowing the exact structure of the solutions 

we think that we can indeed find orderings of 

the row and columns that satisfy the partial 

sum condition. 

 

But the question leads to some very 

interesting general conjectures about 

sequencing subsets of ℤ𝑛. 

 

We’d love a big theorem here. 



Partial sums in cyclic groups 

Let 𝐴 ⊆ ℤ𝑛 \{0} with 𝐴 = 𝑘.  Let (𝑎1, 𝑎2, … 𝑎𝑘) be 

an ordering of the elements of A.  The partial sums 

are 𝑠𝑗 =  𝑎𝑖
𝑗
𝑖=1  (arithmetic all in ℤ𝑛). 

 

Say that A is sequenceable if it can be ordered so 

that the partial sums are distinct. 

 

Example: n = 10, k = 6, A = {1,2,4,6,7,8}. 

Note that (1,2,4,6,7,8) is not a sequencing of A, but 

(1,2,4,7,6,8) has partial sums (1,3,7,4,0,8) and 

hence A is sequenceable. 



Sequenceable groups 

Well studied, but no one seems to have looked at sequencing 

arbitrary subsets of groups. 

 

 
 

Since the first element is e, the entire group can’t add to 0 

since that would be both the first and last partial sum.  So 

there must be an element of order 2.  The following covers all 

abelian groups. 

 

Theorem (B. Gordon, 1961):  An abelian group is 

sequenceable if and only if it has a unique element of order 2. 



It is conjectured that all nonabelian groups of order at least 

10 are sequenceable (none less than 10 are).   

 

This conjecture has been proven in the following cases: 
 

 

 

 

 

 

 

 

 



A nice reference for this (besides the Handbook) is  

Matt Ollis, Sequenceable Groups and Related Topics, The Electronic 
Journal of Combinatorics 20(2) (2013) 



We present some conjectures (and results) on 

sequencing arbitrary subsets of ℤ𝑛 \{0}. Any of 

these would satisfy our condition for the 

Heffter array to give an embedding s-cycles 

and t-cycles. 



Conjecture 1 

For any 𝐴 ⊆ ℤ𝑛 \{0}, 𝐴 is sequenceable. 

 
We have checked this conjecture for every subset 
of ℤ𝑛 \ {0} up to n = 25.  

  

It’s true   

 

We also prove it true for 𝑘 ≤ 5 (all n). 

 

 
We now give successively weaker conjectures that would 
still solve our problem for Heffter arrays. 

   



Conjecture 2 

Conjecture 1 holds with the additional 

condition that  𝑎 = 0.𝑎∈𝐴  

 

 

This is the row and column sum of a Heffter 

array. 

 



Conjecture 3 

Conjecture 2 (or Conjecture 1) holds with 

the additional condition that 𝑎𝑖 ≠ −𝑎𝑗 for 

any two elements of A and 𝑘 ≤ (𝑛 − 1)/2. 

 

 

Again this is true for all Heffter arrays. 



Conjecture 4 

Conjecture 3 is true when n is odd and 

𝑘 ≤ (𝑛 − 1)/6 .  

 

 

This is the maximum number of symbols that can be in 

any row or column of a Heffter array.  So this would also 

solve the sequencing problem for Heffter arrays. 

 

 

As a start: find a c such that if 𝑘 ≤ 𝑐𝑛, then Conjecture 1 

holds. 



A probabilistic result 
Theorem:  Let A be a randomly chosen k-subset 

of ℤ𝑛 \{0}. Then the probability that A can not be 

sequenced is at most 
𝑘
2
×
2

𝑛
. 

 

Basically there are 
𝑘
2

 “runs” and each has probability of 

at most 
2

𝑛
 that it’s sum is 0.  

 

It follows that if 𝑘 ≈ 𝑛
2  , then the probability that a 

randomly chosen 𝑘 −subsest of ℤ𝑛  \{0} is sequenceable 

is at least ½. 



Other Heffter arrays 

A Heffter s-system S and a Heffter t-system T are 

weakly orthogonal if any subset of S and any subset in 

T intersect in a unique element up to sign. 

 

Example: 

       

 

 

 

   Mod 25 

 

Theorem: This gives an embedding of the complete 

graph with s-cycles and t-cycles on a nonorientable 

surface. 

Use upper sign in 
row sums, lower 
sign in column 
sums 



Other Heffter Arrays 
Say that a Heffter s-system S and a Heffter t-system T 

are sub-orthogonal if any subset of S and any subset in 

T intersect  in at most one element.  (So not tight). 

 

Example: 

       

 

 

   

          Mod 49  

 

This array embeds K49 in a nonorientable surface 

where each edge bounds a 3-cycle and a 4-cycle. 

   



Found last week!    (by Diane Donovan) 

17 -8 -14 5 

1 18 -9 -10 

-6 2 19 -15 

-11 -12 3 20 

16 -7 -13 4 

It is a shiftable 5  5 Heffter array with 4 filled cells in 
each row and each column.  There are two positive and 
two negative numbers in each row and column. 

 

We can use this to get an n  n Heffter array with 4k 
filled cells in each row and each column for  all k and all 
n ≥ 4k.   

D =  



A 9  9 Heffter Array with 8 filled 

cells in each row and each 

column 



A bonus picture (courtesy of Tom Johnson) 



Thanks!! 


