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If you take two squares and glue them together, then you get a domino. If
you take two atoms and join them by a bond, then you get a dimer. And if you
take a linear algebra course and attend a tutorial, then you get to compute a
determinant. In this talk, we’ll discuss some of the amazing mathematics
connecting these objects.



Dominoes on a checkerboard

Can you tile an 8× 8 checkerboard with dominoes?

Can you tile the checkerboard if one corner square is removed?

Can you tile the checkerboard if opposite corner squares are removed?

Can you always tile the checkerboard if one white square and one black
square are removed?



Dominoes and marriage

When can you tile a subset of a checkerboard with dominoes?
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×
×
×

×
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Think of black squares as men
and white squares as women.

We want to marry each man to
one of his neighbours.

We need gender balance. . . but
we also need each group of men
to have enough neighbours.

Hall’s marriage theorem
In any set of men and women, we can marry each man to a woman he knows
if and only if each group of men has enough acquaintances.



The problem of the calissons

A calisson is a parallelogram consisting of two equilateral triangles of side
length 1. We want to tile a regular hexagon of side length n with calissons.
Must there be an equal number of calissons in each orientation?

Answer
The answer is “yes” and the proof requires no words!



A primer on dimers

Tiling with dominoes or with calissons are examples of dimer problems. A
dimer covering of a graph is a set of edges that covers every vertex once.



Counting domino tilings

How many ways are there to tile a checkerboard with dominoes?

n # tilings of an n× n checkerboard prime factorisation

0 1 1
2 2 21

4 36 22.32

6 6728 23.292

8 12988816 24.172.532

10 258584046368 25.2412.3732

12 53060477521960000 26.54.312.532.7012

14 112202208776036178000000 27.310.56.192.294.612

Surprisingly — or unsurprisingly if you read the title of this seminar — you
need to know determinants to calculate the answer.



Discovering determinants

The determinant of a matrix M is
the “volume” of the parallelepiped
spanned by the rows of M.
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The determinant of M can be calculated using the following formula.

detM=
∑

σ∈Sn

sign(σ) M1,σ(1) M2,σ(2) · · · Mn,σ(n)

The determinant of M is equal to the product of its eigenvalues. These
are numbers c for which there is a non-zero vector satisfying Mx = cx.



Kasteleyn’s method
For a subset S of a checkerboard, construct the matrix K whose rows are
labelled by black squares and whose columns are labelled by white squares.
Let the entry corresponding to a black square and a white square be

1 if the squares are horizontally adjacent;

i if the squares are vertically adjacent; and

0 if the squares are not adjacent.

Kasteleyn’s theorem
The number of domino tilings of S is |detK|.

Example
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Why does Kasteleyn’s method work?

The permutation σ is trying to “marry” black square 1 to white square
σ(1), black square 2 to white square σ(2), and so on.

detK =
∑

σ∈S6

sign(σ) K1,σ(1) K2,σ(2) · · · K6,σ(6)

If this is possible, we get a non-zero contribution and if this is impossible,
we get a zero contribution.

detK =
∑

tilings

sign(σ) K1,σ(1) K2,σ(2) · · · K6,σ(6)

We need to check that sign(σ) i# vertical dominoes is the same for each tiling.
This is handled by some careful accounting.

detK =
∑

tilings

sign(σ) i# vertical dominoes

Kasteleyn’s method can count dimer coverings on any planar graph — you
just need to be clever about the choice of weight attached to each edge.



Kasteleyn on checkerboards

The number of domino tilings of an m× n checkerboard is
p

|D|.

D=
m
∏

j=1

n
∏

k=1
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Proof

The terms in the product above are the eigenvalues of M=
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�

.

Example
Consider the calculation for the 8× 8 checkerboard.
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Consequences of Kasteleyn

Place k dominoes B1W1, B2W2, . . . , BkWk on a checkerboard. The
probability that these occur in a uniformly chosen random tiling is

k
∏

i=1

K(Bi,Wi)× det
�

K−1(Wi, Bj)
�

1≤i,j≤k .

The mnth root of the number of domino tilings of an m× n checkerboard
limits to eG/π, where G= 1

12 −
1
32 + 1

52 −
1
72 + · · · is Catalan’s constant.



Partitions
A partition is a way to

write n as a sum of positive integers where order doesn’t matter; or
push n square boxes into the corner of a 2-D room.

19 = 7+ 4+ 3+ 2+ 2+ 1 ←→

Theorem
The number of partitions of n is the coefficient of xn in

∞
∏

k=1

1
1−xk

.

Proof
Write each term in the product as a geometric series and expand.

(1 + x1 + x2 + x3 + x4 + · · · )
× (1 + x2 + x4 + x6 + x8 + · · · )
× (1 + x3 + x6 + x9 + x12 + · · · )
× ( and so on )



Plane partitions
A plane partition is a way to push n cubic boxes into the corner of a 3-D room.

1
2
3
5

2
2
4 2 1 1

←→

MacMahon’s formula

The number of plane partitions of n that fit inside an a× b× c box is the
coefficient of xn in

a
∏

i=1

b
∏

j=1

c
∏

k=1

1− xi+j+k−1

1− xi+j+k−2
.

The number of plane partitions of n is the coefficient of xn in

∞
∏

k=1

1

(1− xk)k
.



The Lindström–Gessel–Viennot trick

Let G be a directed acyclic graph with weighted edges.

Let {A1, A2, . . . , An} and {B1, B2, . . . , Bn} be sets of vertices.

Let Mij be the sum of the weights of paths from Ai to Bj.

Theorem
The determinant of the matrix M has the following combinatorial meaning.

detM=
∑

σ

∑

P

sign(σ) ω(P)

The sum is over permutations σ ∈ Sn and tuples P= (P1, P2, . . . , Pn) of
non-intersecting paths, where Pk is a path from Ak to Bσ(k).



Aztec diamonds

The Aztec diamond AZ(n) is the nth term in the following sequence of shapes.

Theorem (Elkies–Kuperberg–Larsen–Propp, 1992)
The number of ways to tile AZ(n) with dominoes is 2n(n+1)/2.



From Aztec diamonds to arctic circles

Colour the dominoes in a tiling of AZ(n) according to

whether the domino is horizontal or vertical; and

whether its left/upper square is on a black or white square.

Arctic circle theorem (Jockusch–Propp–Shor, 1998)
The frozen boundary of almost all domino tilings of AZ(n) approaches a circle
as n approaches infinity.



Limit shape theorem (Cohn–Kenyon–Propp, 2001)

Take a polygon that can be tiled with calissons and let the tile size approach
zero. In the limit, a frozen boundary occurs in the shape of an algebraic curve.

One idea in the proof is to treat a
tiling as a “random surface”.

Kenyon and Okounkov described
the limit shape using ideas from
mathematical physics.



Thanks

If you would like more information, you can

find the slides at http://users.monash.edu/~normd

email me at normdo@gmail.com

speak to me

http://users.monash.edu/~normd
mailto:normdo@gmail.com

