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I the induced subgraph 〈P〉 is planar,
I |P| is maximum.
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Planarization and Series-Parallelization

Equivalent to the Maximum Induced Planar Subgraph problem
is the following:

Given a graph G, let p(G) be the minimum number of vertices
whose removal leaves a planar graph.

We may also consider s(G), the minimum number of vertices
whose removal leaves a series-parallel graph.

We will consider particularly graphs G with maximum or
average degree at most d , and look for bounds of the form

p(G) ≤ cd |V (G)| or s(G) ≤ cd |V (G)|



Simple argument for d = 5
Split vertices into two sets so that as many edges as possible
cross the gap.

v

If a vertex v has degree 3 within one set, move it to other side.
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Simple argument for d = 5
Split vertices into two sets so that as many edges as possible
cross the gap.

v

So within each set, every degree is at most two, so each set
induces a series-parallel graph. Remove smaller set, so

s(G) ≤ 1
2
|V | =

d − 2
d + 1

|V |.

Similar argument for d = 8,11,14, . . ., i.e. d ≡ 2 (mod 3).
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Series-Parallel Reductions

Reduced graph
Form reduced graph r(G) by applying the 3 reduction
operations to G as many times as possible. (True but not
obvious that r(G) is unique).

Properties

I r(G) has minimum degree at least 3.
I r(G) is empty if and only if G is S-P.
I Reducing does not change the minimum number of

vertices which must be removed to make the graph S-P (or
planar).

s(G) = s(r(G)).
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Making a graph S-P: Upper bound

Theorem
If G has minimum degree at least 3, then

s(G) ≤
∑

v

d(v)− 2
d(v) + 1

.

Very simple algorithm

X := ∅
while (graph is not empty)

delete a vertex w of maximum degree
X := X ∪ {w}
reduce

end while
return X



Series-Parallelization Algorithm

Example

R



Series-Parallelization Algorithm

Example

R



Series-Parallelization Algorithm

Example

D



Series-Parallelization Algorithm

Example

R



Series-Parallelization Algorithm

Example

R



Series-Parallelization Algorithm

Example

R



Series-Parallelization Algorithm

Example

R



Series-Parallelization Algorithm

Example

R



Series-Parallelization Algorithm

Example



Making a graph S-P: Upper bound

Theorem

s(G) ≤
∑

v

d(v)− 2
d(v) + 1

.

Proof
Induction on n = |V (G)|.

Inductive basis: empty graph, s(G) = 0 = empty sum.

Now let G be any non-empty graph with min degree ≥ 3 . . .



Making a graph S-P: Upper bound

Delete vertex w of
maximum degree

G′ = G − w

w

Graph G

w

G∗ = r(G′)

Reduce
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G′ = G − w , G∗ = r(G′)

s(G) ≤ 1 + s(G′)
= 1 + s(G∗)
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(induction)
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Making a graph S-P: Upper bound
From this we obtain a result for average degree d ≥ 2:

Theorem
Let G be a connected graph of average degree at most d. Then

s(G) ≤ d − 2
d + 1

|V (G)|.

For series-parallelization, this is best possible, because Kd+1 is
regular of degree d and we have to remove d − 2 vertices to
avoid a K4 subgraph.



Making a graph S-P: Upper bound
From this we obtain a result for average degree d ≥ 2:

Theorem
Let G be a connected graph of average degree at most d. Then

s(G) ≤ d − 2
d + 1

|V (G)|.

Connectedness is necessary:

13 vertices, 14 edges, average degree 28
13 .

d−2
d+1 |V | = 26

41 < 1, but p(G) = 1, s(G) = 2.
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of its vertices, you can leave components all of size ≤ C.

A class of graphs is ε-fragmentable if there is a constant C so
that every graph in the class is (C, ε)-fragmentable.

The lowest (infimum) possible ε is the coefficient of
fragmentability of the class.
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Series-parallelization and fragmentability

Series-parallelization is useful for breaking graphs into small
pieces.
Given G, with max/ave degree ≤ d :

1. remove vertices from G to leave induced series-parallel
subgraph 〈P〉;

2. remove o(n) vertices from 〈P〉 to leave bounded size
pieces (e.g., apply Planar Separator Theorem (Lipton &
Tarjan) recursively).



Series-parallelization and fragmentability
Lipton-Tarjan separator theorem: A planar graph with n vertices
can be broken into 2 pieces with at most 2n/3 vertices each by
removing at most 2

√
2
√

n vertices.

≤ 2
√

2
√

n

≤ 2n/3 ≤ 2n/3



Series-parallelization and fragmentability
Lipton-Tarjan separator theorem: A planar graph with n vertices
can be broken into 2 pieces with at most 2n/3 vertices each by
removing at most 2

√
2
√

n vertices.

By repeating the process, we can break up the graph into small
(≤ C vertices) pieces.



Series-parallelization and fragmentability
Lipton-Tarjan separator theorem: A planar graph with n vertices
can be broken into 2 pieces with at most 2n/3 vertices each by
removing at most 2

√
2
√

n vertices.

Conclusion: For any ε > 0, we can remove a proportion ε of
the vertices from any planar graph, and ensure no fragment has
more than 535/ε2 vertices.



Series-parallelization and fragmentability

For series-parallel graphs, the coefficient of fragmentability is 0.

Hence, for the class of graphs with maximum or average degree
at most d , the coefficient of fragmentability is at most d−2

d+1 .

The best lower bound (due to Haxell, Pikhurko and Thomason)
is:

d − 2
d + 2

for even d ≥ 4, and
d2 − 5

(d + 1)(d + 3)
for odd d ≥ 5.

Note that lower bounds for fragmentability are also lower
bounds for series-parallelization.



Back to planarization

For d = 3, we have p(G) ≤ 1
4 |V (G)| and the fraction 1

4 is best
possible (from fragmentability bounds).

But for d ≥ 4, there is a gap between upper and lower bounds:

d 2 3 4 5 6

d−2
d+1 0 1

4
2
5

1
2

4
7

Lower bound 0 1
4

1
3

5
12

1
2



Better Planarization

Consider a graph of maximum degree 4. Suppose there is a
vertex v of degree 4 adjacent to a vertex w of degree 3.

w

v

Delete the vertex v .



Better Planarization

Consider a graph of maximum degree 4. Suppose there is a
vertex v of degree 4 adjacent to a vertex w of degree 3.

w

Vertex w is now degree 2, so is removed by reduction.



Better Planarization

Consider a graph of maximum degree 4. Suppose there is a
vertex v of degree 4 adjacent to a vertex w of degree 3.

Overall effect: v4 −→ v4 − 4, v3 −→ v3 + 2. After (roughly) v4/4
such steps, we get graph G′ which is 3-regular with v3 + v4/2
vertices. Then p(G′) ≤ v3/4 + v4/8, so

p(G) ≤ v4/4 + v3/4 + v4/8 ≤ 3|V |/8.



Back to planarization

This argument can be made precise and extended to general
(average) degree d . We get an upper bound of the form

d − 9/4
d + 1

+ O(1/d3).

d 2 3 4 5 6

d−2
d+1 0 1

4
2
5

1
2

4
7

New upper bound 0 1
4

3
8

19
40

131
240

Lower bound 0 1
4

1
3

5
12

1
2



Better series-parallelization

In a sense, the upper bound of d−2
d+1 for series parallelization is

best possible, since for any graph in which every component is
Kd+1, we must remove d − 2 vertices from each component to
make it series-parallel.

However, for connected graphs, we might hope to get

s(G) ≤ j(d)n + o(n)

where j(d) < d−2
d+1 .



Better series-parallelization
However, for connected graphs, we might hope to get

s(G) ≤ j(d)n + o(n)

where j(d) < d−2
d+1 .

For d = 3, there can be no improvement. But for maximum
degree d = 4,5,6 we can get

s(G) ≤ j(d)n + Cd

d 2 3 4 5 6

d−2
d+1 0 1

4
2
5

1
2

4
7

Planarization u.b. 0 1
4

3
8

19
40

131
240

j(d) 0 1
4

3
8

19
40

11
20



Better series-parallelization

For maximum degree d ≤ 6 we can get

s(G) ≤ j(d)n + Cd

d 2 3 4 5 6

d−2
d+1 0 1

4
2
5

1
2

4
7

j(d) 0 1
4

3
8

19
40

11
20

In fact for maximum degree ≤ 6 we can get the equivalent
“vertex-wise” result:

s(G) ≤
∑

v

j(d(v)) + Cd .



Better series-parallelization

For maximum degree d ≤ 6 we have

s(G) ≤
∑

v

j(d(v)) + Cd .

It seems natural to want to extend this to all d . But it turns out
that this cannot be done while keeping j(d) ≤ d−2

d+1 for all d .

d 2 3 4 5 6 7 8

d−2
d+1 0 1

4
2
5

1
2

4
7

5
8

6
9

j(d) 0 1
4

3
8

19
40

11
20 ? ?



More generally

For a set S of graphs, define µ(S, Γ) to be the minimum
number µ such that any graph in Γ with n vertices can be made
S-minor-free by removing at most (µ+ o(1))n vertices.

So we have been considering µ({K5,K3,3}, Γc
d ) and µ({K4}, Γc

d ).



More generally

What do we know about µ({Kr}, Γc
d )?

r\ d 2 3 4 5 6 7 . . . 13

2 1
2

2
3

3
4

4
5

5
6

6
7

12
13

3 0 1
3? ? ? ? ? ?

4 0 1
4 ≤ 3

8 ≤ 19
40 ≤ 11

20 ≤ 5
8 ≥ 10

13

5 0 1
4 ≤ 3

8 ≤ 19
40 ≤ 131

240 ≤ 1009
1680 < 10

13

...
...

...
...

...
...

...
...

cf (Γc
d ) 0 1

4 ≥ 1
3 ≥ 5

12 ≥ 1
2 ≥ 21

40


