Series-parallelization of graphs

Keith Edwards

School of Computing University of Dundee, U.K.

30 November 2011

Joint work with Graham Farr (Monash University, Australia).

Planarization

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)

Input: Graph G

Output: set $P \subseteq V(G)$ such that

- the *induced* subgraph $\langle P \rangle$ is planar,
- ▶ |P| is maximum.

Planarization

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)

Input: Graph G

Output: set $P \subseteq V(G)$ such that

- the *induced* subgraph $\langle P \rangle$ is planar,
- ▶ |P| is maximum.

Planarization

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)

Input: Graph G

Output: set $P \subseteq V(G)$ such that

- the *induced* subgraph $\langle P \rangle$ is planar,
- ▶ |P| is maximum.

Planarization and Series-Parallelization

Equivalent to the Maximum Induced Planar Subgraph problem is the following:

Given a graph G, let p(G) be the minimum number of vertices whose removal leaves a planar graph.

We may also consider s(G), the minimum number of vertices whose removal leaves a series-parallel graph.

We will consider particularly graphs G with maximum or average degree at most d, and look for bounds of the form

$$p(G) \leq c_d |V(G)| \text{ or } s(G) \leq c_d |V(G)|$$

Simple argument for d = 5

Split vertices into two sets so that as many edges as possible cross the gap.

If a vertex v has degree 3 within one set, move it to other side.

Simple argument for d = 5

Split vertices into two sets so that as many edges as possible cross the gap.

But then more edges cross the gap, which is impossible.

Simple argument for d = 5

Split vertices into two sets so that as many edges as possible cross the gap.

So within each set, every degree is at most two, so each set induces a series-parallel graph. Remove smaller set, so

$$s(G) \leq \frac{1}{2}|V| = \frac{d-2}{d+1}|V|.$$

Similar argument for d = 8, 11, 14, ..., i.e. $d \equiv 2 \pmod{3}$.

Isolated vertex

delete

Isolated vertex

delete

Isolated vertex delete delete

Isolated vertex delete delete

Reduced graph

Form reduced graph r(G) by applying the 3 reduction operations to G as many times as possible. (True but not obvious that r(G) is unique).

Properties

- ► r(G) has minimum degree at least 3.
- r(G) is empty if and only if G is S-P.
- Reducing does not change the minimum number of vertices which must be removed to make the graph S-P (or planar).

$$s(G) = s(r(G)).$$

Making a graph S-P: Upper bound

Theorem

If G has minimum degree at least 3, then

$$s(G) \leq \sum_{v} \frac{d(v)-2}{d(v)+1}.$$

Very simple algorithm

```
X := \emptyset while (graph is not empty) delete a vertex w of maximum degree X := X \cup \{w\} reduce end while return X
```


Theorem

$$s(G) \leq \sum_{v} \frac{d(v) - 2}{d(v) + 1}.$$

Proof

Induction on n = |V(G)|.

Inductive basis: empty graph, s(G) = 0 = empty sum.

Now let G be any non-empty graph with min degree $\geq 3 \dots$

$$G' = G - w, G^* = r(G')$$

$$s(G) \leq 1 + s(G')$$

$$= 1 + s(G^*)$$

$$\leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \text{ (induction)}$$

$$\leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}$$

$$G' = G - w, G^* = r(G')$$

$$s(G) \leq 1 + s(G')$$

$$= 1 + s(G^*)$$

$$\leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \text{ (induction)}$$

$$\leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}$$

$$\begin{split} & \mathcal{G}' = \mathcal{G} - w, \, \mathcal{G}^* = r(\mathcal{G}') \\ & s(\mathcal{G}) & \leq 1 + s(\mathcal{G}') \\ & = 1 + s(\mathcal{G}^*) \\ & \leq 1 + \sum_{v \in V(\mathcal{G}^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \text{ (induction)} \\ & \leq 1 + \sum_{v \in V(\mathcal{G}')} \frac{d'(v) - 2}{d'(v) + 1} \\ & = 1 + \sum_{v \in V(\mathcal{G}'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(\mathcal{G}'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1} \\ & = 1 + \sum_{v \in V(\mathcal{G}'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(\mathcal{G}'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1} \end{split}$$

$$G' = G - w, G^* = r(G')$$

$$s(G) \leq 1 + s(G')$$

$$= 1 + s(G^*)$$

$$\leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \text{ (induction)}$$

$$\leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}$$

$$G' = G - w, G^* = r(G')$$

$$s(G) \leq 1 + s(G')$$

$$= 1 + s(G^*)$$

$$\leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \text{ (induction)}$$

$$\leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}$$

$$G' = G - w, G^* = r(G')$$

$$s(G) \leq 1 + s(G')$$

$$= 1 + s(G^*)$$

$$\leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \text{ (induction)}$$

$$\leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}$$

$$G' = G - w, G^* = r(G')$$

$$s(G) \leq 1 + s(G')$$

$$= 1 + s(G^*)$$

$$\leq 1 + \sum_{v \in V(G^*)} \frac{d^*(v) - 2}{d^*(v) + 1} \text{ (induction)}$$

$$\leq 1 + \sum_{v \in V(G')} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d'(v) - 2}{d'(v) + 1} + \sum_{v \in V(G'), v \not\sim w} \frac{d'(v) - 2}{d'(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \neq w} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1}\right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(w)(d(w) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= \sum_{v \in V(G)} \frac{d(v)-2}{d(v)+1}.$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \neq w} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1}\right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(w)(d(w) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= \sum_{v \in V(G)} \frac{d(v)-2}{d(v)+1}.$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \not\sim w} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1}\right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(w)(d(w) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= \sum_{v \in V(G)} \frac{d(v)-2}{d(v)+1}.$$

$$\frac{(v)-2}{(v)+1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \neq w} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1}\right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(w)(d(w) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= \sum_{v \in V(G)} \frac{d(v)-2}{d(v)+1}.$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \frac{d(v) - 3}{d(v)} + \sum_{v \in V(G'), v \neq w} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 + \sum_{v \in V(G'), v \sim w} \left(\frac{d(v) - 3}{d(v)} - \frac{d(v) - 2}{d(v) + 1}\right) + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(v)(d(v) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$\leq 1 - \sum_{v \in V(G'), v \sim w} \frac{3}{d(w)(d(w) + 1)} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= 1 - \frac{3}{d(w) + 1} + \sum_{v \in V(G')} \frac{d(v) - 2}{d(v) + 1}$$

$$= \sum_{v \in V(G)} \frac{d(v)-2}{d(v)+1}.$$

From this we obtain a result for average degree $d \ge 2$:

Theorem

Let G be a connected graph of average degree at most d. Then

$$s(G) \leq \frac{d-2}{d+1}|V(G)|.$$

For series-parallelization, this is best possible, because K_{d+1} is regular of degree d and we have to remove d-2 vertices to avoid a K_4 subgraph.

From this we obtain a result for average degree $d \ge 2$:

Theorem

Let G be a connected graph of average degree at most d. Then

$$s(G) \leq \frac{d-2}{d+1}|V(G)|.$$

Connectedness is necessary:

13 vertices, 14 edges, average degree $\frac{28}{13}$.

$$\frac{d-2}{d+1}|V| = \frac{26}{41} < 1$$
, but $p(G) = 1$, $s(G) = 2$.

... is about removing few vertices so as to break graphs into small pieces.

...is about removing few vertices so as to break graphs into small pieces.

remove few vertices: $\leq \varepsilon$ of the vertices of the graph,

... to leave small pieces: $\leq C$ vertices in each component

A graph is (C, ε) -fragmentable if, by removing some fraction $\le \varepsilon$ of its vertices, you can leave components all of size $\le C$.

A *class* of graphs is ε -fragmentable if there is a constant C so that every graph in the class is (C, ε) -fragmentable.

remove few vertices: $\leq \varepsilon$ of the vertices of the graph,

... to leave small pieces: $\leq C$ vertices in each component

A graph is (C, ε) -fragmentable if, by removing some fraction $\le \varepsilon$ of its vertices, you can leave components all of size $\le C$.

A *class* of graphs is ε -fragmentable if there is a constant C so that every graph in the class is (C, ε) -fragmentable.

remove few vertices: $\leq \varepsilon$ of the vertices of the graph,

... to leave small pieces: $\leq C$ vertices in each component

A graph is (C, ε) -fragmentable if, by removing some fraction $\le \varepsilon$ of its vertices, you can leave components all of size $\le C$.

A *class* of graphs is ε -fragmentable if there is a constant C so that every graph in the class is (C, ε) -fragmentable.

remove few vertices: $\leq \varepsilon$ of the vertices of the graph,

... to leave small pieces: $\leq C$ vertices in each component

A graph is (C, ε) -fragmentable if, by removing some fraction $\le \varepsilon$ of its vertices, you can leave components all of size $\le C$.

A *class* of graphs is ε -fragmentable if there is a constant C so that every graph in the class is (C, ε) -fragmentable.

remove few vertices: $\leq \varepsilon$ of the vertices of the graph,

... to leave small pieces: $\leq C$ vertices in each component

A graph is (C, ε) -fragmentable if, by removing some fraction $\le \varepsilon$ of its vertices, you can leave components all of size $\le C$.

A *class* of graphs is ε -fragmentable if there is a constant C so that every graph in the class is (C, ε) -fragmentable.

Series-parallelization is useful for breaking graphs into small pieces.

Given G, with max/ave degree $\leq d$:

- remove vertices from G to leave induced series-parallel subgraph \(\langle P \rangle;\)
- 2. remove o(n) vertices from $\langle P \rangle$ to leave bounded size pieces (e.g., apply Planar Separator Theorem (Lipton & Tarjan) recursively).

Lipton-Tarjan separator theorem: A planar graph with n vertices can be broken into 2 pieces with at most 2n/3 vertices each by removing at most $2\sqrt{2}\sqrt{n}$ vertices.

Lipton-Tarjan separator theorem: A planar graph with n vertices can be broken into 2 pieces with at most 2n/3 vertices each by removing at most $2\sqrt{2}\sqrt{n}$ vertices.

By repeating the process, we can break up the graph into small $(\leq C \text{ vertices})$ pieces.

Lipton-Tarjan separator theorem: A planar graph with n vertices can be broken into 2 pieces with at most 2n/3 vertices each by removing at most $2\sqrt{2}\sqrt{n}$ vertices.

Conclusion: For any $\varepsilon>0$, we can remove a proportion ε of the vertices from any planar graph, and ensure no fragment has more than $535/\varepsilon^2$ vertices.

For series-parallel graphs, the coefficient of fragmentability is 0.

Hence, for the class of graphs with maximum or average degree at most d, the coefficient of fragmentability is at most $\frac{d-2}{d+1}$.

The best lower bound (due to Haxell, Pikhurko and Thomason) is:

$$\frac{d-2}{d+2}$$
 for even $d \ge 4$, and $\frac{d^2-5}{(d+1)(d+3)}$ for odd $d \ge 5$.

Note that lower bounds for fragmentability are also lower bounds for series-parallelization.

Back to planarization

For d=3, we have $p(G) \leq \frac{1}{4} |V(G)|$ and the fraction $\frac{1}{4}$ is best possible (from fragmentability bounds).

But for $d \ge 4$, there is a gap between upper and lower bounds:

d	2	3	4	5	6
<u>d−2</u> d+1	0	<u>1</u>	<u>2</u> 5	1/2	<u>4</u> 7
Lower bound	0	<u>1</u>	<u>1</u>	<u>5</u> 12	<u>1</u>

Better Planarization

Consider a graph of maximum degree 4. Suppose there is a vertex v of degree 4 adjacent to a vertex w of degree 3.

Delete the vertex v.

Better Planarization

Consider a graph of maximum degree 4. Suppose there is a vertex v of degree 4 adjacent to a vertex w of degree 3.

Vertex *w* is now degree 2, so is removed by reduction.

Better Planarization

Consider a graph of maximum degree 4. Suppose there is a vertex v of degree 4 adjacent to a vertex w of degree 3.

Overall effect: $v_4 \longrightarrow v_4 - 4$, $v_3 \longrightarrow v_3 + 2$. After (roughly) $v_4/4$ such steps, we get graph G' which is 3-regular with $v_3 + v_4/2$ vertices. Then $p(G') \le v_3/4 + v_4/8$, so

$$p(G) \le v_4/4 + v_3/4 + v_4/8 \le 3|V|/8.$$

Back to planarization

This argument can be made precise and extended to general (average) degree *d*. We get an upper bound of the form

$$\frac{d-9/4}{d+1}+O(1/d^3).$$

d	2	3	4	5	6
$\frac{d-2}{d+1}$ New upper bound	0		2 5 3 8		4 7 131 240
Lower bound	0	<u>1</u>	<u>1</u>	<u>5</u> 12	1/2

In a sense, the upper bound of $\frac{d-2}{d+1}$ for series parallelization is best possible, since for any graph in which every component is K_{d+1} , we must remove d-2 vertices from each component to make it series-parallel.

However, for connected graphs, we might hope to get

$$s(G) \leq j(d)n + o(n)$$

where $j(d) < \frac{d-2}{d+1}$.

However, for connected graphs, we might hope to get

$$s(G) \leq j(d)n + o(n)$$

where $j(d) < \frac{d-2}{d+1}$.

For d = 3, there can be no improvement. But for maximum degree d = 4, 5, 6 we can get

$$s(G) \leq j(d)n + C_d$$

d	2	3	4	5	6
$\frac{d-2}{d+1}$ Planarization u.b.	0		2 5 3 8	1/2 19/40	4 7 131 240
j(d)	0	<u>1</u>	<u>3</u>	<u>19</u> 40	<u>11</u> 20

For maximum degree $d \le 6$ we can get

In fact for maximum degree \leq 6 we can get the equivalent "vertex-wise" result:

$$s(G) \leq \sum_{v} j(d(v)) + C_{d}.$$

For maximum degree $d \le 6$ we have

$$s(G) \leq \sum_{v} j(d(v)) + C_{d}.$$

It seems natural to want to extend this to all d. But it turns out that this cannot be done while keeping $j(d) \le \frac{d-2}{d+1}$ for all d.

d	2	3	4	5	6	7	8
$\frac{d-2}{d+1}$ $j(d)$	0	<u>1</u>	<u>2</u> 5	1/2 19/40	<u>4</u> 7	<u>5</u> 8	<u>6</u> 9
j(d)	0	$\frac{1}{4}$	<u>3</u>	<u>19</u> 40	11 20	?	?

More generally

For a set S of graphs, define $\mu(S,\Gamma)$ to be the minimum number μ such that any graph in Γ with n vertices can be made S-minor-free by removing at most $(\mu + o(1))n$ vertices.

So we have been considering $\mu(\{K_5, K_{3,3}\}, \Gamma_d^c)$ and $\mu(\{K_4\}, \Gamma_d^c)$.

More generally

What do we know about $\mu(\{K_r\}, \Gamma_d^c)$?

r∖ d	2	3	4	5	6	7	 13
2	1/2	<u>2</u>	<u>3</u>	<u>4</u> 5	<u>5</u> 6	<u>6</u> 7	12 13
3	0	$\frac{1}{3}$?	?	?	?	?	?
4	0	<u>1</u>	$\leq \frac{3}{8}$	$\leq \frac{19}{40}$	$\leq \frac{11}{20}$	$\leq \frac{5}{8}$	$\geq \frac{10}{13}$
5	0	<u>1</u>	$\leq \frac{3}{8}$	$\leq \frac{19}{40}$	$\leq \frac{131}{240}$	$\frac{6}{7}$? $\leq \frac{5}{8}$ $\leq \frac{1009}{1680}$	$< \frac{10}{13}$
<u>:</u>	:					÷	i
$c_f(\Gamma_d^c)$	0	<u>1</u>	$\geq \frac{1}{3}$		$\geq \frac{1}{2}$	$\geq \frac{21}{40}$	