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Planarization and Series-Parallelization

Equivalent to the Maximum Induced Planar Subgraph problem
is the following:

Given a graph G, let p(G) be the minimum number of vertices
whose removal leaves a planar graph.

We may also consider s(G), the minimum number of vertices
whose removal leaves a series-parallel graph.

We will consider particularly graphs G with maximum or
average degree at most d, and look for bounds of the form

p(G) < cq| V(G)| or s(G) < c4| V(G)|



Simple argument for d =5

Split vertices into two sets so that as many edges as possible
cross the gap.
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If a vertex v has degree 3 within one set, move it to other side.
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But then more edges cross the gap, which is impossible.



Simple argument for d =5

Split vertices into two sets so that as many edges as possible
cross the gap.

So within each set, every degree is at most two, so each set

induces a series-parallel graph. Remove smaller set, so

d-2
d+1

Similar argument for d = 8,11,14,...,i.e. d =2 (mod 3).

’
s(G) < 5|V[= VI,
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Series-Parallel Reductions

Reduced graph

Form reduced graph r(G) by applying the 3 reduction
operations to G as many times as possible. (True but not
obvious that r(G) is unique).

Properties

» r(G) has minimum degree at least 3.

» r(G) is empty if and only if G is S-P.

» Reducing does not change the minimum number of
vertices which must be removed to make the graph S-P (or
planar).
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Making a graph S-P: Upper bound

Theorem
If G has minimum degree at least 3, then

Zdv)+1

Very simple algorithm

X =0

while (graph is not empty)
delete a vertex w of maximum degree
X :=XU{w}
reduce

end while

return X
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Making a graph S-P: Upper bound

Theorem

Proof
Induction on n = |V(G)|.

Inductive basis: empty graph, s(G) = 0 = empty sum.

Now let G be any non-empty graph with min degree > 3 ...



Making a graph S-P: Upper bound

—
Graph G G=G-w
Delete vertex w of u Reduce
maximum degree
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d(v) -3 d(v) -2
T+ > + Y
veV(G),vw d(v) veV(G)),viw d(v)+1

1+ > (d(V)—S_d(v)—2>+ d(v) —2

ver G A0 dV)+1) T e d(v) + 1
' Ve V(G Cl’(W)(d\?w)Jr " Vg(:G EZ;
. d(W?+1 +VGVZ(G,) ZEZ;I?
> dre

veV(G) da(v)



IN

Making a graph S-P: Upper bound
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Making a graph S-P: Upper bound

From this we obtain a result for average degree d > 2:

Theorem
Let G be a connected graph of average degree at most d. Then
d-—2
e :
s(G) = ;7 IV(G)

For series-parallelization, this is best possible, because Ky 1 is
regular of degree d and we have to remove d — 2 vertices to
avoid a Ky subgraph.



Making a graph S-P: Upper bound

From this we obtain a result for average degree d > 2:

Theorem
Let G be a connected graph of average degree at most d. Then
d-—2
e :
s(G) = ;7 IV(G)

Connectedness is necessary:

: 8
13 vertices, 14 edges, average degree %3

Z—ﬁIVI:%<1,butp(G):1,s(G):2_
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Fragmentability
remove few vertices: < ¢ of the vertices of the graph,

...to leave small pieces: < C vertices in each component

A graph is (C, ¢)-fragmentable if, by removing some fraction < e
of its vertices, you can leave components all of size < C.

A class of graphs is e-fragmentable if there is a constant C so
that every graph in the class is (C, ¢)-fragmentable.

The lowest (infimum) possible ¢ is the coefficient of
fragmentability of the class.



Series-parallelization and fragmentability

Series-parallelization is useful for breaking graphs into small
pieces.
Given G, with max/ave degree < d:
1. remove vertices from G to leave induced series-parallel
subgraph (P);
2. remove o(n) vertices from (P) to leave bounded size
pieces (e.g., apply Planar Separator Theorem (Lipton &
Tarjan) recursively).
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Lipton-Tarjan separator theorem: A planar graph with n vertices
can be broken into 2 pieces with at most 2n/3 vertices each by
removing at most 2v/2/n vertices.




Series-parallelization and fragmentability
Lipton-Tarjan separator theorem: A planar graph with n vertices
can be broken into 2 pieces with at most 2n/3 vertices each by
removing at most 2v/2/n vertices.

By repeating the process, we can break up the graph into small
(< C vertices) pieces.



Series-parallelization and fragmentability
Lipton-Tarjan separator theorem: A planar graph with n vertices
can be broken into 2 pieces with at most 2n/3 vertices each by
removing at most 2v/2/n vertices.

Conclusion: For any ¢ > 0, we can remove a proportion ¢ of
the vertices from any planar graph, and ensure no fragment has
more than 535/<2 vertices.



Series-parallelization and fragmentability

For series-parallel graphs, the coefficient of fragmentability is 0.

Hence, for the class of graphs with maximum or average degree

at most d, the coefficient of fragmentability is at most 3=%.

The best lower bound (due to Haxell, Pikhurko and Thomason)
is:
2

ad-2 ac -5
—— > S > 5,
EW orevend >4, and @+ 1)d13) forodd d > 5

Note that lower bounds for fragmentability are also lower
bounds for series-parallelization.



Back to planarization

For d = 3, we have p(G) < 1|V(G)| and the fraction } is best
possible (from fragmentability bounds).

But for d > 4, there is a gap between upper and lower bounds:

d ‘ 2 3 4 5 6

d—2 1 2 1 4

art 0 72 5 2 7
Lowerbound |0 I 1 5 2



Better Planarization

Consider a graph of maximum degree 4. Suppose there is a
vertex v of degree 4 adjacent to a vertex w of degree 3.

A

Delete the vertex v.
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Vertex w is now degree 2, so is removed by reduction.



Better Planarization

Consider a graph of maximum degree 4. Suppose there is a
vertex v of degree 4 adjacent to a vertex w of degree 3.

AR

Overall effect: v4 —> v4 — 4, vs — v3 + 2. After (roughly) v4/4
such steps, we get graph G’ which is 3-regular with vz + v4/2
vertices. Then p(G') < v3/4 + v4/8, so

p(G) < v4/d +v3/4+v,/8 < 3|V|/8.



Back to planarization

This argument can be made precise and extended to general
(average) degree d. We get an upper bound of the form

d—9/4

d+1+omm%
d 2 3 4 5 6
g o113
New upperbound |0 1 $ 13 131
Lowerbound |0 1 1 =5 1



Better series-parallelization

In a sense, the upper bound of g—jj for series parallelization is
best possible, since for any graph in which every component is
Ky+1, we must remove d — 2 vertices from each component to
make it series-parallel.

However, for connected graphs, we might hope to get
s(G) <j(d)n+ o(n)

where j(d) < 4:%.



Better series-parallelization
However, for connected graphs, we might hope to get
s(G) < j(d)n+ o(n)

where j(d) < 9=%.
For d = 3, there can be no improvement. But for maximum
degree d = 4,5,6 we can get

s(G) <j(d)n+ Cq

d 2 3 4 5 6

a-2 o 1 2 1 4

d+1 4 5 2 7

i>ati 13 19 131
Planarizationu.b. |0 z 3§ 25 =m0
; 13 19 11

j(d) o r 3 Bk 1



Better series-parallelization

For maximum degree d < 6 we can get

s(G) < j(d)n+ Cyq

d‘234 5 6
d—2 i 2 1 4
7|0 7z 5 3 7
@0 3 ¢ B &

In fact for maximum degree < 6 we can get the equivalent
“vertex-wise” result:

s(G) <Z/ ) + Cq.



Better series-parallelization

For maximum degree d < 6 we have
< Zj + Cd

It seems natural to want to extend this to all d. But it turns out

that this cannot be done while keeping j(d) < 974 for all d.

d‘2345678

-2 |pg 1 2 1 4 5 6
g 4 5 2 7 8 9
i 13 19 11 9o 9
d [0 7z 5 @ = ‘



More generally

For a set S of graphs, define u(S,T) to be the minimum
number p such that any graph in I with n vertices can be made
S-minor-free by removing at most (1 + o(1))n vertices.

So we have been considering ;({Ks, K3 3},§) and n({Ks},T9).



More generally

What do we know about u({K:},Tg)?

nd |2 3 4 5 6 7 13
o |1 2 3 4 5 6 12
2 3 4 5 6 7 13
3 |0 2 2 2 2 ? ?
1 3 19 11 5 10
4 |0 7 <5 <x <z <3 > 13
1 3 19 131 1009 10
S 0 7 <5 <2 <210 < 7680 <13
1 1 5 1 21
g |0 2z =23 =2 =232 2%



