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ROOTED PLANAR EULERIAN ORIENTATIONS

A planar orientation is a directed planar map (a directed graph
embedded in the plane).

It is Eulerian if each vertex has equal in degree and out degree.

Rooted means that one vertex and one incident half-edge are
chosen as the root vertex and root edge. In my diagrams, the root
vertex is drawn at the bottom, and the root half-edge is the
leftmost half-edge incident to the vertex.
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ONE EDGE ROOTED PLANAR EULERIAN ORIENTATIONS

There are two planar rooted Eulerian orientations with one edge.
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TWO EDGE ROOTED PLANAR EULERIAN ORIENTATIONS

There are 10 planar rooted Eulerian orientations with two edges.
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COUNTING ROOTED PLANAR EULERIAN ORIENTATIONS

Let an be the number of rooted planar Eulerian orientations with
n edges.

a1 = 2.

a2 = 10.

Aim: Find a formula for an.
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BACKGROUND ON THE PROBLEM

In 2016, Bonichon, Bousquet-Melou, Dorbec and Pennarun
posed the problem of enumerating planar rooted Eulerian
orientations with a given number of edges.

They computed the number an of these orientations for n ≤ 15.

They also proved that the growth rate

µ = lim
n→∞

n
√

an

exists and lies in the interval (11.56, 13.005)
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4-VALENT PLANAR ROOTED EULERIAN ORIENTATIONS

Let bn be the number of 4-valent rooted planar Eulerian
orientations with n vertices.

Bonichon et al also posed the problem of enumerating these.

This is equivalent to the ice type model on a random lattice, a
problem in mathematical physics.

It is also the sum of the Tutte polynomials TΓ(0,−2) over all
4-valent rooted planar maps Γ with n vertices.
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N-MAPS

N-maps are rooted planar maps with numbered vertices such that:

The root vertex is numbered 0.

Numbers on adjacent vertices differ by 1.

By the bijection, an is the number of N-maps with n edges.

This bijection sends vertices with degree k to faces with degree k.

Hence, 4-valent orientations are sent to quadrangulations.

So, bn is the number of numbered quadrangulations
(N-quadrangulations) with n faces.
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COUNTING N-QUADRANGULATIONS

For the rest of the talk I will focus on the problem of counting
N-quadrangulations with a fixed number of faces.

As I mentioned, this is equivalent to enumerating 4-valent rooted
planar Eulerian orientations.

We want to find a way to decompose all large
N-quadrangulations into smaller N-quadrangulations.

That will hopefully lead to a recursive formula for calculating
the numbers bn.
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CONTRACTION IDEA

The most important decomposition we use works as follows:

Choose an N-quadrangulation Γ.

Choose a connected subgraph τ of Γ with positive integer
vertices.

Contract τ to a single vertex.
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CONTRACTION EXAMPLE
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CONTRACTION

Choose an N-quadrangulation Γ.

Choose a connected subgraph τ of Γ with positive integer
vertices.

Contract τ to a single vertex, to form a new N-quadrangulation
Γ′.

We call τ the patch.

We call Γ′ the contracted map.

To use this, we need to enumerate patches. In patches the outer face
may have any (even) degree.
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T-MAPS

In order to count N-quadrangulations we introduce a specialisation
called T-maps, which are N-maps in which:

Every inner face has degree 4.

All vertices adjacent to the root vertex v0 are numbered 1.

The vertices around the outer are alternately numbered 0 and 1.
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COUNTING T-MAPS

We count the T-maps using the generating function

T(t, a, b) =
∑

Γ

t|V(Γ)|ad(v0)bf (Γ),

where the sum is over all T-maps Γ.
In the above equation:

d(v0) denotes the degree of v0.

f (Γ) denotes the degree of the outer face of Γ.

Then bn = 2[tn+2][a1][b4]T(t, a, b)
Now we need a way to decompose T-maps into smaller maps.
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FORMULA FOR T-MAPS

Using the decomposition shown, we get a formula relating the
generating function for T-maps to itself:

T(t, a, b) =
1

1− [x−1]aT(t, 1/x, b)T(t, a, 1/(1− x))
.

Along with some initial conditions, this is enough to uniquely
determine the power series T .

Moreover, This allows us to calculate the coefficients of T in
polynomial time.
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THE ALGORITHM

Yay! We have a polynomial time algorithm for calculating the
number bn = 2[tn+2][a1][b4]T(t, a, b) of N-quadrangulations
with n faces.

bn is also the number of 4-valent rooted planar Eulerian
orientations with n vertices.

Using this algorithm we computed bn for n < 100.

Using a similar algorithm, we computed an for n < 90.
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Using a similar algorithm, we computed an for n < 90.
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SERIES ANALYSIS

We want to guess the growth rate of the sequence b0, b1, . . .
using only the known 100 terms.

The simplest way to try to do this is to plot the ratios
rn = bn/bn−1 against 1/n.
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PLOT OF RATIOS bn/bn−1
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using only the known 100 terms.

The simplest way to try to do this is to plot the ratios
rn = bn/bn−1 against 1/n.

The growth rate is where this line intersects with 1/n = 0.

This way we estimate the growth rate µ ≈ 21.6.

But we can do better!

First, we approximately extend the series.

Enumerating Eulerian Orientations. Andrew Elvey Price



SERIES ANALYSIS

We want to guess the growth rate of the sequence b0, b1, . . .
using only the known 100 terms.

The simplest way to try to do this is to plot the ratios
rn = bn/bn−1 against 1/n.

The growth rate is where this line intersects with 1/n = 0.

This way we estimate the growth rate µ ≈ 21.6.

But we can do better!

First, we approximately extend the series.

Enumerating Eulerian Orientations. Andrew Elvey Price



SERIES ANALYSIS

We want to guess the growth rate of the sequence b0, b1, . . .
using only the known 100 terms.

The simplest way to try to do this is to plot the ratios
rn = bn/bn−1 against 1/n.

The growth rate is where this line intersects with 1/n = 0.

This way we estimate the growth rate µ ≈ 21.6.

But we can do better!

First, we approximately extend the series.

Enumerating Eulerian Orientations. Andrew Elvey Price



SERIES ANALYSIS

We want to guess the growth rate of the sequence b0, b1, . . .
using only the known 100 terms.

The simplest way to try to do this is to plot the ratios
rn = bn/bn−1 against 1/n.

The growth rate is where this line intersects with 1/n = 0.

This way we estimate the growth rate µ ≈ 21.6.

But we can do better!

First, we approximately extend the series.

Enumerating Eulerian Orientations. Andrew Elvey Price



SERIES ANALYSIS

We want to guess the growth rate of the sequence b0, b1, . . .
using only the known 100 terms.

The simplest way to try to do this is to plot the ratios
rn = bn/bn−1 against 1/n.

The growth rate is where this line intersects with 1/n = 0.

This way we estimate the growth rate µ ≈ 21.6.

But we can do better!

First, we approximately extend the series.

Enumerating Eulerian Orientations. Andrew Elvey Price



DIFFERENTIAL APPROXIMANTS

This is a summary of Tony’s method for approximately extending the
series:

Let B(t) = b0 + b1t + b2t2 + . . .

Choose a random sequence of positive integers L,M, d0, . . . , dM

which sum to 100 (where M = 2 or 3 and no two values of di

differ by more than 2).

Calculate the unique polynomials P,Q0,Q1, . . . ,QM (up to
scaling) of degrees L,M, d0, . . . , dM such that the first 100
coefficients of

P(t)−
M∑

k=0

Qk(t)
(

t
d
dt

)k

B(t)

are all 0.
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DIFFERENTIAL APPROXIMANTS

Approximate B by the solution B̃ of

M∑
k=0

Qk(t)
(

t
d
dt

)k

B̃(t) = P(t).

Repeat these steps for every possible sequence
P,Q0,Q1, . . . ,QM to obtain many approximations B̃.

For each ratio rn = bn+1/bn we get a range of approximations,
which give us an expected value (given by the mean of most of
the approximation) and error estimate (given by the standard
deviation of the approximations).

Surprisingly, these estimates generally seem to be very accurate.
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SERIES ANALYSIS

Using differential approximants, we approximate 1000 further
ratios, which we estimate to be accurate to at least 10 significant
digits.

so now we have a sequence of ratios and approximate ratios
r1, r2, . . . , r1100.

when we plot these against 1/n they don’t seem completely
linear, but plotted against 1/(n log(n)2) they do seem pretty
linear.

Using the line between adjacent points in this plot and taking
their intercept with the y-axis gives better approximations for the
growth rate µ.

Now we plot these approximations.
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PLOT OF RATIOS APPROXIMATIONS FOR µ
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SERIES ANALYSIS

Based on this graph, we estimate that the growth rate
µ ≈ 21.7656.

This is suspiciously close to 4
√

3π = 21.76559 . . .

We do the same analysis for the sequence a0, a1, a2, . . . the
numbers of rooted planar Eulerian orientations

In this case we find that the growth rate is approximately 4π.

We conjecture that 4π and 4
√

3π are the exact growth rates.
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MORE CONJECTURES

The growth rate 4
√

3π pointed us in the direction of looking at
other combinatorial sequences with this growth rate.

Using this we have conjectured an the exact solution for the
generating function

B(t) = b0 + b1t + b2t2,

which agrees with the 100 terms that we have computed exactly.

Assuming that this conjectures are correct, this solution is
D-algebraic but not D-finite.

Using this we can produce thousands of conjectured terms bn. It
turn out that our approximate ratios were all correct to 30
significant digits!
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CONJECTURES

In the same way found a conjectured D-algebraic form for the
generating function A(t) for a0, a1, a2, . . .

Collaborating with Mireille Bousquet-Melou, we have proven
this.

We are still working on the conjecture for b0, b1, . . .
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FURTHER QUESTIONS

Can we count rooted planar Eulerian orientations by edges and
vertices?

Can we determine ∑
Γ:|V(Γ)|=n

TΓ(x, y),

for other specific values of x, y?

For all x, y??
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THANK YOU

Thank You!

Enumerating Eulerian Orientations. Andrew Elvey Price


