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Ising model
I Graph G = (V,E)
I Assign a random variable Wi on i, for i ∈ V
I Wi takes values in a state space Σ = {1,−1}
I Configuration ω = {W1 = ω1,W2 = ω2, · · · ,WN = ωN} ∈ ΣN ,

where N = |V |.
I The Ising model is defined by choosing configurations ω

randomly via Gibbs measure

π(ω) =
e−H(ω)/T

ZN (T )
, ω ∈ ΣN

I Hamiltonian (energy) H(ω)

H(ω) = −
∑
ij∈E

ωi · ωj

I Partition sum ZN (T )

ZN (T ) =
∑
ω∈ΣN

e−H(ω)/T
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High and low temperature phases
I Recall Gibbs measure

π(ω) =
e−H(ω)/T

ZN (T )
, H(ω) = −

∑
ij∈E

ωi · ωj

I Relative weight for two configurations ω, ω′

π(ω)

π(ω′)
= e−(H(ω)−H(ω′))/T

I If T is low, spins prefer to like their neighbours, which is called
ordered phase or low temperature phase.

I If T is high, spins are independent of each other, which is called
disordered phase or high temperature phase.

I A critical point at T = Tc.
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Order parameter
I Order parameter is used to quantitatively characterise phase

transitions.
I For Ising model, the order parameter is the magnetisation,

M =

〈∣∣∣∣∣
∑N
i=1Wi

N

∣∣∣∣∣
〉

0 T T

M

c

I Critical behaviors
I If T ≥ Tc, M = 0
I If T → T−c , M ∼ (Tc − T )β

I The other independent critical exponent is defined from
correlation length ξ ∼ |T − Tc|−ν
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Phase transitions classification
I Phase transitions are classified by the continuity of the order

parameter.
I First order phase transition (discontinuous): ice-liquid-gas

transition, phase coexistence.
I Continuous phase transition: ferromagnetic-paramagnetic

transition, superconducting transition, Kosterlitz-Thouless
transition.
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Other Important concepts

I Phase transitions happen only in thermodynamic limit
I Ensemble hypothesis: approximate time average by ensemble

average
I Universality class: various continuous phase transitions fall into

several universality class, in which all models have the same
critical phenomena, and share same critical exponents.
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Cramér’s theorem
I Consider a sequence of identically and independently distributed

random variables:
X1, X2, · · · , XN

I State space Σ = {a1, a2, · · · , am}, ai ∈ Rd, d ∈ N+

I Xi is distributed according to a law µ and E(Xi) = X.

I Sample mean SN =
1

N

∑N
i=1Xi

I Law of large numbers tells SN → X as N → +∞.
I What’s the probability that SN = x with x deviating far from X?
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I Cramér’s theorem

PN (SN = x) ∼ e−NI(x) , as N → +∞
I Logarithmic generating function λ(k), for any k ∈ Rd,

λ(k) = logE[ek·SN ]

I Rate function from Legendre-Fenchel transform

I(x) = sup
k∈Rd
{〈k, x〉 − λ(k)}

I I(x) is convex, non-negative and minx I(x) = 0
I Set {x : I(x) = 0} is called the most probable macroscopic states
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Face-cubic model
I Given G = (V,E).
I Assign a random variable Wi on i, for i ∈ V .
I Wi takes values in a state space Σ.
I State space

Σ = {(±1, 0, 0, · · · , 0),

(0,±1, 0, · · · , 0),

...
(0, 0, · · · , 0,±1)} ⊂ Rn

I E.g.
If n = 3, Σ = {(±1, 0, 0), (0,±1, 0), (0, 0,±1)}

I Configuration ω = {W1 = ω1,W2 = ω2, · · · ,WN = ωN} ∈ ΣN ,
where N = |V |.
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I Choose configurations in ΣN randomly via Gibbs measure

π(ω) =
e−βH(ω)

ZN (β)
, ω ∈ ΣN

I β = 1/T
I Hamiltonian (energy) H(ω)

H = −
∑
ij

〈ωi, ωj〉

I Partition sum ZN (β)

ZN (β) =
∑
ω∈ΣN

e−βH(ω)

I High temperature, Wi uniformly distributed in Σ.
I Low temperature, Wi prefer to like their neighbors.
I βc-Critical point
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Known results
Square lattice (Nienhuis et al 1982), face-cubic model ∼

I O(n) model (n-vector model) for 0 ≤ n < 2
I Ashkin-Teller model for n = 2
I First-order transition for n > 2

Mean-field (or complete graph) (Kim et al, 1975)
I n = 1, 2, continuous (Ising)
I n > 3, first-order
I n = 3, continuous(tricritical)
I n = 3, first-order (Kim and Levy, 1975)
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Probability distribution of SN under Gibbs measure
I On the complete graph, Hamiltonian

H(ω) = − 1

2N

N∑
i,j=1

〈ωi, ωj〉

= −1

2
NS2

N (ω)

I Probability distribution of SN in n-dimensional cube Ω = [−1, 1]n?
I Assume P βN (SN = x) ∼ e−NIβ(x), what is the rate function Iβ(x)?
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Derive rate function
I

P βN (SN = x)
.
=

1

ZN (β)

∑
{ω∈ΣN :SN (ω)=x}

exp[−βH(ω)]

=
1

ZN (β)
exp[βNx2/2]P (SN = x)

I Rate function

Iβ(x) = − lim
N→+∞

1

N
logP βN (SN = x)

= I(x)− β

2
x2 −min

x∈Ω
[I(x)− βx2/2]

I Only need to find the global minimum points of

I(x)− β

2
x2

in the n-dimensional cube [−1, 1]n
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I A useful convex duality

min
x∈Ω

[I(x)− β

2
〈x, x〉] = min

u∈Rn
[

1

2β
〈u, u〉 − λ(u)]

I For face-cubic model

λ(u) = ln

n∑
i=1

cosh(ui)

I Find the global minimum points of

Gβ(u) =
1

2β
〈u, u〉 − ln

n∑
i=1

cosh(ui) , with u ∈ Rn
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Lemma

Let ν be a global minimum point of Gβ(u), then ν is one of the
following (2n+ 1) vectors.

ν0 = (0, 0, 0, · · · , 0)

ν1 = (a, 0, 0, · · · , 0)

ν2 = (0, a, 0, · · · , 0)

...
νn = (0, 0, · · · , 0, a)

νn+i = −νi, i = 1, 2, · · · , n
0 < a < 1

Gβ(u = ν) =
1

2β
a2 − ln[cosh(a) + n− 1]
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Theorem

1. Let A ⊆ Rn. For 1 ≤ n ≤ 3,

P βN (SN ∈ A) ∼

{
δν0(A) for 0 < β ≤ n
1

2n

∑2n
i=1 δνi(A) for β > n

as N → +∞.

2. For n ≥ 4,

P βN (SN ∈ A) ∼


δν0(A) for 0 < β < β′

λ0δν0(A) + λ1

∑2n
i=1 δνi(A) for β = β′

1

2n

∑2n
i=1 δνi(A) for β > β′

as N → +∞, with

λ0 =
κ0

κ0 + 2nκ1
, λ1 =

κ1

κ0 + 2nκ1
,

κ0 =
(
detD2Gβc(ν0)

)−1/2
, κ1 =

(
detD2Gβc(ν1)

)−1/2
.
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Conclusion

I Rigorously study n-component face-cubic model on the complete
graph.

I By large deviations analysis, we derive P βN (SN = x) ∼ e−NIβ(x)

and explicit form of Iβ(x).
I For 1 ≤ n ≤ 3, continuous phase transition at βc = n.
I For n ≥ 4, first-order phase transition at βc = β′.
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Many thanks for your attention!
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