Can Hamiltonian Cycle Problem be Solved with High Probability in Polynomial Time?

Ali Eshragh

School of Mathematical Sciences
The University of Adelaide, Adelaide SA 5005 Australia

 29^{th} of February, 2012

Definition

A Hamiltonian Cycle (HC for Short)

Given a graph **G**, a simple path that starts from an arbitrary node, visits all nodes exactly once and returns to the initial node is called a **Hamiltonian cycle** or a **tour**.

Definition

A Hamiltonian Cycle (HC for Short)

Given a graph **G**, a simple path that starts from an arbitrary node, visits all nodes exactly once and returns to the initial node is called a **Hamiltonian cycle** or a **tour**.

The Hamiltonian Cycle Problem (HCP for short)

Given a graph **G**, determine whether it contains at least one tour or not.

Definition

A Hamiltonian Cycle (HC for Short)

Given a graph **G**, a simple path that starts from an arbitrary node, visits all nodes exactly once and returns to the initial node is called a **Hamiltonian cycle** or a **tour**.

The Hamiltonian Cycle Problem (HCP for short)

Given a graph **G**, determine whether it contains at least one tour or not.

 The HCP is an NP-Complete problem, that is, no-one has found an efficient solution algorithm with polynomial complexity time for it, yet.

 We will use stochastic methods to analyze the deterministic HCP.

- We will use stochastic methods to analyze the deterministic HCP.
- A fundamental difficulty in random searches for HC's is that in some graphs, HC's are extremely rare.

- We will use stochastic methods to analyze the deterministic HCP.
- A fundamental difficulty in random searches for HC's is that in some graphs, HC's are extremely rare.

- We will use stochastic methods to analyze the deterministic HCP.
- A fundamental difficulty in random searches for HC's is that in some graphs, HC's are extremely rare.

$$\frac{\text{\# of HCs}}{\text{\# of spanning subgraphs}} = \frac{76800}{3^{94}}$$
$$= \mathcal{O}(10^{-40})$$

- We will use stochastic methods to analyze the deterministic HCP.
- A fundamental difficulty in random searches for HC's is that in some graphs, HC's are extremely rare.

 Despite this, can a random walk be designed that has a "good chance" of finding a HC?

Notations

The HCP in this Talk

There is a directed graph, namely G, on n nodes with no self-loops. Suppose $S = \{1, 2, ..., n\}$ is the set of all nodes and \mathscr{A} is the set of all arcs in this graph.

For each node i, we can define two subsets

$$\mathcal{A}(i) = \{a \in \mathcal{S} | (i, a) \in \mathscr{A}\} \text{ and } \mathcal{B}(i) = \{b \in \mathcal{S} | (b, i) \in \mathscr{A}\}.$$

Notations

The HCP in this Talk

There is a directed graph, namely G, on n nodes with no self-loops. Suppose $S = \{1, 2, ..., n\}$ is the set of all nodes and \mathscr{A} is the set of all arcs in this graph.

For each node i, we can define two subsets

$$\mathcal{A}(i) = \{ a \in \mathcal{S} | (i, a) \in \mathscr{A} \} \text{ and } \mathcal{B}(i) = \{ b \in \mathcal{S} | (b, i) \in \mathscr{A} \}.$$

Example

$$S = \{1, 2, 3, 4\}$$

$$A(1) = \{2, 3, 4\}$$

$$\mathcal{B}(1) = \{2,4\}$$

 In 1994, Filar and Krass developed a model for the HCP by embedding it in a perturbed Markov decision process.

- In 1994, Filar and Krass developed a model for the HCP by embedding it in a perturbed Markov decision process.
- They converted the deterministic HCP to a particular average-reward Markov decision process.

- In 1994, Filar and Krass developed a model for the HCP by embedding it in a perturbed Markov decision process.
- They converted the deterministic HCP to a particular average-reward Markov decision process.
- In 2000, Feinberg converted the HCP to a class of Markov decision processes, the so-called weighted discounted Markov decision processes.

- In 1994, Filar and Krass developed a model for the HCP by embedding it in a perturbed Markov decision process.
- They converted the deterministic HCP to a particular average-reward Markov decision process.
- In 2000, Feinberg converted the HCP to a class of Markov decision processes, the so-called weighted discounted Markov decision processes.
- MDP embedding implies that you can search for a Hamiltonian cycle in a nicely structured polyhedral domain of discounted occupational measures.

Domain of Discounted Occupational Measures

\mathcal{H}_{β} Polytope Associated with the Graph G; $\beta \in (0,1)$

$$\sum_{a \in \mathcal{A}(1)} x_{1a} - \beta \sum_{b \in \mathcal{B}(1)} x_{b1} = 1 - \beta^n$$

$$\sum_{a \in \mathcal{A}(i)} x_{ia} - \beta \sum_{b \in \mathcal{B}(i)} x_{bi} = 0 ; i = 2, 3, ..., n$$

$$\sum_{a \in \mathcal{A}(1)} x_{1a} = 1$$

$$x_{ia} > 0 ; \forall i \in \mathcal{S}, a \in \mathcal{A}(i)$$

Hamiltonian Extreme Points

Theorem (Feinberg, 2000)

If the graph G is Hamiltonian, then corresponding to each tour in the graph, there exists an extreme point of polytope \mathcal{H}_{β} , called **Hamiltonian extreme point**.

Hamiltonian Extreme Points

Theorem (Feinberg, 2000)

If the graph G is Hamiltonian, then corresponding to each tour in the graph, there exists an extreme point of polytope \mathcal{H}_{β} , called **Hamiltonian extreme point**.

If $\mathbf{\mathring{x}}$ is a Hamiltonian extreme point, then for each $i \in \mathcal{S}$, $\exists ! \ a \in \mathcal{A}(i)$ so that, $\mathring{x}_{ia} > 0$. These positive variables trace out a tour in the graph.

Hamiltonian Extreme Points

Theorem (Feinberg, 2000)

If the graph G is Hamiltonian, then corresponding to each tour in the graph, there exists an extreme point of polytope \mathcal{H}_{β} , called **Hamiltonian extreme point**.

If $\mathbf{\mathring{x}}$ is a Hamiltonian extreme point, then for each $i \in \mathcal{S}$, $\exists ! \ a \in \mathcal{A}(i)$ so that, $\mathring{x}_{ia} > 0$. These positive variables trace out a tour in the graph.

Illustration

Example

$$x_{12} + x_{13} + x_{14} - \beta x_{21} - \beta x_{41} = 1 - \beta^{4}$$

$$x_{21} + x_{23} - \beta x_{12} - \beta x_{32} = 0$$

$$x_{32} + x_{34} - \beta x_{13} - \beta x_{23} - \beta x_{43} = 0$$

$$x_{41} + x_{43} - \beta x_{14} - \beta x_{34} = 0$$

$$x_{12} + x_{13} + x_{14} = 1$$

$$x_{ia} \ge 0 \; ; \; i = 1, 2, 3, 4 \; , \; a \in \mathcal{A}(i)$$

Illustration (Cont.)

Example (Cont.)

One particular feasible solution:

$$x_{12} = 1$$
, $x_{23} = \beta$, $x_{34} = \beta^2$, $x_{41} = \beta^3$,

 $x_{ia} = 0$; for all other possible values

Illustration (Cont.)

Example (Cont.)

• One particular feasible solution:

$$x_{12} = 1$$
, $x_{23} = \beta$, $x_{34} = \beta^2$, $x_{41} = \beta^3$, $x_{ia} = 0$; for all other possible values

• It traces out the standard Hamiltonian cycle $1 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 1$.

• Let node 1 be the "home node" of the graph G.

- Let node 1 be the "home node" of the graph G.
- A simple path starts from the home node and returns to it in fewer than n arcs is called a "short cycle".

- Let node 1 be the "home node" of the graph G.
- A simple path starts from the home node and returns to it in fewer than n arcs is called a "short cycle".
- A "noose cycle" is a simple path starts from the home node and returns to some node other than the home node.

- Let node 1 be the "home node" of the graph G.
- A simple path starts from the home node and returns to it in fewer than n arcs is called a "short cycle".
- A "noose cycle" is a simple path starts from the home node and returns to some node other than the home node.

Hamiltonian and non-Hamiltonian Extreme Points of \mathcal{H}_{eta}

Theorem (Ejov et. al., 2009)

Consider a graph G and the corresponding polytope \mathcal{H}_{β} . Any extreme point \mathbf{x} identifies either a **Hamiltonian cycle** or a 1-randomized policy that traces out a path in G that is a **combination of a short cycle and a noose cycle**.

Hamiltonian and non-Hamiltonian Extreme Points of \mathcal{H}_{eta}

Theorem (Ejov et. al., 2009)

Consider a graph G and the corresponding polytope \mathcal{H}_{β} . Any extreme point \mathbf{x} identifies either a **Hamiltonian cycle** or a 1-randomized policy that traces out a path in G that is a **combination of a short cycle and a noose cycle**.

Example 1 1 2 1 2 1 3 3

A Hamiltonian extreme point

A combined extreme point

Type I (Binocular)

Type I (Binocular)

2 Type II

Type I (Binocular)

2 Type II

Type III

2 Type II

Type III

Type IV

The Prevalence of Hamiltonian Extreme Points

 What is the Ratio of the number of Hamiltonian extreme points over the number of non-Hamiltonian ones Type I, II, III and IV?

The Prevalence of Hamiltonian Extreme Points

- What is the Ratio of the number of Hamiltonian extreme points over the number of non-Hamiltonian ones Type I, II, III and IV?
- We utilized Erdös-Rényi Random Graphs Gn.p.

Ratios of Expected Number of Extreme Points

Theorem (Eshragh and Filar, 2011)

In the polytope \mathcal{H}_{β} corresponding to a random graph $G_{n,p}$, we will have

Ratios of Expected Number of Extreme Points

Theorem (Eshragh and Filar, 2011)

In the polytope \mathcal{H}_{β} corresponding to a random graph $G_{n,p}$, we will have

$$\frac{E[\# \ of \ Hamiltonian \ Extreme \ Points]}{E[\# \ of \ NH \ Extreme \ Points \ Types \ II \ \& \ III]} \ = \ \frac{6n^2-12n}{2n^3-9n^2+7n+12}$$

Ratios of Expected Number of Extreme Points

Theorem (Eshragh and Filar, 2011)

In the polytope \mathcal{H}_{β} corresponding to a random graph $G_{n,p}$, we will have

 $\frac{E[\# \text{ of Hamiltonian Extreme Points}]}{E[\# \text{ of NH Extreme Points Types II \& III}]} = \frac{6n^2 - 12n}{2n^3 - 9n^2 + 7n + 12}$

The Generic Structure of Hamiltonian Extreme Points

Lemma (Eshragh et. al., 2009)

If $\mathring{\mathbf{x}}$ is a Hamiltonian extreme point corresponding to tour τ in the given graph G, then its components must be as follows:

$$\mathring{x}_{ia} = \begin{cases} \beta^{k-1} ; & \text{if } (i,a) \text{ is the } k^{th} \text{ arc in tour } \tau \text{ starting from node } 1 \\ 0 & \text{; otherwise} \end{cases}$$

Reducing the Feasible Region

The Wedged Hamiltonian Polytope WH_{β} [Eshragh et. al. 2009]

$$\mathcal{H}_{eta}$$
 and $eta^{n-1} \ \le \ \sum_{a \in \mathcal{A}(i)} x_{ia} \ \le \ eta \quad ext{ for } i = 2, 3, \ldots, n$

Reducing the Feasible Region

The Wedged Hamiltonian Polytope WH_{β} [Eshragh et. al. 2009]

$$egin{aligned} \mathcal{H}_{eta} \ & \text{and} \ \ eta^{n-1} \ \leq \ \sum_{a \in \mathcal{A}(i)} x_{ia} \ \leq \ eta \ & ext{for i} = 2, 3, \ldots, n \end{aligned}$$

The Intersection of Extreme Points

Theorem (Eshragh and Filar, 2011)

Consider the graph G and polytopes \mathcal{H}_{β} and \mathcal{WH}_{β} . For $\beta \in \left((1-\frac{1}{n-2})^{\frac{1}{n-2}},1\right)$, the intersection of extreme points of these two polytopes can be partitioned into two disjoint (possibly empty) subsets:

The Intersection of Extreme Points

Theorem (Eshragh and Filar, 2011)

Consider the graph G and polytopes \mathcal{H}_{β} and \mathcal{WH}_{β} . For $\beta \in \left((1-\frac{1}{n-2})^{\frac{1}{n-2}},1\right)$, the intersection of extreme points of these two polytopes can be partitioned into two disjoint (possibly empty) subsets:

(i) Hamiltonian extreme points;

The Intersection of Extreme Points

Theorem (Eshragh and Filar, 2011)

Consider the graph G and polytopes \mathcal{H}_{β} and \mathcal{WH}_{β} . For $\beta \in \left((1-\frac{1}{n-2})^{\frac{1}{n-2}},1\right)$, the intersection of extreme points of these two polytopes can be partitioned into two disjoint (possibly empty) subsets:

- (i) Hamiltonian extreme points;
- (ii) binocular extreme points.

A Random Walk Algorithm

• Start from an extreme point of polytope \mathcal{WH}_{β} ;

A Random Walk Algorithm

- Start from an extreme point of polytope \mathcal{WH}_{β} ;
- 2 Uniformly, choose one of the adjacent extreme points, at random and move to that one;

A Random Walk Algorithm

- Start from an extreme point of polytope \mathcal{WH}_{β} ;
- Uniformly, choose one of the adjacent extreme points, at random and move to that one;
- If the current extreme point is Hamiltonian, then **STOP** and claim the graph is Hamiltonian, otherwise, return to Step 2.

Results on Several Graphs

Graph	Iteration Number
Hamiltonian Graph on 6 Nodes	1
Hamiltonian Graph on 10 Nodes	1
Hamiltonian Graph on 20 Nodes	10
Hamiltonian Graph on 30 Nodes	12
Hamiltonian Graph on 40 Nodes	10
Hamiltonian Graph on 50 Nodes	2
Hamiltonian Graph on 60 Nodes	27
Hamiltonian Graph on 80 Nodes	11
Hamiltonian Graph on 100 Nodes	29
Hamiltonian Graph on 150 Nodes	34
Hamiltonian Graph on 200 Nodes	37
Hamiltonian Graph on 400 Nodes	52
Hamiltonian Graph on 800 Nodes	67

Further Developments

Conjecture (Eshragh and Filar, 2011)

(i) There exists a polynomial-time algorithm to generate extreme points of the polytope WH_{β} , uniformly, at random.

Further Developments

Conjecture (Eshragh and Filar, 2011)

- (i) There exists a polynomial-time algorithm to generate extreme points of the polytope WH_{β} , uniformly, at random.
- (ii) For large values of β , the proportion of Hamiltonian extreme points in the the polytope \mathcal{WH}_{β} is bounded below by $\frac{1}{\rho(n)}$, where $\rho(n)$ is a polynomial function of n.

A New Algorithm for the HCP

• Construct the polytope \mathcal{WH}_{β} corresponding to a given graph G, set β large enough and t=1;

A New Algorithm for the HCP

- Construct the polytope $W\mathcal{H}_{\beta}$ corresponding to a given graph G, set β large enough and t=1;
- ② Generate an extreme point of polytope \mathcal{WH}_{β} , say \mathbf{x}_t , uniformly, at random. If \mathbf{x}_t is a Hamiltonian extreme point, then **STOP** and claim that G is Hamiltonian;

A New Algorithm for the HCP

- Construct the polytope $W\mathcal{H}_{\beta}$ corresponding to a given graph G, set β large enough and t=1;
- ② Generate an extreme point of polytope \mathcal{WH}_{β} , say \mathbf{x}_t , uniformly, at random. If \mathbf{x}_t is a Hamiltonian extreme point, then **STOP** and claim that G is Hamiltonian;
- **3** If $t > \alpha \rho(n)$, then **STOP** and claim that with high probability, *G* is non-Hamiltonian. Otherwise, set t = t + 1 and return to Step 2.

A New Algorithm for the HCP

- Construct the polytope $W\mathcal{H}_{\beta}$ corresponding to a given graph G, set β large enough and t=1;
- **2** Generate an extreme point of polytope \mathcal{WH}_{β} , say \mathbf{x}_t , uniformly, at random. If \mathbf{x}_t is a Hamiltonian extreme point, then **STOP** and claim that G is Hamiltonian;
- **3** If $t > \alpha \rho(n)$, then **STOP** and claim that with high probability, G is non-Hamiltonian. Otherwise, set t = t + 1 and return to Step 2.
 - For a given Hamiltonian graph G,

$$Pr(Required number of iterations > \tau) \le e^{-\frac{\tau}{\rho(n)}}$$
;

A New Algorithm for the HCP

- Construct the polytope $W\mathcal{H}_{\beta}$ corresponding to a given graph G, set β large enough and t=1;
- ② Generate an extreme point of polytope \mathcal{WH}_{β} , say \mathbf{x}_t , uniformly, at random. If \mathbf{x}_t is a Hamiltonian extreme point, then **STOP** and claim that G is Hamiltonian;
- 3 If $t > \alpha \rho(n)$, then **STOP** and claim that with high probability, G is non-Hamiltonian. Otherwise, set t = t + 1 and return to Step 2.
 - For a given Hamiltonian graph G,

$$Pr(Required number of iterations > \tau) \le e^{-\frac{\tau}{\rho(n)}}$$
;

• For a given graph *G*, we can solve the HCP, with high probability, in polynomial time.

Rapidly Mixing Markov Chains

- Rapidly Mixing Markov Chains
- Design a **Random walk** on extreme points of polytope $W\mathcal{H}_{\beta}$ based on a Markov chain with uniform stationary distribution;

- Rapidly Mixing Markov Chains
- Design a **Random walk** on extreme points of polytope $W\mathcal{H}_{\beta}$ based on a Markov chain with uniform stationary distribution;
- Show that the underlying Markov chain is rapidly mixing with some polynomial orders, say O(nk);

- Rapidly Mixing Markov Chains
- Design a **Random walk** on extreme points of polytope $W\mathcal{H}_{\beta}$ based on a Markov chain with uniform stationary distribution;
- Show that the underlying Markov chain is rapidly mixing with some polynomial orders, say O(nk);
- Start this random walk on extreme points of polytope \mathcal{WH}_{β} and STOP after $\mathcal{O}(n^k)$ steps;

- Rapidly Mixing Markov Chains
- Design a **Random walk** on extreme points of polytope $W\mathcal{H}_{\beta}$ based on a Markov chain with uniform stationary distribution;
- Show that the underlying Markov chain is rapidly mixing with some polynomial orders, say O(nk);
- Start this random walk on extreme points of polytope \mathcal{WH}_{β} and **STOP** after $\mathcal{O}(n^k)$ steps;
- The current extreme point has been sampled uniformly.

 Constructing a rapidly mixing random walk on the extreme points of a given polytope, in general, is an open problem.

- Constructing a rapidly mixing random walk on the extreme points of a given polytope, in general, is an open problem.
- However, recently, there have been developed some rapidly mixing random walks for some particular polytopes (e.g., [Morris and Sinclair, 2005]).

- Constructing a rapidly mixing random walk on the extreme points of a given polytope, in general, is an open problem.
- However, recently, there have been developed some rapidly mixing random walks for some particular polytopes (e.g., [Morris and Sinclair, 2005]).

Theorem (Lubetzky and Sly, 2010)

A simple-uniform random walk on vertices of a random d-regular graph on m nodes is rapidly mixing with the order of $\mathcal{O}(\log(m))$, with high probability.

- Constructing a rapidly mixing random walk on the extreme points of a given polytope, in general, is an open problem.
- However, recently, there have been developed some rapidly mixing random walks for some particular polytopes (e.g., [Morris and Sinclair, 2005]).

Theorem (Lubetzky and Sly, 2010)

A simple-uniform random walk on vertices of a random d-regular graph on m nodes is rapidly mixing with the order of $\mathcal{O}(\log(m))$, with high probability.

• In all numerical examples we have tested so far, the graph of polytopes WH_{β} seemed to be regular.

More Properties

 Klee and Minty [1972] constructed an example showing that the worst-case complexity of simplex method as formulated by Dantzig is exponential time.

More Properties

 Klee and Minty [1972] constructed an example showing that the worst-case complexity of simplex method as formulated by Dantzig is exponential time.

Theorem (Ye, 2011)

The **Simplex method** can solve discounted Markov decision processes with a fixed discount factor in **polynomial time**.

End

Thank you · · · Questions?