A Proof of the Hall-Paige Conjecture

Anthony B. Evans

Wright State University

December 21, 2011

Definition

• The Cayley table of a group $G = \{g_1, \dots, g_n\}$ is the $n \times n$ matrix with ijth entry g_ig_j .

Definition

- The Cayley table of a group $G = \{g_1, \dots, g_n\}$ is the $n \times n$ matrix with ijth entry g_ig_j .
- A latin square of order n, on a symbol set of order n, is an $n \times n$ matrix in which each symbol appears exactly once in each row, and exactly once in each column.

Definition

- The Cayley table of a group $G = \{g_1, \dots, g_n\}$ is the $n \times n$ matrix with ijth entry g_ig_j .
- A latin square of order n, on a symbol set of order n, is an $n \times n$ matrix in which each symbol appears exactly once in each row, and exactly once in each column.
- Two latin squares of the same order are orthogonal, or orthogonal mates, if, when superimposed, each ordered pair of symbols occurs exactly once.

Definition

- The Cayley table of a group $G = \{g_1, \dots, g_n\}$ is the $n \times n$ matrix with ijth entry g_ig_j .
- A latin square of order n, on a symbol set of order n, is an $n \times n$ matrix in which each symbol appears exactly once in each row, and exactly once in each column.
- Two latin squares of the same order are orthogonal, or orthogonal mates, if, when superimposed, each ordered pair of symbols occurs exactly once.

Observation

The Cayley table of a group is a latin square.

Definition

- The Cayley table of a group $G = \{g_1, \dots, g_n\}$ is the $n \times n$ matrix with ijth entry g_ig_j .
- A latin square of order n, on a symbol set of order n, is an $n \times n$ matrix in which each symbol appears exactly once in each row, and exactly once in each column.
- Two latin squares of the same order are orthogonal, or orthogonal mates, if, when superimposed, each ordered pair of symbols occurs exactly once.

Observation

The Cayley table of a group is a latin square.

Problem

Given a group, does its Cayley table have an orthogonal mate?

Orthogonal Latin Squares Based on \mathbb{Z}_7

```
\begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6 & 0 \\ 2 & 3 & 4 & 5 & 6 & 0 & 1 \\ 3 & 4 & 5 & 6 & 0 & 1 & 2 \\ 4 & 5 & 6 & 0 & 1 & 2 & 3 \\ 5 & 6 & 0 & 1 & 2 & 3 & 4 \\ 6 & 0 & 1 & 2 & 3 & 4 & 5 \end{pmatrix}, \quad \begin{pmatrix} 0 & 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 6 & 0 & 1 & 2 \\ 6 & 0 & 1 & 2 & 3 & 4 & 5 \\ 1 & 2 & 3 & 4 & 5 & 6 & 0 \\ 5 & 6 & 0 & 1 & 2 & 3 & 4 \\ 4 & 5 & 6 & 0 & 1 & 2 & 3 \\ 2 & 3 & 4 & 5 & 6 & 0 & 1 \end{pmatrix}
```

The Squares Superimposed

$\int 00$	11	22	3 <mark>3</mark>	44	5 <mark>5</mark>	6 6 \
13	24	3 <mark>5</mark>	46	5 <mark>0</mark>	6 <mark>1</mark>	02
26	30	41	5 <mark>2</mark>	6 <mark>3</mark>	04	15
31	42	5 <mark>3</mark>	6 <mark>4</mark>	05	16	20
45	5 <mark>6</mark>	6 <mark>0</mark>	01	12	23	34
54	6 <mark>5</mark>	06	10	21	3 <mark>2</mark>	43
62	03	14	25	3 <mark>6</mark>	40	51 <i>/</i>

The Squares Superimposed

$\int 00$	11	22	3 <mark>3</mark>	44	5 <mark>5</mark>	66 \
13	24	3 <mark>5</mark>	46	5 <mark>0</mark>	61	02
26	30	41	5 <mark>2</mark>	63	04	15
31	42	5 <mark>3</mark>	64	05	16	20
45	5 <mark>6</mark>	6 <mark>0</mark>	01	12	23	20 34
45 54 62	6 <mark>5</mark>	06	10	21	32	43
\ 6 <mark>2</mark>	03	14	25	3 <mark>6</mark>	40	5 1 /

The Squares Superimposed

$\int 00$	11	22	3 <mark>3</mark>	44	5 <mark>5</mark>	66 \
13 26	24	3 <mark>5</mark>	46	5 <mark>0</mark>	61	02
26	30	41	5 <mark>2</mark>	6 <mark>3</mark>	04	15
31	42	5 <mark>3</mark>	6 <mark>4</mark>	05	1 <mark>6</mark>	20 34
45	5 <mark>6</mark>	6 <mark>0</mark>	01	12	23	34
45 54 62	6 <mark>5</mark>	06	10	21	32	43
\ 6 <mark>2</mark>	03	14	25	3 <mark>6</mark>	40	51

```
      0
      1
      2
      3
      4
      5
      6
      0

      1
      2
      3
      4
      5
      6
      0
      0
      1
      2
      3
      4
      5
      6
      0
      1
      2
      3
      4
      5
      6
      0
      1
      2
      3
      4
      5
      6
      0
      1
      2
      3
      4
      6
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
      4
      5
      0
      1
      2
      3
```

• Define $\theta \colon \mathbb{Z}_7 \to \mathbb{Z}_7$ by $\theta(i) = j$ if the *ij*th entry is red.

$$\begin{pmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 & 2 & 3 & 4 & 5 & 6 & 0 \\
2 & 3 & 4 & 5 & 6 & 0 & 1 \\
3 & 4 & 5 & 6 & 0 & 1 & 2 \\
4 & 5 & 6 & 0 & 1 & 2 & 3 \\
5 & 6 & 0 & 1 & 2 & 3 & 4 \\
6 & 0 & 1 & 2 & 3 & 4 & 5
\end{pmatrix}$$

- Define $\theta: \mathbb{Z}_7 \to \mathbb{Z}_7$ by $\theta(i) = j$ if the *ij*th entry is red.
- The mapping $x \mapsto \theta(x)$ is a bijection.

- Define $\theta: \mathbb{Z}_7 \to \mathbb{Z}_7$ by $\theta(i) = j$ if the *ij*th entry is red.
- The mapping $x \mapsto \theta(x)$ is a bijection.
- The mapping $x \mapsto \theta(x) + x$ is a bijection.

- Define $\theta: \mathbb{Z}_7 \to \mathbb{Z}_7$ by $\theta(i) = j$ if the *ij*th entry is red.
- The mapping $x \mapsto \theta(x)$ is a bijection.
- The mapping $x \mapsto \theta(x) + x$ is a bijection.
- θ is a complete mapping of \mathbb{Z}_7 .

Definition

A complete mapping of a group G is a bijection $\theta \colon G \to G$ for which the mapping $x \mapsto x\theta(x)$ is also a bijection.

Definition

A complete mapping of a group G is a bijection $\theta \colon G \to G$ for which the mapping $x \mapsto x\theta(x)$ is also a bijection.

Definition

A complete mapping of a group G is a bijection $\theta \colon G \to G$ for which the mapping $x \mapsto x\theta(x)$ is also a bijection.

Examples

① If $G = GF(q)^+$, then $x \mapsto ax$ is a complete mapping if and only if $a \neq 0, -1$,

Definition

A complete mapping of a group G is a bijection $\theta \colon G \to G$ for which the mapping $x \mapsto x\theta(x)$ is also a bijection.

Examples

• If $G = GF(q)^+$, then $x \mapsto ax$ is a complete mapping if and only if $a \neq 0, -1$, as then $x \mapsto ax$ and $x \mapsto (a+1)x$ are both bijections.

Definition

A complete mapping of a group G is a bijection $\theta \colon G \to G$ for which the mapping $x \mapsto x\theta(x)$ is also a bijection.

- If $G = GF(q)^+$, then $x \mapsto ax$ is a complete mapping if and only if $a \neq 0, -1$, as then $x \mapsto ax$ and $x \mapsto (a+1)x$ are both bijections.
- ② If |G| is odd, then $x \mapsto x$ is a complete mapping,

Definition

A complete mapping of a group G is a bijection $\theta \colon G \to G$ for which the mapping $x \mapsto x\theta(x)$ is also a bijection.

- If $G = GF(q)^+$, then $x \mapsto ax$ is a complete mapping if and only if $a \neq 0, -1$, as then $x \mapsto ax$ and $x \mapsto (a+1)x$ are both bijections.
- ② If |G| is odd, then $x \mapsto x$ is a complete mapping, as $x \mapsto x$ and $x \mapsto x^2$ are both bijections.

Definition

A complete mapping of a group G is a bijection $\theta \colon G \to G$ for which the mapping $x \mapsto x\theta(x)$ is also a bijection.

- If $G = GF(q)^+$, then $x \mapsto ax$ is a complete mapping if and only if $a \neq 0, -1$, as then $x \mapsto ax$ and $x \mapsto (a+1)x$ are both bijections.
- ② If |G| is odd, then $x \mapsto x$ is a complete mapping, as $x \mapsto x$ and $x \mapsto x^2$ are both bijections.
- **③** If $\alpha \in Aut(G)$, then $x \mapsto x^{-1}\alpha(x)$ is a complete mapping if and only if α is fixed-point-free.

Theorem

The Cayley table of a group has an orthogonal mate if and only if the group admits complete mappings.

Theorem

The Cayley table of a group has an orthogonal mate if and only if the group admits complete mappings.

Definition

A group is admissible if it admits complete mappings.

Theorem

The Cayley table of a group has an orthogonal mate if and only if the group admits complete mappings.

Definition

A group is admissible if it admits complete mappings.

The problem - Given a group, does its Cayley table have an orthogonal mate? - can be written as

Theorem

The Cayley table of a group has an orthogonal mate if and only if the group admits complete mappings.

Definition

A group is admissible if it admits complete mappings.

The problem - Given a group, does its Cayley table have an orthogonal mate? - can be written as

Problem

Which groups are admissible?

Theorem (Hall and Paige, 1955)

A finite group with a nontrivial, cyclic Sylow 2-subgroup is not admissible.

Theorem (Hall and Paige, 1955)

A finite group with a nontrivial, cyclic Sylow 2-subgroup is not admissible.

Proof

Assume G has a nontrivial, cyclic Sylow 2-subgroup, |G|=mn, n odd, m a power of 2, and G admits a complete mapping θ .

Theorem (Hall and Paige, 1955)

A finite group with a nontrivial, cyclic Sylow 2-subgroup is not admissible.

Proof

Assume G has a nontrivial, cyclic Sylow 2-subgroup, |G|=mn, n odd, m a power of 2, and G admits a complete mapping θ . There exists an epimorphism $\phi\colon G\to \mathbb{Z}_m$.

Theorem (Hall and Paige, 1955)

A finite group with a nontrivial, cyclic Sylow 2-subgroup is not admissible.

Proof

Assume G has a nontrivial, cyclic Sylow 2-subgroup, |G|=mn, n odd, m a power of 2, and G admits a complete mapping θ . There exists an epimorphism $\phi\colon G\to \mathbb{Z}_m$.

$$\sum_{g \in G} \phi(g) = \sum_{g \in G} \phi(g\theta(g)) = \sum_{g \in G} (\phi(\theta(g)) + \phi(g)) = 2 \sum_{g \in G} \phi(g)$$

Theorem (Hall and Paige, 1955)

A finite group with a nontrivial, cyclic Sylow 2-subgroup is not admissible.

Proof

Assume G has a nontrivial, cyclic Sylow 2-subgroup, |G|=mn, n odd, m a power of 2, and G admits a complete mapping θ . There exists an epimorphism $\phi\colon G\to \mathbb{Z}_m$.

$$\sum_{g \in G} \phi(g) = \sum_{g \in G} \phi(g\theta(g)) = \sum_{g \in G} (\phi(\theta(g)) + \phi(g)) = 2 \sum_{g \in G} \phi(g)$$

Thus $\sum_{g \in G} \phi(g) = 0$.

Theorem (Hall and Paige, 1955)

A finite group with a nontrivial, cyclic Sylow 2-subgroup is not admissible.

Proof

Assume G has a nontrivial, cyclic Sylow 2-subgroup, |G|=mn, n odd, m a power of 2, and G admits a complete mapping θ . There exists an epimorphism $\phi\colon G\to \mathbb{Z}_m$.

$$\sum_{g \in G} \phi(g) = \sum_{g \in G} \phi(g\theta(g)) = \sum_{g \in G} (\phi(\theta(g)) + \phi(g)) = 2 \sum_{g \in G} \phi(g)$$

Thus $\sum_{g \in G} \phi(g) = 0$.

$$\sum_{g \in G} \phi(g) = n \sum_{i=0}^{m-1} i = nm(m-1)/2 = nm/2 \neq 0.$$

- (ロ) (部) (注) (注) (注) (2)

• Euler (1779). Cyclic latin squares of even order do not have orthogonal mates. Later proofs given by Singer (1960) and Hedayat and Federer (1969).

- Euler (1779). Cyclic latin squares of even order do not have orthogonal mates. Later proofs given by Singer (1960) and Hedayat and Federer (1969).
- ② Vijayaraghavan and Chowla (1948). If n has a primitive root, then the group of units of \mathbb{Z}_n is not admissible. Extends a result of Hurwitz (1882).

- Euler (1779). Cyclic latin squares of even order do not have orthogonal mates. Later proofs given by Singer (1960) and Hedayat and Federer (1969).
- ② Vijayaraghavan and Chowla (1948). If n has a primitive root, then the group of units of \mathbb{Z}_n is not admissible. Extends a result of Hurwitz (1882).
- Paige 1947. Finite abelian groups with unique involutions are not admissible.

Special Cases of the Hall-Paige Theorem

- Euler (1779). Cyclic latin squares of even order do not have orthogonal mates. Later proofs given by Singer (1960) and Hedayat and Federer (1969).
- ② Vijayaraghavan and Chowla (1948). If n has a primitive root, then the group of units of \mathbb{Z}_n is not admissible. Extends a result of Hurwitz (1882).
- Paige 1947. Finite abelian groups with unique involutions are not admissible.
- Fleisher 1934. Cayley tables of groups of order 4n + 2 do not have orthogonal mates. Later proofs given by Mann (1942) and Jungnickel (1980).

The Hall-Paige Conjecture

Conjecture (Hall and Paige, 1955)

A finite group with a trivial or noncyclic Sylow 2-subgroup is admissible.

Special Cases of the Hall-Paige Conjecture

This conjecture has been proved for several classes of groups including

Abelian groups and groups of odd order - Paige (1947).

Special Cases of the Hall-Paige Conjecture

- Abelian groups and groups of odd order Paige (1947).
- Solvable groups Hall and Paige (1955).

Special Cases of the Hall-Paige Conjecture

- Abelian groups and groups of odd order Paige (1947).
- Solvable groups Hall and Paige (1955).
- A_n and S_n Hall and Paige (1955).

Special Cases of the Hall-Paige Conjecture

- Abelian groups and groups of odd order Paige (1947).
- Solvable groups Hall and Paige (1955).
- A_n and S_n Hall and Paige (1955).
- Mathieu groups Dalla Volta and Gavioli (1993).

Special Cases of the Hall-Paige Conjecture

- Abelian groups and groups of odd order Paige (1947).
- Solvable groups Hall and Paige (1955).
- A_n and S_n Hall and Paige (1955).
- Mathieu groups Dalla Volta and Gavioli (1993).
- Suzuki groups and some unitary groups Di Vicenzo (1989).

Special Cases of the Hall-Paige Conjecture

- Abelian groups and groups of odd order Paige (1947).
- Solvable groups Hall and Paige (1955).
- A_n and S_n Hall and Paige (1955).
- Mathieu groups Dalla Volta and Gavioli (1993).
- Suzuki groups and some unitary groups Di Vicenzo (1989).
- Many linear groups Saeli (1989), Dalla Volta and Gavioli (1993, 1997), and Evans (1993, 2002, 2005).

Special Cases of the Hall-Paige Conjecture

This conjecture has been proved for several classes of groups including

- Abelian groups and groups of odd order Paige (1947).
- Solvable groups Hall and Paige (1955).
- A_n and S_n Hall and Paige (1955).
- Mathieu groups Dalla Volta and Gavioli (1993).
- Suzuki groups and some unitary groups Di Vicenzo (1989).
- Many linear groups Saeli (1989), Dalla Volta and Gavioli (1993, 1997), and Evans (1993, 2002, 2005).

Aschbacher's Reduction

Aschbacher (1990). Any minimal counterexample to the Hall-paige conjecture must be "close" to being simple.

The proof has three parts.

Reduction to simple groups.

The proof has three parts.

Reduction to simple groups.
 Wilcox (2009).

- Reduction to simple groups. Wilcox (2009).
- The proof for groups of Lie type.

- Reduction to simple groups. Wilcox (2009).
- The proof for groups of Lie type. Wilcox (2009): all except the Tits group.

- Reduction to simple groups. Wilcox (2009).
- The proof for groups of Lie type. Wilcox (2009): all except the Tits group. Evans (2009): The Tits group.

- Reduction to simple groups. Wilcox (2009).
- The proof for groups of Lie type. Wilcox (2009): all except the Tits group. Evans (2009): The Tits group.
- The proof for sporadic simple groups.

- Reduction to simple groups.
 Wilcox (2009).
- The proof for groups of Lie type. Wilcox (2009): all except the Tits group. Evans (2009): The Tits group.
- **3** The proof for sporadic simple groups. Evans (2009): all but J_4 .

- Reduction to simple groups.
 Wilcox (2009).
- The proof for groups of Lie type. Wilcox (2009): all except the Tits group. Evans (2009): The Tits group.
- The proof for sporadic simple groups. Evans (2009): all but J_4 . Bray (Personal Communication): J_4 .

Theorem (Wilcox, 2009)

Any minimal counterexample to the Hall-Paige conjecture, if such exists, must be a nonabelian simple group.

Theorem (Wilcox, 2009)

Any minimal counterexample to the Hall-Paige conjecture, if such exists, must be a nonabelian simple group.

Main idea – Suppose that G has noncyclic Sylow 2-subgroups and $H \subseteq G$.

Theorem (Wilcox, 2009)

Any minimal counterexample to the Hall-Paige conjecture, if such exists, must be a nonabelian simple group.

Main idea – Suppose that G has noncyclic Sylow 2-subgroups and $H \subseteq G$.

Special Case

If $H \cong \mathbb{Z}_2$ and G/H is admissible, then G is admissible.

Theorem (Wilcox, 2009)

Any minimal counterexample to the Hall-Paige conjecture, if such exists, must be a nonabelian simple group.

Main idea – Suppose that G has noncyclic Sylow 2-subgroups and $H \subseteq G$.

Special Case

If $H \cong \mathbb{Z}_2$ and G/H is admissible, then G is admissible.

Special Case

If $G/H \cong \mathbb{Z}_2$ and H is admissible, then G is admissible.

Theorem (Wilcox, 2009)

Any minimal counterexample to the Hall-Paige conjecture, if such exists, must be a nonabelian simple group.

Main idea – Suppose that G has noncyclic Sylow 2-subgroups and $H \subseteq G$.

Special Case

If $H \cong \mathbb{Z}_2$ and G/H is admissible, then G is admissible.

Special Case

If $G/H \cong \mathbb{Z}_2$ and H is admissible, then G is admissible.

Proved by showing that technical conditions in a result of Evans (1992) hold.

W-systems

Let G be a finite group acting on X. Let $H = G_X$ for some $X \in X$. $\mathcal{D} = \{HgH \mid g \in G\}$ is the set of double cosets for H in G.

W-systems

Let G be a finite group acting on X. Let $H = G_x$ for some $x \in X$. $\mathcal{D} = \{HgH \mid g \in G\}$ is the set of double cosets for H in G.

Theorem (W-system)

If H is admissible and there exist bijections $\phi, \psi \colon \mathcal{D} \to \mathcal{D}$ satisfying $|D| = |\psi(D)| = |\phi(D)|$ and

$$\psi(D) \subseteq D\phi(D)$$
 for all $D \in \mathcal{D}$,

then G is admissible.

W-systems

Let G be a finite group acting on X. Let $H = G_x$ for some $x \in X$. $\mathcal{D} = \{HgH \mid g \in G\}$ is the set of double cosets for H in G.

Theorem (W-system)

If H is admissible and there exist bijections $\phi, \psi \colon \mathcal{D} \to \mathcal{D}$ satisfying $|D| = |\psi(D)| = |\phi(D)|$ and

$$\psi(D) \subseteq D\phi(D)$$
 for all $D \in \mathcal{D}$,

then G is admissible.

Corollary (Simple W-system)

If H is admissible and

$$D \subseteq D^2$$
 for all $D \in \mathcal{D}$,

then G is admissible.

Groups of Lie Type

Groups of Lie Type

Theorem

No finite simple group of Lie type, with the possible exception of the Tits group, can be a minimal counterexample to the Hall-Paige conjecture.

Groups of Lie Type

Theorem

No finite simple group of Lie type, with the possible exception of the Tits group, can be a minimal counterexample to the Hall-Paige conjecture.

The proof uses (B, N)-pairs and parabolic subgroups, which yield partitions of the element set of a group of Lie type into double cosets.

The Tits Group

Theorem

The Tits group $T = {}^2F_4(2)'$ is not a minimal counterexample to the Hall-Paige conjecture.

The proof uses a rank-4 permutation representation of degree 1,600 and MAGMA.

Theorem

If H is a point-stabilizer in a doubly transitive permutation representation of a finite simple group G and H is admissible, then G is admissible.

Theorem

If H is a point-stabilizer in a doubly transitive permutation representation of a finite simple group G and H is admissible, then G is admissible.

Proof

The double cosets are H and $D = G \setminus H$.

Theorem

If H is a point-stabilizer in a doubly transitive permutation representation of a finite simple group G and H is admissible, then G is admissible.

Proof

The double cosets are H and $D = G \setminus H$.

 $H \subseteq H^2$

Theorem

If H is a point-stabilizer in a doubly transitive permutation representation of a finite simple group G and H is admissible, then G is admissible.

Proof

The double cosets are H and $D = G \setminus H$.

 $H \subseteq H^2$

If $D \nsubseteq D^2$, then $g^2 \in H$ for all $g \in G$.

Theorem

If H is a point-stabilizer in a doubly transitive permutation representation of a finite simple group G and H is admissible, then G is admissible.

Proof

The double cosets are H and $D = G \setminus H$.

 $H \subseteq H^2$

If $D \nsubseteq D^2$, then $g^2 \in H$ for all $g \in G$.

If |g| is odd, then $g \in H$.

Doubly Transitive Groups

Theorem

If H is a point-stabilizer in a doubly transitive permutation representation of a finite simple group G and H is admissible, then G is admissible.

Proof

The double cosets are H and $D = G \setminus H$.

 $H \subset H^2$

If $D \not\subseteq D^2$, then $g^2 \in H$ for all $g \in G$.

If |g| is odd, then $g \in H$.

Then K, the subgroup of G generated by the set of odd-order elements of G, is a nontrivial characteristic subgroup of G contained in H.

Doubly Transitive Groups

Theorem

If H is a point-stabilizer in a doubly transitive permutation representation of a finite simple group G and H is admissible, then G is admissible.

Proof

The double cosets are H and $D = G \setminus H$.

 $H \subset H^2$

If $D \not\subseteq D^2$, then $g^2 \in H$ for all $g \in G$.

If |g| is odd, then $g \in H$.

Then K, the subgroup of G generated by the set of odd-order elements of G, is a nontrivial characteristic subgroup of G contained in H.

A contradiction.

Some Doubly Transitive Simple Groups

Corollary

HS and Co_3 are not minimal counterexamples to the Hall-Paige conjecture.

Some Doubly Transitive Simple Groups

Corollary

HS and Co_3 are not minimal counterexamples to the Hall-Paige conjecture.

Corollary

 A_n , $n \ge 5$, is not a minimal counterexample to the Hall-Paige conjecture.

Some Doubly Transitive Simple Groups

Corollary

HS and Co_3 are not minimal counterexamples to the Hall-Paige conjecture.

Corollary

 A_n , $n \ge 5$, is not a minimal counterexample to the Hall-Paige conjecture.

Corollary

The Mathieu groups are not minimal counterexamples to the Hall-Paige conjecture.

Rank-3 Groups

Theorem

Let G be an even-order group and let H be a point-stabilizer in a rank 3 permutation representation of G with parameters (n, k, l, λ, μ) . If H is admissible, $\lambda > 0$, and $l - k + \mu - 1 > 0$, then G is admissible.

Rank-3 Groups

Theorem

Let G be an even-order group and let H be a point-stabilizer in a rank 3 permutation representation of G with parameters (n, k, l, λ, μ) . If H is admissible, $\lambda > 0$, and $l - k + \mu - 1 > 0$, then G is admissible.

Corollary

 J_2 , McL, Ru, Suz, Co_2 , Fi_{22} , Fi_{23} , and Fi'_{24} are not minimal counterexamples to the Hall-Paige conjecture.

Parameters for Rank-3 Groups

G	Н	n	k	1	λ	μ
$\overline{J_2}$	$U_3(3)$	100	36	63	14	12
McL	$U_4(3)$	275	112	162	30	56
Ru	${}^{2}F_{4}(2)$	4,060	1,755	2,304	730	780
Suz	$G_2(4)$	1,782	416	1,365	100	96
Co_2	$U_6(2):2$	2,300	891	1,408	378	324
Fi_{22}	$2^{\cdot}U_{6}(2)$	3,510	693	2,816	180	126
	$O_7(3)$	14,080	3,159	10,920	918	648
Fi_{23}	2 [.] Fi ₂₂	31,671	3,510	28, 160	693	351
	$O_8^+(3):S_3$	137,632	28,431	109,200	6,030	5,832
Fi ₂₄	Fi ₂₃	306,936	31,671	275,264	3,510	3,240

G acts on X.

G acts on X.H point-stabilizer.

G acts on X. H point-stabilizer. O_1, \ldots, O_r orbits of H on X.

```
G acts on X.

H point-stabilizer.

O_1, \ldots, O_r orbits of H on X.

a_1, \ldots, a_r representatives of O_1, \ldots, O_r.
```

```
G acts on X.

H point-stabilizer.

O_1, \ldots, O_r orbits of H on X.

a_1, \ldots, a_r representatives of O_1, \ldots, O_r.

E_1, \ldots, E_r orbits of G on X \times X.
```

```
G acts on X.

H point-stabilizer.

O_1, \ldots, O_r orbits of H on X.

a_1, \ldots, a_r representatives of O_1, \ldots, O_r.

E_1, \ldots, E_r orbits of G on X \times X.

D_1, \ldots, D_r double cosets of H in G.
```

G acts on X.

H point-stabilizer.

 O_1, \ldots, O_r orbits of H on X.

 a_1, \ldots, a_r representatives of O_1, \ldots, O_r .

 E_1, \ldots, E_r orbits of G on $X \times X$.

 D_1, \ldots, D_r double cosets of H in G.

Entries of Collapsed Adjacency matrices

$$A_{ij}^k = |\{y \in O_j \mid (a_i, y) \in E_k\}|.$$

Lemma

If $A_{kk}^k \neq 0$, then $D_k \subseteq D_k^2$.

Lemma

If $A_{kk}^k \neq 0$, then $D_k \subseteq D_k^2$.

Lemma

If $A_{kj}^k \neq 0$, then $D_k^2 \supseteq D_j$.

Lemma

If $A_{kk}^k \neq 0$, then $D_k \subseteq D_k^2$.

Lemma

If $A_{kj}^k \neq 0$, then $D_k^2 \supseteq D_j$.

Theorem

He, O'N, HN, Ly, Th, Co_1 , B, and M are not minimal counterexamples to the Hall-Paige conjecture.

Lemma

If $A_{kk}^k \neq 0$, then $D_k \subseteq D_k^2$.

Lemma

If $A_{kj}^k \neq 0$, then $D_k^2 \supseteq D_j$.

Theorem

He, O'N, HN, Ly, Th, Co_1 , B, and M are not minimal counterexamples to the Hall-Paige conjecture.

Group	He	O'N	HN	Ly	Th	Co_1	В	Μ
Rank								
W-simple?	N	Y	Y	Y	Ν	Y	Y	Y

Lemma

Let H be a subgroup of G, and \mathcal{D} the set of double cosets of H in G. If $D \in \mathcal{D}$ contains an element of order 3, then $D \subseteq (D^{(-1)})^2$ and $D^{(-1)} \subseteq D^2$, where $D^{(-1)} = \{d^{-1} \mid d \in D\}$.

Lemma

Let H be a subgroup of G, and \mathcal{D} the set of double cosets of H in G. If $D \in \mathcal{D}$ contains an element of order 3, then $D \subseteq (D^{(-1)})^2$ and $D^{(-1)} \subseteq D^2$, where $D^{(-1)} = \{d^{-1} \mid d \in D\}$.

Theorem

 J_1 and J_3 are not minimal counterexamples to the Hall-Paige conjecture.

Lemma

Let H be a subgroup of G, and \mathcal{D} the set of double cosets of H in G. If $D \in \mathcal{D}$ contains an element of order 3, then $D \subseteq (D^{(-1)})^2$ and $D^{(-1)} \subseteq D^2$, where $D^{(-1)} = \{d^{-1} \mid d \in D\}$.

Theorem

 J_1 and J_3 are not minimal counterexamples to the Hall-Paige conjecture.

The proof uses the 3-element Lemma, a rank-22 permutation representation of J_1 , a rank-14 permutation representation of J_3 , and MAGMA.

Lemma

Let H be a subgroup of G, and \mathcal{D} the set of double cosets of H in G. If $D \in \mathcal{D}$ contains an element of order 3, then $D \subseteq (D^{(-1)})^2$ and $D^{(-1)} \subseteq D^2$, where $D^{(-1)} = \{d^{-1} \mid d \in D\}$.

Theorem

 J_1 and J_3 are not minimal counterexamples to the Hall-Paige conjecture.

The proof uses the 3-element Lemma, a rank-22 permutation representation of J_1 , a rank-14 permutation representation of J_3 , and MAGMA.

Theorem (Bray, Personal Communication)

 J_4 is not minimal counterexample to the Hall-Paige conjecture.

The proof is obtained by constructing collapsed adjacency matrices for a degree 3,980,549,947 permutation representation of J_4 .

Summary: The Last 22 Groups; part a

G	Н	Index	Rank
$\overline{J_1}$	$A_5 \times 2$	1,463	22
J_2	$U_3(3)$	100	3
${}^{2}F_{4}(2)'$	$L_3(3):2$	1,600	4
HS	$U_3(5):2$	176	2
J_3	$L_2(19)$	14,688	14
McL	$U_4(3)$	275	3
He	$S_4(4):2$	2,058	5
Ru	${}^{2}F_{4}(2)$	4,060	3
Suz	$G_2(4)$	1,782	3
O'N	$L_3(7):2$	122,760	5
Co_3	McL : 2	276	2

Summary: The Last 22 Groups; part b

G	Н	Index	Rank
Co ₂	$U_6(2):2$	2,300	3
Fi_{22}	$2^{\cdot}U_{6}(2)$	3,510	3
HN	2. <i>HS</i> .2	1,539,000	9
Ly	$G_2(5)$	8, 835, 156	5
Th	$2^5.L_5(2)$	283, 599, 225	11
Fi_{23}	2 ⁻ Fi ₂₂	31,671	3
Co_1	Co ₂	98, 280	4
J_4	$2^{1+12}_{+}.3M_{22}:2$	3, 980, 549, 947	?
Fi'_{24}	Fi ₂₃	306, 936	3
В	2^{1+22}_{+} . Co_2	11,707,448,673,375	10
Μ	2. <i>B</i>	97, 239, 461, 142, 009, 186, 000	9