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Cayley Tables and Latin Squares

Definition

The Cayley table of a group G = {g1, . . . , gn} is the n × n matrix

with ijth entry gigj .

A latin square of order n, on a symbol set of order n, is an n × n
matrix in which each symbol appears exactly once in each row, and

exactly once in each column.

Two latin squares of the same order are orthogonal,

or orthogonal mates, if, when superimposed, each ordered pair of

symbols occurs exactly once.

Observation
The Cayley table of a group is a latin square.

Problem
Given a group, does its Cayley table have an orthogonal mate?
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Orthogonal Latin Squares Based on Z7





0 1 2 3 4 5 6

1 2 3 4 5 6 0

2 3 4 5 6 0 1

3 4 5 6 0 1 2

4 5 6 0 1 2 3

5 6 0 1 2 3 4

6 0 1 2 3 4 5





,





0 1 2 3 4 5 6

3 4 5 6 0 1 2

6 0 1 2 3 4 5

1 2 3 4 5 6 0

5 6 0 1 2 3 4

4 5 6 0 1 2 3

2 3 4 5 6 0 1




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The Squares Superimposed





00 11 22 33 44 55 66

13 24 35 46 50 61 02

26 30 41 52 63 04 15

31 42 53 64 05 16 20

45 56 60 01 12 23 34

54 65 06 10 21 32 43

62 03 14 25 36 40 51




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A Complete Mapping of Z7





0 1 2 3 4 5 6

1 2 3 4 5 6 0

2 3 4 5 6 0 1

3 4 5 6 0 1 2

4 5 6 0 1 2 3

5 6 0 1 2 3 4

6 0 1 2 3 4 5





Define θ : Z7 → Z7 by θ(i) = j if the ijth entry is red.

The mapping x �→ θ(x) is a bijection.

The mapping x �→ θ(x) + x is a bijection.

θ is a complete mapping of Z7.
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Complete Mappings of Groups

Definition
A complete mapping of a group G is a bijection θ : G → G for which the

mapping x �→ xθ(x) is also a bijection.

Examples
1 If G = GF (q)

+
, then x �→ ax is a complete mapping if and only if

a �= 0,−1, as then x �→ ax and x �→ (a + 1)x are both bijections.

2 If |G | is odd, then x �→ x is a complete mapping, as x �→ x and

x �→ x2
are both bijections.

3 If α ∈ Aut(G ), then x �→ x−1α(x) is a complete mapping if and only

if α is fixed-point-free.
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The Problem Rewritten

Theorem
The Cayley table of a group has an orthogonal mate if and only if the
group admits complete mappings.

Definition
A group is admissible if it admits complete mappings.

The problem - Given a group, does its Cayley table have an orthogonal

mate? - can be written as

Problem
Which groups are admissible?
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The Hall-Paige Theorem

Theorem (Hall and Paige, 1955)

A finite group with a nontrivial, cyclic Sylow 2-subgroup is not admissible.

Proof
Assume G has a nontrivial, cyclic Sylow 2-subgroup,

|G | = mn, n odd, m a power of 2, and G admits a complete mapping θ.
There exists an epimorphism φ : G → Zm.

�

g∈G

φ(g) =

�

g∈G

φ(gθ(g)) =

�

g∈G

(φ(θ(g)) + φ(g)) = 2

�

g∈G

φ(g)

Thus
�

g∈G φ(g) = 0.

But

�

g∈G

φ(g) = n
m−1�

i=0

i = nm(m − 1)/2 = nm/2 �= 0.
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Special Cases of the Hall-Paige Theorem

1 Euler (1779). Cyclic latin squares of even order do not have

orthogonal mates. Later proofs given by Singer (1960) and Hedayat

and Federer (1969).

2 Vijayaraghavan and Chowla (1948). If n has a primitive root, then the

group of units of Zn is not admissible. Extends a result of Hurwitz

(1882).

3 Paige 1947. Finite abelian groups with unique involutions are not

admissible.

4 Fleisher 1934. Cayley tables of groups of order 4n + 2 do not have

orthogonal mates. Later proofs given by Mann (1942) and Jungnickel

(1980).
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The Hall-Paige Conjecture

Conjecture (Hall and Paige, 1955)

A finite group with a trivial or noncyclic Sylow 2-subgroup is admissible.
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Some Results

Special Cases of the Hall-Paige Conjecture

This conjecture has been proved for several classes of groups including

Abelian groups and groups of odd order - Paige (1947).

Solvable groups - Hall and Paige (1955).

An and Sn - Hall and Paige (1955).

Mathieu groups - Dalla Volta and Gavioli (1993).

Suzuki groups and some unitary groups - Di Vicenzo (1989).

Many linear groups - Saeli (1989), Dalla Volta and Gavioli (1993,

1997), and Evans (1993, 2002, 2005).

Aschbacher’s Reduction

Aschbacher (1990). Any minimal counterexample to the Hall-paige

conjecture must be “close” to being simple.
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A Proof of the Hall-Paige Conjecture

The proof has three parts.

1 Reduction to simple groups.

Wilcox (2009).

2 The proof for groups of Lie type.

Wilcox (2009): all except the Tits group.

Evans (2009): The Tits group.

3 The proof for sporadic simple groups.

Evans (2009): all but J4.

Bray (Personal Communication): J4.
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Wilcox’s Reduction

Theorem (Wilcox, 2009)

Any minimal counterexample to the Hall-Paige conjecture, if such exists,

must be a nonabelian simple group.

Main idea – Suppose that G has noncyclic Sylow 2-subgroups and H � G .

Special Case

If H ∼= Z2 and G/H is admissible, then G is admissible.

Special Case

If G/H ∼= Z2 and H is admissible, then G is admissible.

Proved by showing that technical conditions in a result of Evans (1992)

hold.
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W-systems
Let G be a finite group acting on X . Let H = Gx for some x ∈ X .

D = {HgH | g ∈ G} is the set of double cosets for H in G .

Theorem (W-system)

If H is admissible and there exist bijections φ, ψ : D → D satisfying

|D| = |ψ(D)| = |φ(D)| and

ψ(D) ⊆ Dφ(D) for all D ∈ D,

then G is admissible.

Corollary (Simple W-system)

If H is admissible and

D ⊆ D2
for all D ∈ D,

then G is admissible.
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Groups of Lie Type

Theorem
No finite simple group of Lie type, with the possible exception of the Tits
group, can be a minimal counterexample to the Hall-Paige conjecture.

The proof uses (B,N)-pairs and parabolic subgroups, which yield

partitions of the element set of a group of Lie type into double cosets.
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The Tits Group

Theorem

The Tits group T =
2F4(2)

� is not a minimal counterexample to the
Hall-Paige conjecture.

The proof uses a rank-4 permutation representation of degree 1,600 and

MAGMA.
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Doubly Transitive Groups

Theorem
If H is a point-stabilizer in a doubly transitive permutation representation
of a finite simple group G and H is admissible, then G is admissible.

Proof

The double cosets are H and D = G \ H.

H ⊆ H2

If D �⊆ D2
, then g2 ∈ H for all g ∈ G .

If |g | is odd, then g ∈ H.

Then K , the subgroup of G generated by the set of odd-order elements of

G , is a nontrivial characteristic subgroup of G contained in H.

A contradiction.
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Some Doubly Transitive Simple Groups

Corollary

HS and Co3 are not minimal counterexamples to the Hall-Paige conjecture.

Corollary

An, n ≥ 5, is not a minimal counterexample to the Hall-Paige conjecture.

Corollary

The Mathieu groups are not minimal counterexamples to the Hall-Paige
conjecture.
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Rank-3 Groups

Theorem
Let G be an even-order group and let H be a point-stabilizer in a rank 3

permutation representation of G with parameters (n, k, l , λ, µ). If H is
admissible, λ > 0, and l − k + µ− 1 > 0, then Gis admissible.

Corollary

J2, McL, Ru, Suz, Co2, Fi22, Fi23, and Fi �
24

are not minimal
counterexamples to the Hall-Paige conjecture.
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Parameters for Rank-3 Groups

G H n k l λ µ
J2 U3(3) 100 36 63 14 12

McL U4(3) 275 112 162 30 56

Ru 2F4(2) 4,060 1,755 2,304 730 780

Suz G2(4) 1,782 416 1,365 100 96

Co2 U6(2):2 2,300 891 1,408 378 324

Fi22 2
·U6(2) 3,510 693 2,816 180 126

O7(3) 14,080 3,159 10,920 918 648

Fi23 2
·Fi22 31,671 3,510 28, 160 693 351

O+

8
(3):S3 137,632 28,431 109,200 6,030 5,832

Fi �
24

Fi23 306,936 31,671 275,264 3,510 3,240
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Collapsed Adjacency Matrices

G acts on X .

H point-stabilizer.

O1, . . . ,Or orbits of H on X .

a1, . . . , ar representatives of O1, . . . ,Or .

E1, . . . ,Er orbits of G on X × X .

D1, . . . ,Dr double cosets of H in G .

Entries of Collapsed Adjacency matrices

Ak
ij = |{y ∈ Oj | (ai , y) ∈ Ek}|.

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 23 / 27



Collapsed Adjacency Matrices

G acts on X .

H point-stabilizer.

O1, . . . ,Or orbits of H on X .

a1, . . . , ar representatives of O1, . . . ,Or .

E1, . . . ,Er orbits of G on X × X .

D1, . . . ,Dr double cosets of H in G .

Entries of Collapsed Adjacency matrices

Ak
ij = |{y ∈ Oj | (ai , y) ∈ Ek}|.

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 23 / 27



Collapsed Adjacency Matrices

G acts on X .

H point-stabilizer.

O1, . . . ,Or orbits of H on X .

a1, . . . , ar representatives of O1, . . . ,Or .

E1, . . . ,Er orbits of G on X × X .

D1, . . . ,Dr double cosets of H in G .

Entries of Collapsed Adjacency matrices

Ak
ij = |{y ∈ Oj | (ai , y) ∈ Ek}|.

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 23 / 27



Collapsed Adjacency Matrices

G acts on X .

H point-stabilizer.

O1, . . . ,Or orbits of H on X .

a1, . . . , ar representatives of O1, . . . ,Or .

E1, . . . ,Er orbits of G on X × X .

D1, . . . ,Dr double cosets of H in G .

Entries of Collapsed Adjacency matrices

Ak
ij = |{y ∈ Oj | (ai , y) ∈ Ek}|.

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 23 / 27



Collapsed Adjacency Matrices

G acts on X .

H point-stabilizer.

O1, . . . ,Or orbits of H on X .

a1, . . . , ar representatives of O1, . . . ,Or .

E1, . . . ,Er orbits of G on X × X .

D1, . . . ,Dr double cosets of H in G .

Entries of Collapsed Adjacency matrices

Ak
ij = |{y ∈ Oj | (ai , y) ∈ Ek}|.

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 23 / 27



Collapsed Adjacency Matrices

G acts on X .

H point-stabilizer.

O1, . . . ,Or orbits of H on X .

a1, . . . , ar representatives of O1, . . . ,Or .

E1, . . . ,Er orbits of G on X × X .

D1, . . . ,Dr double cosets of H in G .

Entries of Collapsed Adjacency matrices

Ak
ij = |{y ∈ Oj | (ai , y) ∈ Ek}|.

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 23 / 27



Collapsed Adjacency Matrices

G acts on X .

H point-stabilizer.

O1, . . . ,Or orbits of H on X .

a1, . . . , ar representatives of O1, . . . ,Or .

E1, . . . ,Er orbits of G on X × X .

D1, . . . ,Dr double cosets of H in G .

Entries of Collapsed Adjacency matrices

Ak
ij = |{y ∈ Oj | (ai , y) ∈ Ek}|.

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 23 / 27



Collapsed Adjacency Matrices

G acts on X .

H point-stabilizer.

O1, . . . ,Or orbits of H on X .

a1, . . . , ar representatives of O1, . . . ,Or .

E1, . . . ,Er orbits of G on X × X .

D1, . . . ,Dr double cosets of H in G .
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Results from Collapsed Adjacency Matrices

Lemma

If Ak
kk �= 0, then Dk ⊆ D2

k .

Lemma

If Ak
kj �= 0, then D2

k ⊇ Dj .

Theorem

He, O �N, HN, Ly, Th, Co1, B, and M are not minimal counterexamples
to the Hall-Paige conjecture.

Group He O �N HN Ly Th Co1 B M
Rank 5 5 9 5 11 4 10 9

W-simple? N Y Y Y N Y Y Y

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 24 / 27



Results from Collapsed Adjacency Matrices

Lemma

If Ak
kk �= 0, then Dk ⊆ D2

k .

Lemma

If Ak
kj �= 0, then D2

k ⊇ Dj .

Theorem

He, O �N, HN, Ly, Th, Co1, B, and M are not minimal counterexamples
to the Hall-Paige conjecture.

Group He O �N HN Ly Th Co1 B M
Rank 5 5 9 5 11 4 10 9

W-simple? N Y Y Y N Y Y Y

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 24 / 27



Results from Collapsed Adjacency Matrices

Lemma

If Ak
kk �= 0, then Dk ⊆ D2

k .

Lemma

If Ak
kj �= 0, then D2

k ⊇ Dj .

Theorem

He, O �N, HN, Ly, Th, Co1, B, and M are not minimal counterexamples
to the Hall-Paige conjecture.

Group He O �N HN Ly Th Co1 B M
Rank 5 5 9 5 11 4 10 9

W-simple? N Y Y Y N Y Y Y

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 24 / 27



Results from Collapsed Adjacency Matrices

Lemma

If Ak
kk �= 0, then Dk ⊆ D2

k .

Lemma

If Ak
kj �= 0, then D2

k ⊇ Dj .

Theorem

He, O �N, HN, Ly, Th, Co1, B, and M are not minimal counterexamples
to the Hall-Paige conjecture.

Group He O �N HN Ly Th Co1 B M
Rank 5 5 9 5 11 4 10 9

W-simple? N Y Y Y N Y Y Y

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 24 / 27



Results from Collapsed Adjacency Matrices

Lemma

If Ak
kk �= 0, then Dk ⊆ D2

k .

Lemma

If Ak
kj �= 0, then D2

k ⊇ Dj .

Theorem

He, O �N, HN, Ly, Th, Co1, B, and M are not minimal counterexamples
to the Hall-Paige conjecture.

Group He O �N HN Ly Th Co1 B M
Rank 5 5 9 5 11 4 10 9

W-simple? N Y Y Y N Y Y Y

Anthony B. Evans (Wright State University) A Proof of the Hall-Paige Conjecture December 21, 2011 24 / 27



Three Janko Groups

Lemma
Let H be a subgroup of G, and D the set of double cosets of H in G. If
D ∈ D contains an element of order 3, then D ⊆ (D(−1)

)
2 and

D(−1) ⊆ D2, where D(−1)
= {d−1 | d ∈ D}.

Theorem
J1 and J3 are not minimal counterexamples to the Hall-Paige conjecture.

The proof uses the 3-element Lemma, a rank-22 permutation

representation of J1, a rank-14 permutation representation of J3, and

MAGMA.

Theorem (Bray, Personal Communication)

J4 is not minimal counterexample to the Hall-Paige conjecture.

The proof is obtained by constructing collapsed adjacency matrices for a

degree 3,980,549,947 permutation representation of J4.
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Summary: The Last 22 Groups; part a

G H Index Rank

J1 A5 × 2 1, 463 22

J2 U3(3) 100 3

2F4(2)
� L3(3) : 2 1,600 4

HS U3(5) : 2 176 2

J3 L2(19) 14, 688 14

McL U4(3) 275 3

He S4(4) : 2 2, 058 5

Ru 2F4(2) 4, 060 3

Suz G2(4) 1, 782 3

O �N L3(7) : 2 122, 760 5

Co3 McL : 2 276 2
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Summary: The Last 22 Groups; part b

G H Index Rank

Co2 U6(2) : 2 2, 300 3

Fi22 2
·U6(2) 3, 510 3

HN 2.HS .2 1, 539, 000 9

Ly G2(5) 8, 835, 156 5

Th 2
5.L5(2) 283, 599, 225 11

Fi23 2
·Fi22 31, 671 3

Co1 Co2 98, 280 4

J4 2
1+12

+
.
3M22 : 2 3, 980, 549, 947 ?

Fi �
24

Fi23 306, 936 3

B 2
1+22

+
.Co2 11, 707, 448, 673, 375 10

M 2.B 97, 239, 461, 142, 009, 186, 000 9
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