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Minors

H is a minor of G if it can be obtained from G by some sequence
of deletions and/or contractions.

The order doesn’t matter. Deletion and contraction commute:
G/e/f = G/f/e

G\e\f = G\f\e
G/e\f = G\fJe



Minors

H is a minor of G if it can be obtained from G by some sequence
of deletions and/or contractions.

The order doesn’t matter. Deletion and contraction commute:

G/e/f = G/f/e
G\e\f = G\f\e
G/e\f = G\fJe

Importance of minors:
» excluded minor characterisations
» planar graphs (Kuratowski, 1930; Wagner, 1937)
» graphs, among matroids (Tutte, PhD thesis, 1948)
» Robertson-Seymour Theorem (1985-2004)
> counting
> Tutte-Whitney polynomial family
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Classical duality for embedded graphs:
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Classical duality for embedded graphs:

G +— G*

vertices <— faces

contraction <— deletion

(Gle)* = G*\e
(G\e) = G*/e
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Duality and minors

G —MMMMMM » G*

G\e G*\e

G/e G*/e



Loops and coloops

loop coloop = bridge = isthmus



Loops and coloops

loop coloop = bridge = isthmus
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History

WHEN YOUNG MEN SUED FOR THE HAND OF LADY ISANEL, SIR HUGH PROMISED HIS CONSENT TO THE
ONE WHO WOULD TELL HIM THE DIMEXSIONS OF THE TOP OF THE CASKET.

H. E. Dudeney,
Puzzling Times at
Solvambhall Castle:
Lady Isabel’s Casket,
London Magazine

7 (42) (Jan 1902) 584
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History

THE
CANTERBURY PUZZLES

AND OTHER CURIOUS PROBLEMS

BY
HENRY ERNEST DUDENEY

AUTHOR OF
¢ AMUSEMENTS IN MATHEMATICS,” ETC.

First published by Heinemann , London, 1907. Above is from 4th edn, Nelson, 1932.



History

THE DISSECTION OF RECTANGLES INTO SQUARES
By R. L. Brooks, C. A. B. Smrra, A. H. StoNe AND W. T. TurrE

Introduction. We consider the problem of dividing a rectangle into a finite
number of non-overlapping squares, no two of which are equal. A dissection of
a rectangle R into a finite number n of non-overlapping squares is called a squar-
ing of R of order n; and the n squares are the elements of the dissection. The
term ‘“‘elements’ is also used for the lengths of the sides of the elements. If
there is more than one element and the elements are all unequal, the squaring is
called perfect, and R is a perfect rectangle. (We use R to denote both a rectangle
and a particular squaring of it.) Examples of perfect rectangles have been
published in the literature.'

Our main results are:

Every squared rectangle has commensurable sides and elements.” (This is
(2.14) below.)

Conversely, every rectangle with commensurable sides is perfectible in an
infinity of essentially different ways. (This is (9.45) below.) (Added in proof.
Another proof of this theorem has since been published by R. Sprague: Jour-
nal fir Mathematik, vol. 182(1940), pp. 60-64; Mathematische Zeitschrift,
vol. 46(1940), pp. 460-471.)

In particular, we give in §8.3 a perfect dissection of a square into 26 elements.’

There are no perfect rectangles of order less than 9, and exactly two of order
9. (This is (5.23) below.)

Duke Math. J. 7 (1940) 312-340.



History

from a design for a proposed memorial to Tutte in Newmarket, UK.

https://wuw.facebook.com/billtutte


https://www.facebook.com/billtutte
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History

[ 463 ]

THE DISSECTION OF EQUILATERAL TRIANGLES INTO
EQUILATERAL TRIANGLES

By W. T. TUTTE
Recesved 10 December 1947

1. INTRODUCTION

In a previous joint paper (‘ The dissection of rectangles into squares’, by R. L. Brooks,
C. A. B. Smith, A. H. Stone and W. T. Tutte, Duke Math. J. 7 (1940), 312—40), hereafter
referred to as (A) for brevity, it was shown that it is possible to dissect a square into
smaller unequal squares in an infinite number of ways. The basis of the theory was the
association with any rectangle or square dissected into squares of an electrical network
obeying Kirchhoff’s laws. The present paper is concerned with the similar problem of
dissecting a figure into equilateral triangles. We make use of an analogue of the
electrical network in which the ‘currents’ obey laws similar to but not identical with
those of Kirchhoff. As a generalization of topological duality in the sphere we find that
these networks occur in triplets of ‘trial networks’ N, N2, N3, We find that it is
impossible to dissect a triangle into unequal equilateral triangles but that a dissection
is possible into triangles and rhombuses so that no two of these figures have equal sides.
Most of the theorems of paper (A) are special cases of those proved below.

Proc. Cambridge Philos. Soc. 44 (1948) 463-482.
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Alternating dimaps

Alternating dimap (Tutte, 1948):
directed graph without isolated vertices,
2-cell embedded in a disjoint union of orientable 2-manifolds,
each vertex has even degree,
Vv: edges incident with v are directed alternately into, and
out of, v (as you go around v).

v

v vy
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Alternating dimaps

Alternating dimap (Tutte, 1948):
» directed graph without isolated vertices,
» 2-cell embedded in a disjoint union of orientable 2-manifolds,
> each vertex has even degree,
> Vv: edges incident with v are directed alternately into, and

out of, v (as you go around v).
So vertices look like this:

Genus v(G) of an alternating dimap G:
V—E+F=2(k(G)—~(G))



Alternating dimaps

Three special partitions of E(G):
e clockwise faces
e anticlockwise faces
e n-stars
(An in-star is the set of all edges going into some vertex.)
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Three special partitions of E(G):

e clockwise faces

e anticlockwise faces

e n-stars
(An in-star is the set of all edges going into some vertex.)
Each defines a permutation of E(G).
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Three special partitions of E(G):

e clockwise faces Oc
e anticlockwise faces O,
e in-stars o

(An in-star is the set of all edges going into some vertex.)
Each defines a permutation of E(G).



Alternating dimaps

Three special partitions of E(G):

e clockwise faces Oc
e anticlockwise faces O,
e in-stars o

(An in-star is the set of all edges going into some vertex.)
Each defines a permutation of E(G). These permutations satisfy

0i0c05=1



Triality (Trinity)

Construction of trial map:

clockwise faces — vertices — anticlockwise faces — clockwise faces



Triality (Trinity)

Construction of trial map:
clockwise faces — vertices — anticlockwise faces — clockwise faces

(O-I'vo-Cao-a) = (JC7087Ji)



Triality (Trinity)

Construction of trial map:
clockwise faces — vertices — anticlockwise faces — clockwise faces

(O-iao-CaO-a) — (O-Cao-avo-i)




Triality (Trinity)

Construction of trial map:
clockwise faces — vertices — anticlockwise faces — clockwise faces

(O-iao-CaO-a) — (O-Cao-avo-i)
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G[1]e




Minor operations




Minor operations

Glwle




Minor operations




Minor operations

G[w?]e
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Minor operations

(G[1]e)* = G¥[w?]e”




Minor operations

G¥[1]e"
G*[w]e”

Gw[w2]ew

G’ [1]e””
GV [w]e”

Gw2 [w2] er

Theorem

(Glw]e)*,
(Glw?le)”,
(G[1]e)*,

(Glw?le)~”,
(Gl1]e)~",
(Glwle)”.

Ife € E(G) and pi,v € {1,w,w?} then

GH[v]e® = (G[uv]e)r.

Same pattern as established for other generalised minor operations

(GF, 2008/2013. ..).
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Minors: bicubic maps
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Minors: bicubic maps

reduce e



Minors: bicubic maps

. g
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g .
Q .

g .
U .
g .
Q .
0 .

Tutte, Philips Res. Repts 30 (1975) 205-219.



Relationships

triangulated triangle

0

alternating dimaps

!

bicubic map  (reduction: Tutte 1975)
1 duality

Eulerian triangulation
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Eulerian triangulation  (reduction, in inverse form ...: Batagelj, 1989)



Relationships

triangulated triangle

0

alternating dimaps
!

bicubic map  (reduction: Tutte 1975)
1 duality

Eulerian triangulation  (reduction, in inverse form
1 (Cavenagh & Lison&ck, 2008)

spherical latin bitrade

...: Batagelj, 1989)



Ultraloops, triloops, semiloops

ultraloop

v



Ultraloops, triloops, semiloops

ultraloop 1 1-loop



Ultraloops, triloops, semiloops

w-loop

L

ultraloop 1 1-loop
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w-loop

ultraloop 1-loop
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Ultraloops, triloops, semiloops

w-loop

w2|ooij T
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Ultraloops, triloops, semiloops

w—loop

1-semiloop

uItranop 1-loop

— o«—

w? Ioop
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w—loop

1-semiloop

uItranop 1-loop

— o«—
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Ultraloops, triloops, semiloops w2-semiloop

w—loop

1-semiloop

uItranop 1-loop

w2
IOOP w-semiloop



Ultraloops, triloops, semiloops w2-semiloop

w-loop

1-semiloop

‘ ultraloop 1-loop
w?-loop j T .
w-semiloop



Ultraloops, triloops, semiloops w?-semiloop

1-semiloop

‘ uItranop 1-loop
J ;2 T
'IOOP w-semiloop



Ultraloops, triloops, semiloops w?-semiloop

1-semiloop

‘ uItranop 1-loop
J ;2 T
IOOP w-semiloop



Ultraloops, triloops, semiloops: the bicubic map

trihedron
(ultraloop)



Ultraloops, triloops, semiloops: the bicubic map

trihedron digon
(ultraloop) (triloop)
e e



Ultraloops, triloops, semiloops: the bicubic map

trihedron digon
(ultraloop) (triloop) (semiloop)
e e

]
e
|



Non-commutativity

Some bad news: sometimes,

Glule[v]f # Gv]flule






Glw]f[1]e



G[1]e[w]f
Glw]f[1]e



Glw]f[l]e £ G[1]e[w]f



Glw]f[l]e £ G[1]e[w]f

Theorem
Except for the above situation and its trials, reductions commute.

Glulf[vle = Glulellf

Corollary

If w = v, or one of e, f is a triloop, then reductions commute.



Trimedial graph
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G
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Trimedial graph

G

tri(G)

Theorem

All pairs of reductions on G
commute if and only if the
triloops of G form a vertex
cover in tri(G).




Non-commutativity

Theorem
All sequences of reductions on G commute if and only if each
component of G has the form . ..



Non-commutativity
Theorem

All sequences of reductions on G commute if and only if each
component of G has the form . ..



Non-commutativity

Problem
Characterise alternating dimaps such that all pairs of reductions
commute up to isomorphism:

Vu,v,e, f . Glulflv]le = Glv]e[u]f



Excluded minors for bounded genus
k-posy:
An alternating dimap with ...
> one vertex,
> 2k + 1 edges,

» two faces.

V—E+F=1-—(2k+1)+2=2-2k
Genus of k-posy = k

Theorem
A nonempty alternating dimap G has genus < k if and only if none
of its minors is a disjoint union of posies of total genus k.



Excluded minors for bounded genus

k-posy:

An alternating dimap with ...
> one vertex,
> 2k + 1 edges,

» two faces.

V—E+F=1-—(2k+1)+2=2-2k
Genus of k-posy = k

Theorem
A nonempty alternating dimap G has genus < k if and only if none
of its minors is a disjoint union of posies of total genus k.

cf. Courcelle & Dussaux (2002): ordinary maps, surface minors, bouquets.
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Excluded minors for bounded genus

1-posy:




Excluded minors for bounded genus

2-posy: first:




Excluded minors for bounded genus

2-posy:  second:




Excluded minors for bounded genus

2-posy: third:




Excluded minors for bounded genus

Theorem
A nonempty alternating dimap G has genus < k if and only if none
of its minors is a disjoint union of posies of total genus k.
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v(G) > k = I minor = disjoint union of posies, total genus k.
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Theorem
A nonempty alternating dimap G has genus < k if and only if none
of its minors is a disjoint union of posies of total genus k.

Proof.
(=) Easy.
(«<=) Show:

v(G) > k = I minor = disjoint union of posies, total genus k.

Induction on |E(G)|.



Excluded minors for bounded genus

Theorem
A nonempty alternating dimap G has genus < k if and only if none
of its minors is a disjoint union of posies of total genus k.

Proof.
(=) Easy.
(«<=) Show:

v(G) > k = I minor = disjoint union of posies, total genus k.

Induction on |E(G)|.

Inductive basis:
|E(G)]=1 = G is an ultraloop = 0-posy minor.
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Showing . ..

v(G) > k = I minor = disjoint union of posies, total genus k.
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v(G) > k = I minor = disjoint union of posies, total genus k.

Inductive step: Suppose true for alt. dimaps of < m edges.
Let G be an alternating dimap with |E(G)| = m.



Excluded minors for bounded genus

Showing ...
v(G) > k = I minor = disjoint union of posies, total genus k.

Inductive step: Suppose true for alt. dimaps of < m edges.
Let G be an alternating dimap with |E(G)| = m.
G|[1]e, Glw]e, G[w?]e each have m — 1 edges.
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Let G be an alternating dimap with |E(G)| = m.
G|[1]e, Glw]e, G[w?]e each have m — 1 edges.
.. by inductive hypothesis, these each have, as a minor, a disjoint
union of posies of total genus ...
v(G[1]e), ~(Glwle), ~(G[w?]e), respectively.
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Showing ...
v(G) > k = I minor = disjoint union of posies, total genus k.

Inductive step: Suppose true for alt. dimaps of < m edges.
Let G be an alternating dimap with |E(G)| = m.
G|[1]e, Glw]e, G[w?]e each have m — 1 edges.
.. by inductive hypothesis, these each have, as a minor, a disjoint
union of posies of total genus ...
v(G[1]e), ~(Glwle), ~(G[w?]e), respectively.
If any of these = v(G): done.
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Showing ...
v(G) > k = I minor = disjoint union of posies, total genus k.

Inductive step: Suppose true for alt. dimaps of < m edges.
Let G be an alternating dimap with |E(G)| = m.
G|[1]e, Glw]e, G[w?]e each have m — 1 edges.
.. by inductive hypothesis, these each have, as a minor, a disjoint
union of posies of total genus ...
v(G[1]e), ~(Glwle), ~(G[w?]e), respectively.
If any of these = v(G): done.
It remains to consider:

(Gl1le) = 1(Glwle) = 7(Glw?le) = 7(6) - 1.



Excluded minors for bounded genus

Showing ...
v(G) > k = I minor = disjoint union of posies, total genus k.

Inductive step: Suppose true for alt. dimaps of < m edges.
Let G be an alternating dimap with |E(G)| = m.

G|[1]e, Glw]e, G[w?]e each have m — 1 edges.
.. by inductive hypothesis, these each have, as a minor, a disjoint
union of posies of total genus ...
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Excluded minors for bounded genus

Showing ...
v(G) > k = I minor = disjoint union of posies, total genus k.

Inductive step: Suppose true for alt. dimaps of < m edges.
Let G be an alternating dimap with |E(G)| = m.

G|[1]e, Glw]e, G[w?]e each have m — 1 edges.
.. by inductive hypothesis, these each have, as a minor, a disjoint
union of posies of total genus ...
v(G[1]e), ~(Glwle), ~(G[w?]e), respectively.
If any of these = v(G): done.
It remains to consider:
A(Gl1le) = v(Glwle) = 7(Glw?le) = 7(6) - 1.

T
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Excluded minors for bounded genus

Showing ...
v(G) > k = I minor = disjoint union of posies, total genus k.

Inductive step: Suppose true for alt. dimaps of < m edges.
Let G be an alternating dimap with |E(G)| = m.

G|[1]e, Glw]e, G[w?]e each have m — 1 edges.
.. by inductive hypothesis, these each have, as a minor, a disjoint
union of posies of total genus ...
v(G[1]e), ~(Glwle), ~(G[w?]e), respectively.
If any of these = v(G): done.
It remains to consider:
A(Gl1le) = v(Glwle) = 7(Glw?le) = 7(6) - 1.
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Excluded minors for bounded genus
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Tutte polynomial of a graph (or matroid)

T(G;x,y) = Z (x — 1)PE)=P(X)(y, — 1)P" (E)=p"(E\X)

XCE
where
p(Y) = rankof Y
= (#tvertices that meet Y') — (# components of Y),
p*(Y) = rankof Y in the dual, G*

= X[+ p(E\ X) = p(E).



Tutte polynomial of a graph (or matroid)

T(G;x,y) = Z (x — 1)PE)=P(X)(y, — 1)P" (E)=p"(E\X)

XCE
where
p(Y) = rankof Y
= (#tvertices that meet Y') — (# components of Y),
p*(Y) = rankof Y in the dual, G*

= X[+ p(E\ X) = p(E).

By appropriate substitutions, it yields:
numbers of colourings, acyclic orientations, spanning trees,
spanning subgraphs, forests, ...



Tutte polynomial of a graph (or matroid)

T(G;x,y) = Z (x — 1)PE)=P(X)(y, — 1)P" (E)=p"(E\X)
XCE

p(Y) = rankof Y

(Fvertices that meet Y) — (# components of Y),
rank of Y in the dual, G*

= IX|+ p(E\ X) — p(E).

)
*
—
<
N—r

Il

By appropriate substitutions, it yields:
numbers of colourings, acyclic orientations, spanning trees,
spanning subgraphs, forests, ...
chromatic polynomial, flow polynomial, reliability polynomial,
Ising and Potts model partition functions, weight enumerator
of a linear code, Jones polynomial of an alternating link, ...



Tutte polynomial of a graph (or matroid)
Deletion-contraction relation:

T(Gix,y) =
L, if G is empty,
xT(G\ e x,y), if e is a coloop (i.e., bridge),
yT(G/eiX7}/)7 |fe isa |OOp,

T(G\ex,y)+ T(G/e;x,y), if eis neither a coloop nor a loop.



Tutte polynomial of a graph (or matroid)
Deletion-contraction relation:

T(Gix,y) =
1, if G is empty,
xT(G\ e x,y), if e is a coloop (i.e., bridge),
yT(G/e;x,y), if e is a loop,
T(G\ex,y)+ T(G/e;x,y), if eis neither a coloop nor a loop.

Recipe Theorem (in various forms: Tutte, 1948; Brylawski, 1972;
Oxley & Welsh, 1979):
If F is an isomorphism invariant and satisfies . ..

F(G) =
xF(G\ e), if e is a coloop (i.e., bridge),
y F(G/e), if e is a loop,

aF(G\e)+ bF(G/e), if eis neither a coloop nor a loop.

...then it can be obtained from the Tutte polynomial using
appropriate substitutions and factors.



Tutte invariant for alternating dimaps

— an isomorphism invariant F such that:

F(G) =

17

wF(G —e),

x F(G[1]e),

y F(G[w]e),

z F(G[w?]e),

aF(G[1]e) + b F(G|w]e) + c F(G[w?]e),

if G is empty,

if e is an ultraloop,

if e is a proper 1-loop,

if e is a proper w-loop,

if e is a proper w?-loop,
if e is not a triloop.



Tutte invariant for alternating dimaps

Theorem
The only Tutte invariants of alternating dimaps are:

(a) F(G) =0 for nonempty G,

(b) F(G) = 3E(G)|lV(G)]| pe-faces(G) carfaces(G),
() F(G) = alV(6)| pe-faces(G)(_¢)afaces(G)
(d) F(G) = alV(©)|(—p)e-faces(G) carfaces(G),
(e) F(G) — (_a)\V(G)|bc-faces(G)Ca-faces(G).



Extended Tutte invariant for alternating dimaps

— an isomorphism invariant F such that:

F(G) =
1, if G is empty,
wF(G —e), if e is an ultraloop,
x F(G[1]e), if e is a proper 1-loop,
y F(Glw]e), if e is a proper w-loop,

z F(G[w?]e), if e is a proper w?-loop,
aF(G[l]e) + b F(G[w]e) + c F(G[w?]e), if e is a proper 1-semiloop,
d F(G[1]e) + e F(G[w]e) + f F(G[w?]e), if e is a proper w-semiloop,
g F(G[1]e) + hF(G[w]e) + i F(G[w?]e), if eis a proper w?-semiloop,
L j F(G[l]e) + k F(G[w]e) + | F(G[w?]e), if e is not a triloop.




Extended Tutte invariant for alternating dimaps
For any alternating dimap G, define T.(G;x,y) and T,(G;x,y) as

follows.
T(G; x,y)
1, if G is empty,
T(G[x]e; x, y), if e is an w?-loop;
= x To(Glw?]e; x,y), if e is an w-semiloop;
y T<(G[1]e; x, y), if e is a proper 1-semiloop or an w-loop;

T(G[1]e; x,y) + To(G[w?]e; x,y), if e is not a semiloop.

T2(G; x,y)
1, if G is empty,
T.(G[+]e; x,y), if e is an w-loop;
= x To(Glw]e; x,y), if e is an w?-semiloop;
y T.(G[1]e; x, y), if e is a proper 1-semiloop or an w?-loop;

Ta(G[1l]e; x,y) + Ta(Glw]e; x, y), if e is not a semiloop.



Extended Tutte invariant for alternating dimaps

Theorem
For any plane graph G,

T(Gix,y) = Tc(alte(G);x,y)
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Extended Tutte invariant for alternating dimaps

Ti(G; x) =
1, if G is empty,
Ti(G[*]e; x), if e is a 1-loop (including an ultraloop);
x T;(G[w?]e; x), if e is a proper w-semiloop or an w?-loop;
x Ti(G[w]e; x), if e is a proper w?-semiloop or an w-loop;

T:(G[w]e; x) + T;(G[w?]e; x), if e is not a semiloop.
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