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Contraction and Deletion
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Minors

H is a minor of G if it can be obtained from G by some sequence
of deletions and/or contractions.

The order doesn’t matter. Deletion and contraction commute:

G/e/f = G/f /e

G \ e \ f = G \ f \ e

G/e \ f = G \ f /e

Importance of minors:
I excluded minor characterisations

I planar graphs (Kuratowski, 1930; Wagner, 1937)
I graphs, among matroids (Tutte, PhD thesis, 1948)
I Robertson-Seymour Theorem (1985–2004)

I counting
I Tutte-Whitney polynomial family
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Classical duality for embedded graphs:

G ←→ G ∗

vertices ←→ faces

contraction ←→ deletion

(G/e)∗ = G ∗ \ e

(G \ e)∗ = G ∗/e
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Loops and coloops

loop coloop = bridge = isthmus

duality
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History

H. E. Dudeney,
Puzzling Times at
Solvamhall Castle:
Lady Isabel’s Casket,
London Magazine
7 (42) (Jan 1902) 584



History

London Magazine
8 (43) (Feb 1902) 56



History

First published by Heinemann, London, 1907. Above is from 4th edn, Nelson, 1932.



History

Duke Math. J. 7 (1940) 312–340.



History

from a design for a proposed memorial to Tutte in Newmarket, UK.

https://www.facebook.com/billtutte

https://www.facebook.com/billtutte




























History

Proc. Cambridge Philos. Soc. 44 (1948) 463–482.
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Alternating dimaps
Alternating dimap (Tutte, 1948):

I directed graph without isolated vertices,
I 2-cell embedded in a disjoint union of orientable 2-manifolds,
I each vertex has even degree,
I ∀v : edges incident with v are directed alternately into, and

out of, v (as you go around v).

So vertices look like this:

Genus γ(G ) of an alternating dimap G :

V − E + F = 2(k(G )− γ(G ))
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Alternating dimaps

Three special partitions of E (G ):
• clockwise faces

σc

• anticlockwise faces

σa

• in-stars

σi

(An in-star is the set of all edges going into some vertex.)

Each defines a permutation of E (G ). These permutations satisfy

σiσcσa = 1
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Triality (Trinity)

Construction of trial map:

clockwise faces −→ vertices −→ anticlockwise faces −→ clockwise faces

(σi , σc , σa) 7→ (σc , σa, σi )
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(G [1]e)ω = Gω[ω2]eω u = v
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Minor operations

Gω[1]eω = (G [ω]e)ω,

Gω[ω]eω = (G [ω2]e)ω,

Gω[ω2]eω = (G [1]e)ω,

Gω2
[1]eω

2
= (G [ω2]e)ω

2
,

Gω2
[ω]eω

2
= (G [1]e)ω

2
,

Gω2
[ω2]eω

2
= (G [ω]e)ω

2
.

Theorem
If e ∈ E (G ) and µ, ν ∈ {1, ω, ω2} then

Gµ[ν]eω = (G [µν]e)µ.

Same pattern as established for other generalised minor operations
(GF, 2008/2013. . . ).



Minor operations

G

G [1]e

G [ω]e

G [ω2]e

Gω

Gω[1]e

Gω[ω]e

Gω[ω2]e

Gω2

Gω2
[1]e

Gω2
[ω]e

Gω2
[ω2]e



Minors: bicubic maps
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Tutte, Philips Res. Repts 30 (1975) 205–219.
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Relationships

triangulated triangle

l

alternating dimaps

l

bicubic map (reduction: Tutte 1975)

l duality

Eulerian triangulation

(reduction, in inverse form . . . : Batagelj, 1989)

l (Cavenagh & Lisoněck, 2008)

spherical latin bitrade



Relationships

triangulated triangle

l

alternating dimaps

l

bicubic map (reduction: Tutte 1975)

l duality

Eulerian triangulation (reduction, in inverse form . . . : Batagelj, 1989)

l (Cavenagh & Lisoněck, 2008)
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Ultraloops, triloops, semiloops: the bicubic map

trihedron
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e

digon

(triloop)

e

(semiloop)

e



Ultraloops, triloops, semiloops: the bicubic map

trihedron
(ultraloop)

e

digon

(triloop)

e

(semiloop)

e



Ultraloops, triloops, semiloops: the bicubic map

trihedron
(ultraloop)

e

digon

(triloop)

e

(semiloop)

e



Non-commutativity

Some bad news: sometimes,

G [µ]e[ν]f 6= G [ν]f [µ]e
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G [ω]f [1]e 6= G [1]e[ω]f

Theorem
Except for the above situation and its trials, reductions commute.

G [µ]f [ν]e = G [ν]e[µ]f

Corollary

If µ = ν, or one of e, f is a triloop, then reductions commute.



f

e

G [ω]f [1]e 6= G [1]e[ω]f

Theorem
Except for the above situation and its trials, reductions commute.

G [µ]f [ν]e = G [ν]e[µ]f

Corollary
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Trimedial graph

G

tri(G )

Theorem
All pairs of reductions on G
commute if and only if the
triloops of G form a vertex
cover in tri(G ).
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Non-commutativity

Theorem
All sequences of reductions on G commute if and only if each
component of G has the form . . .
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Non-commutativity

Problem
Characterise alternating dimaps such that all pairs of reductions
commute up to isomorphism:

∀µ, ν, e, f : G [µ]f [ν]e ∼= G [ν]e[µ]f



Excluded minors for bounded genus

k-posy :
An alternating dimap with . . .

I one vertex,

I 2k + 1 edges,

I two faces.

V − E + F = 1− (2k + 1) + 2 = 2− 2k

Genus of k-posy = k

Theorem
A nonempty alternating dimap G has genus < k if and only if none
of its minors is a disjoint union of posies of total genus k.

cf. Courcelle & Dussaux (2002): ordinary maps, surface minors, bouquets.
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Excluded minors for bounded genus
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Excluded minors for bounded genus

Theorem
A nonempty alternating dimap G has genus < k if and only if none
of its minors is a disjoint union of posies of total genus k.

Proof.

(=⇒) Easy.

(⇐=) Show:

γ(G ) ≥ k =⇒ ∃minor ∼= disjoint union of posies, total genus k.

Induction on |E (G )|.

Inductive basis:
|E (G )| = 1 =⇒ G is an ultraloop =⇒ 0-posy minor.
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Excluded minors for bounded genus

Showing . . .

γ(G ) ≥ k =⇒ ∃minor ∼= disjoint union of posies, total genus k.

Inductive step: Suppose true for alt. dimaps of < m edges.
Let G be an alternating dimap with |E (G )| = m.

G [1]e, G [ω]e, G [ω2]e each have m − 1 edges.
∴ by inductive hypothesis, these each have, as a minor, a disjoint
union of posies of total genus . . .
γ(G [1]e), γ(G [ω]e), γ(G [ω2]e), respectively.
If any of these = γ(G ): done.
It remains to consider:
γ(G [1]e) = γ(G [ω]e) = γ(G [ω2]e) = γ(G )− 1.

↑ ↑ ↑
proper proper proper

1-semiloop ω-semiloop ω2-semiloop
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union of posies of total genus . . .
γ(G [1]e), γ(G [ω]e), γ(G [ω2]e), respectively.
If any of these = γ(G ): done.
It remains to consider:
γ(G [1]e) = γ(G [ω]e) = γ(G [ω2]e) = γ(G )− 1.
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Tutte polynomial of a graph (or matroid)

T (G ; x , y) =
∑
X⊆E

(x − 1)ρ(E)−ρ(X )(y − 1)ρ
∗(E)−ρ∗(E\X )

where

ρ(Y ) = rank of Y

= (#vertices that meet Y )− (# components of Y ),

ρ∗(Y ) = rank of Y in the dual, G ∗

= |X |+ ρ(E \ X )− ρ(E ).

By appropriate substitutions, it yields:

numbers of colourings, acyclic orientations, spanning trees,
spanning subgraphs, forests, . . .
chromatic polynomial, flow polynomial, reliability polynomial,
Ising and Potts model partition functions, weight enumerator
of a linear code, Jones polynomial of an alternating link, ...
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Tutte polynomial of a graph (or matroid)
Deletion-contraction relation:
T (G ; x , y) =

1, if G is empty,
x T (G \ e; x , y), if e is a coloop (i.e., bridge),
y T (G/e; x , y), if e is a loop,
T (G \ e; x , y) + T (G/e; x , y), if e is neither a coloop nor a loop.

Recipe Theorem (in various forms: Tutte, 1948; Brylawski, 1972;
Oxley & Welsh, 1979):
If F is an isomorphism invariant and satisfies . . .
F (G ) =

x F (G \ e), if e is a coloop (i.e., bridge),
y F (G/e), if e is a loop,
a F (G \ e) + b F (G/e), if e is neither a coloop nor a loop.

. . . then it can be obtained from the Tutte polynomial using
appropriate substitutions and factors.
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Tutte invariant for alternating dimaps

– an isomorphism invariant F such that:
F (G ) =

1, if G is empty,
w F (G − e), if e is an ultraloop,
x F (G [1]e), if e is a proper 1-loop,
y F (G [ω]e), if e is a proper ω-loop,
z F (G [ω2]e), if e is a proper ω2-loop,
a F (G [1]e) + b F (G [ω]e) + c F (G [ω2]e), if e is not a triloop.



Tutte invariant for alternating dimaps

Theorem
The only Tutte invariants of alternating dimaps are:

(a) F (G ) = 0 for nonempty G ,

(b) F (G ) = 3|E(G)|a|V (G)|bc-faces(G)ca-faces(G),

(c) F (G ) = a|V (G)|bc-faces(G)(−c)a-faces(G),

(d) F (G ) = a|V (G)|(−b)c-faces(G)ca-faces(G),

(e) F (G ) = (−a)|V (G)|bc-faces(G)ca-faces(G).



Extended Tutte invariant for alternating dimaps

– an isomorphism invariant F such that:

F (G ) =

1, if G is empty,
w F (G − e), if e is an ultraloop,
x F (G [1]e), if e is a proper 1-loop,
y F (G [ω]e), if e is a proper ω-loop,
z F (G [ω2]e), if e is a proper ω2-loop,
a F (G [1]e) + b F (G [ω]e) + c F (G [ω2]e), if e is a proper 1-semiloop,
d F (G [1]e) + e F (G [ω]e) + f F (G [ω2]e), if e is a proper ω-semiloop,
g F (G [1]e) + h F (G [ω]e) + i F (G [ω2]e), if e is a proper ω2-semiloop,
j F (G [1]e) + k F (G [ω]e) + l F (G [ω2]e), if e is not a triloop.



Extended Tutte invariant for alternating dimaps
For any alternating dimap G , define Tc(G ; x , y) and Ta(G ; x , y) as

follows.

Tc(G ; x , y)

=


1, if G is empty,
Tc(G [∗]e; x , y), if e is an ω2-loop;
x Tc(G [ω2]e; x , y), if e is an ω-semiloop;
y Tc(G [1]e; x , y), if e is a proper 1-semiloop or an ω-loop;
Tc(G [1]e; x , y) + Tc(G [ω2]e; x , y), if e is not a semiloop.

Ta(G ; x , y)

=


1, if G is empty,
Ta(G [∗]e; x , y), if e is an ω-loop;
x Ta(G [ω]e; x , y), if e is an ω2-semiloop;
y Ta(G [1]e; x , y), if e is a proper 1-semiloop or an ω2-loop;
Ta(G [1]e; x , y) + Ta(G [ω]e; x , y), if e is not a semiloop.



Extended Tutte invariant for alternating dimaps

Theorem
For any plane graph G,

T (G ; x , y) = Tc(altc(G ); x , y)

= Ta(alta(G ); x , y).
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Extended Tutte invariant for alternating dimaps

Ti (G ; x) =


1, if G is empty,
Ti (G [∗]e; x), if e is a 1-loop (including an ultraloop);
x Ti (G [ω2]e; x), if e is a proper ω-semiloop or an ω2-loop;
x Ti (G [ω]e; x), if e is a proper ω2-semiloop or an ω-loop;
Ti (G [ω]e; x) + Ti (G [ω2]e; x), if e is not a semiloop.



Extended Tutte invariant for alternating dimaps

Theorem
For any plane graph G,

T (G ; x , x) = Ti (alti(G ); x).
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