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Cutset space
Incidence matrix of graph G :

edges

vertices 0/1 entries· · · · · ·

...

...





Cutset space := rowspace of incidence matrix over GF (2).
Indicator function of cutset space:

f : 2E → {0, 1}, defined by:

f (X ) =

{
1, if

characteristic vector of

X is in cutset space;
0, otherwise.

Often think of this as a vector, f, length 2|E |, entries indexed by subsets

of E (or their characteristic vectors).
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Binary functions

Indicator functions of cutset spaces are prototypical binary
functions.

Let E be a finite set (the ground set).

A binary function is a function f : 2E → C such that f (∅) = 1.

In terms of vectors: it’s a 2|E |-element column vector f, with
entries indexed by subsets of E (or their characteristic vectors),
such that f∅ = 1.

Back to graphs . . .



Contraction and Deletion

G

e

u v

G \ e

u v

G/e

u = v



Minors

H is a minor of G if it can be obtained from G by some sequence
of deletions and/or contractions.

The order doesn’t matter. Deletion and contraction commute:

G/e/f = G/f /e

G \ e \ f = G \ f \ e

G/e \ f = G \ f /e

Importance of minors:
I excluded minor characterisations

I planar graphs (Kuratowski, 1930; Wagner, 1937)
I graphs, among matroids (Tutte, PhD thesis, 1948)
I Robertson-Seymour Theorem (1985–2004)

I counting
I Tutte-Whitney polynomial family
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Duality and minors

Classical duality for embedded graphs:

G ←→ G ∗

vertices ←→ faces

contraction ←→ deletion

(G/e)∗ = G ∗ \ e

(G \ e)∗ = G ∗/e
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Loops and coloops

loop coloop = bridge = isthmus

duality
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Contraction and deletion in terms of f

Indicator function of cutset space of G :

f : 2E → {0, 1}

For contraction and deletion of some e ∈ E :
Indicator functions of cutset spaces of . . .

G/e G \ e

f //e : 2E\{e} → {0, 1} f \\e : 2E\{e} → {0, 1}

f //e (X ) =
f (X )

f (∅)
f \\e (X ) =

f (X ) + f (X ∪ {e})
f (∅) + f ({e})



Interpolating between contraction and deletion

(GF, 2004)
For e ∈ E , X ⊆ E \ {e}:

Contraction

λ-minor

Deletion

(λ = 0) (λ = 1)

(f //e)(X )

(f ‖
λ

e)(X )

(f \\e)(X )

f (X )

f (∅)

f (X ) + λf (X ∪ {e})
f (∅) + λf ({e})

f (X ) + f (X ∪ {e})
f (∅) + f ({e})

0 λ 1
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Duality, contraction and deletion

Duality between contraction and deletion can be extended (GF,
2004).

Define

λ∗ :=
1− λ
1 + λ

Then
f̂ ‖

λ
e = f̂ ‖

λ∗ e

(For binary functions, duality = Hadamard transform (GF, 1993).)

Fixed points:
λ = ±

√
2− 1
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From λ to µ

λ

Duality:

λ∗ =
1− λ
1 + λ

0
√
2− 1 1

s

µ = s(λ) µ∗ = −µ−1 0 1
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From λ to µ

µ = s(λ) := −(3 + 2
√

2)

√
2− 1− λ√
2 + 1 + λ

λ = s−1(µ) :=
1 + µ√

2 + 1− (
√

2− 1)µ

Notation:

f ‖
[µ]

e := f ‖
s−1(µ)

e



The transform L[µ]

(L[µ]f )(V ) = (2
√

2)−|E |×∑
X⊆E

(
√

2− 1 + (
√

2 + 1)µ)|X∩V |

·(1− µ)|X\V |+|V \X |

·(
√

2 + 1 + (
√

2− 1)µ)|E\(X∪V )| f (X )

Matrix representation:

M(µ) =
1

2
√

2

( √
2 + 1 + (

√
2− 1)µ 1− µ

1− µ
√

2− 1 + (
√

2 + 1)µ

)
,

L[µ] f = M(µ)⊗m f (uses m-th Kronecker power)

Special cases:

µ = 1 : identity transform

µ = −1 :
√

2
|E | × Hadamard transform (duality)

µ = ω := e i 2π/3 : some kind of “triality”



Properties of the transforms

Composition of transforms ←→ multiplication of their parameters:

L[µ1]L[µ2] = L[µ1µ2]

Also have generalisations of Plancherel’s and Parseval’s theorems.



[µ]-minors

Theorem

(L[µ1]f ) ‖
[µ2/µ1]

e = ScalingFactor(f , µ1, µ2) · L[µ1](f ‖
[µ2]

e)

Up to constant factors:

f -L[µ1]

L[µ1]f

?

[µ2]-minor

?

[µ2/µ1]-minor

f ‖
[µ2]

e -L[µ1]



[ω]-minors

f

f ‖
[1]

e

f ‖
[ω]

e

f ‖
[ω2]

e

L[ω]f

(L[ω]f) ‖
[1]

e

(L[ω]f) ‖
[ω]

e

(L[ω]f) ‖
[ω2]

e

L[ω2]f

(L[ω2]f) ‖
[1]

e

(L[ω2]f) ‖
[ω]

e

(L[ω2]f) ‖
[ω2]

e



Alternating dimaps
Alternating dimap (Tutte, 1948):

I directed graph without isolated vertices,
I 2-cell embedded in a disjoint union of orientable 2-manifolds,
I each vertex has even degree,
I ∀v : edges incident with v are directed alternately into, and

out of, v (as you go around v).

So vertices look like this:

Genus γ(G ) of an alternating dimap G :

V − E + F = 2(k(G )− γ(G ))
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Alternating dimaps

Three special partitions of E (G ):
• clockwise faces

σc

• anticlockwise faces

σa

• in-stars

σi

(An in-star is the set of all edges going into some vertex.)

Each defines a permutation of E (G ). These permutations satisfy

σiσcσa = 1
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Triality (Trinity)

Construction of trial map:

clockwise faces −→ vertices −→ anticlockwise faces −→ clockwise faces

(σi , σc , σa) 7→ (σc , σa, σi )

u

e f

vC1 vC2

eω
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Minor operations

G

u

v

e

w1 w2
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G [1]e u = v

w1 w2



Minor operations

G

u

v

e

w1 w2



Minor operations

G [ω]e

u

v

w1 w2



Minor operations

G

u

v

e

w1 w2



Minor operations
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Minor operations

(

G [1]e

)ω = Gω[ω2]eω

u = v

w1 w2



Minor operations

(G [1]e)ω = Gω[ω2]eω u = v

w1 w2



Minor operations

Gω[1]eω = (G [ω]e)ω,

Gω[ω]eω = (G [ω2]e)ω,

Gω[ω2]eω = (G [1]e)ω,

Gω2
[1]eω

2
= (G [ω2]e)ω

2
,

Gω2
[ω]eω

2
= (G [1]e)ω

2
,

Gω2
[ω2]eω

2
= (G [ω]e)ω

2
.

Theorem
If e ∈ E (G ) and µ, ν ∈ {1, ω, ω2} then

Gµ[ν]eω = (G [µν]e)µ.

Same pattern as established for generalised minor operations on
binary functions (GF, 2008/2013. . . ).



Minor operations

G

G [1]e

G [ω]e

G [ω2]e

Gω

Gω[1]e

Gω[ω]e

Gω[ω2]e

Gω2

Gω2
[1]e

Gω2
[ω]e

Gω2
[ω2]e



Relationships

triangulated triangle

l

alternating dimaps

l

bicubic map (reduction: Tutte 1975)

l duality

Eulerian triangulation

(reduction, in inverse form . . . : Batagelj, 1989)

l (Cavenagh & Lisoněck, 2008)

spherical latin bitrade
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Non-commutativity

Some bad news: sometimes,

G [µ]e[ν]f 6= G [ν]f [µ]e



f

e

G

G [ω]f [1]e G [1]e[ω]f



f

e

G

G [ω]f [1]e

G [1]e[ω]f



f

e

G

G [ω]f [1]e G [1]e[ω]f



f

e

G [ω]f [1]e 6= G [1]e[ω]f

Theorem
Except for the above situation and its trials, reductions commute.

G [µ]f [ν]e = G [ν]e[µ]f

Corollary

If µ = ν, or one of e, f is a triloop, then reductions commute.



f

e

G [ω]f [1]e 6= G [1]e[ω]f

Theorem
Except for the above situation and its trials, reductions commute.

G [µ]f [ν]e = G [ν]e[µ]f

Corollary

If µ = ν, or one of e, f is a triloop, then reductions commute.



Which alternating dimaps “are” binary functions?

Not all: for alternating dimaps, reductions do not commute in
general, whereas for binary functions, they do.

Definition
A strict binary representation of a minor-closed set A of
alternating dimaps is a triple (F , ε, ν) such that

(a) F : A → {binary functions}
(b) ε = (εG | G ∈ A) is a family of bijections

εG : E (G )→ E (F (G ));

(c) ν ∈ C with |ν| = 1;

(d) F (G (ω)) ' L[ω]F (G ) for all G ∈ A;

(e) F (G [µ]e) ' F (G ) ‖
[νµ]
εG (e) for all G ∈ A, e ∈ E (G ) and

µ ∈ {1, ω, ω2}.
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Which alternating dimaps are binary functions?

Definitions

C1 := ultraloop

iC1 = disjoint union of i ultraloops

0C1 = empty alternating dimap

Uk = {iC1 | i = 0, . . . , k}
U∞ = {iC1 | i ∈ N ∪ {0}}

Theorem
If A is a minor-closed class of alternating dimaps which has a strict
binary representation then

I A = ∅, or

I A = Uk for some k, or

I A = U∞.



Which alternating dimaps are binary functions?
Proof. (Outline) If A = ∅: done. So suppose A 6= ∅.

Since A is minor-closed, it must contain the empty alt. dimap 0C1.
It must be represented by f : 2∅ → C with f (∅) = 1, i.e., f = (1).

If |A| = 1 then we are done. This F gives a strict binary
representation, and A = U0.

If |A| ≥ 2, then it must contain the ultraloop C1. Its image F (C1)
is given by

F (C1) =

(
1√

2− 1

)
.

Proof: C1 is self-trial, so F (C1) must be too. So F (C1) must be
an eigenvector for eigenvalue 1 of the matrix M(ω).

If |A| = 2 then we are done. This F gives a strict binary
representation, and A = {empty, ultraloop} = U1.



Which alternating dimaps are binary functions?

Suppose |A| ≥ 3. Then A must have at least one alternating
dimap G2 on two edges.
For any such G2, all reductions give the ultraloop C1.

So all reductions of F (G2) give F (C1) =
(

1√
2− 1

)
.

Then show that F (G2) =
(

1√
2− 1

)⊗2
.

Therefore F (G2) is self-trial, so G2 must be too.
So G2 = 2C1 (the only self-trial alternating dimap on two edges).
So far, we have at most one alternating dimap in A with each
possible number of edges (0, 1, 2).
Show by induction that A has at most one member with k edges,
and that it is kC1, with

F (kC1) =

(
1√

2− 1

)⊗k
.

This is (the guts of) the strict binary representation.
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