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Cutset space

Incidence matrix of graph G:
edges

vertices e 0/1 entries

Cutset space := rowspace of incidence matrix over GF(2).
Indicator function of cutset space:
f:2E — {0,1}, defined by:

F(X) = 1, if characteristic vector of X is in cutset space;
| 0, otherwise.

Often think of this as a vector, f, length 21El entries indexed by subsets
of E (or their characteristic vectors).




Binary functions

Indicator functions of cutset spaces are prototypical binary
functions.

Let E be a finite set (the ground set).

A binary function is a function f : 2 — C such that f(0)) = 1.
In terms of vectors: it's a 2/El-element column vector f, with
entries indexed by subsets of E (or their characteristic vectors),

such that fy = 1.

Back to graphs ...
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Minors

H is a minor of G if it can be obtained from G by some sequence
of deletions and/or contractions.

The order doesn’t matter. Deletion and contraction commute:
G/e/f = G/f/e

G\e\f = G\f\e
G/e\f = G\fJe



Minors

H is a minor of G if it can be obtained from G by some sequence
of deletions and/or contractions.

The order doesn’t matter. Deletion and contraction commute:

G/e/f = G/f/e
G\e\f = G\f\e
G/e\f = G\fJe

Importance of minors:
» excluded minor characterisations
» planar graphs (Kuratowski, 1930; Wagner, 1937)
» graphs, among matroids (Tutte, PhD thesis, 1948)
» Robertson-Seymour Theorem (1985-2004)
> counting
> Tutte-Whitney polynomial family
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Classical duality for embedded graphs:

G +— G*

vertices <— faces

contraction <— deletion

(Gle)* = G*\e
(G\e) = G*/e
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Duality and minors

G —MMMMMM » G*

G\e G*\e

G/e G*/e



Loops and coloops

loop coloop = bridge = isthmus



Loops and coloops

loop coloop = bridge = isthmus

duality

Q =



Contraction and deletion in terms of f

Indicator function of cutset space of G:

f:2F {01}

For contraction and deletion of some e € E:
Indicator functions of cutset spaces of ...

G/e G\e
f/le: 2B\t - (0,1} f\e:2EMet - {0,1}
f(X) F(X)+ f(XU{e})

FleX) =@y PAeX) =@ T 7o)



Interpolating between contraction and deletion

(GF, 2004)
Foree E, X C E\{e}:

Contraction Deletion
(f//e)(X) (f\e)(X)
f(X) f(X)+ f(Xu{e})

F(0) F(0) + f({e})
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Interpolating between contraction and deletion

(GF, 2004)
Foree E, X C E\{e}:

Contraction A-minor Deletion
(A=0) (A=1)
(f//e)(X) (Fll,e)(X) (F\e)(X)
m f(X)+ (X U{e}) f(X)+f(XU{e})
f(0) f(0) + Af({e}) f(0) + f({e})
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(For binary functions, duality = Hadamard transform (GF, 1993).)



Duality, contraction and deletion

Duality between contraction and deletion can be extended (GF,
2004).

Define 1- )
A= 2
1+ A
Then -
fl.e="f],.e

(For binary functions, duality = Hadamard transform (GF, 1993).)

Fixed points:
A=+V2-1
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From A to p
Duality:

—
|
>

° ®

—
+
>

(7))




From A to p

J Duality:
® 0
1+A
s
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From A\ to u

Notation:

V2—-1-)\

(3“‘[)7\[ DY

1+ p

V2+1—(V2-1)u



The transform L4

(W) = (v2) 1
> (V214 (VI )XY

XCE

(1= p)X\WVHIVAX|
(V2414 (V2= ) VO £(X)

Matrix representation:

1 V24+1+(W2-1)u 1—p
M(p) —= )
2v/2 1—p V214 (V2+ 1)
LHE = M) f (uses m-th Kronecker power)
Special cases:
uw=1: identity transform
_ 1. |E| :
p=-1: +/2"'x Hadamard transform (duality)

some kind of “triality”



Properties of the transforms

Composition of transforms «+— multiplication of their parameters:

[l lwe]  — plpapel

Also have generalisations of Plancherel’s and Parseval's theorems.



[14]-minors

Theorem

(Llmlfy = ScalingFactor(f, 1, jip) - LW (f 1)

H[u /u]

Up to constant factors:

f A Ll f

[£2]-minor [12/ p11]-minor

L[Hl]
Fll.,e






Alternating dimaps

Alternating dimap (Tutte, 1948):
directed graph without isolated vertices,
2-cell embedded in a disjoint union of orientable 2-manifolds,
each vertex has even degree,
Vv: edges incident with v are directed alternately into, and
out of, v (as you go around v).

v

v vy
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Alternating dimaps

Alternating dimap (Tutte, 1948):
» directed graph without isolated vertices,
» 2-cell embedded in a disjoint union of orientable 2-manifolds,
> each vertex has even degree,
> Vv: edges incident with v are directed alternately into, and

out of, v (as you go around v).
So vertices look like this:

Genus v(G) of an alternating dimap G:
V—E+F=2(k(G)—~(G))



Alternating dimaps

Three special partitions of E(G):
e clockwise faces
e anticlockwise faces
e n-stars
(An in-star is the set of all edges going into some vertex.)
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Alternating dimaps

Three special partitions of E(G):

e clockwise faces Oc
e anticlockwise faces O,
e in-stars o

(An in-star is the set of all edges going into some vertex.)
Each defines a permutation of E(G). These permutations satisfy

0i0c05=1



Triality (Trinity)

Construction of trial map:

clockwise faces — vertices — anticlockwise faces — clockwise faces



Triality (Trinity)

Construction of trial map:
clockwise faces — vertices — anticlockwise faces — clockwise faces

(O-I'vo-Cao-a) = (JC7087Ji)
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Triality (Trinity)

Construction of trial map:
clockwise faces — vertices — anticlockwise faces — clockwise faces

(O-iao-CaO-a) — (O-Cao-avo-i)
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Minor operations

(G[1]e)* = G¥[w?]e”




Minor operations

G¥[1]e"
G*[w]e”

Gw[w2]ew

G’ [1]e””
GV [w]e”

Gw2 [w2] er

Theorem

(Glw]e)*,
(Glw?le)”,
(G[1]e)*,

(Glw?le)~”,
(Gl1]e)~",
(Glwle)”.

Ife € E(G) and pi,v € {1,w,w?} then

GH[v]e® = (G[uv]e)r.

Same pattern as established for generalised minor operations on
binary functions (GF, 2008/2013...).



Minor operations

2

— > GGG




Relationships

triangulated triangle

0

alternating dimaps

!

bicubic map  (reduction: Tutte 1975)
1 duality

Eulerian triangulation
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Relationships

triangulated triangle

0

alternating dimaps
!

bicubic map  (reduction: Tutte 1975)
1 duality

Eulerian triangulation  (reduction, in inverse form
1 (Cavenagh & Lison&ck, 2008)

spherical latin bitrade

...: Batagelj, 1989)



Ultraloops, triloops, semiloops

ultraloop

v



Ultraloops, triloops, semiloops

ultraloop 1 1-loop



Ultraloops, triloops, semiloops
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Ultraloops, triloops, semiloops

w-loop

w2|ooij T
@



Ultraloops, triloops, semiloops

w—loop

1-semiloop

uItranop 1-loop

— o«—
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Ultraloops, triloops, semiloops w2-semiloop

w-loop

1-semiloop

‘ ultraloop 1-loop
w?-loop j T .
w-semiloop
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Ultraloops, triloops, semiloops w?-semiloop

1-semiloop

‘ uItranop 1-loop
J ;2 T
IOOP w-semiloop



Non-commutativity

Some bad news: sometimes,

Glule[v]f # Gv]flule






Glw]f[1]e



G[1]e[w]f
Glw]f[1]e



Glw]f[l]e £ G[1]e[w]f



Glw]f[l]e £ G[1]e[w]f

Theorem
Except for the above situation and its trials, reductions commute.

Glulf[vle = Glulellf

Corollary

If w = v, or one of e, f is a triloop, then reductions commute.
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Not all: for alternating dimaps, reductions do not commute in
general, whereas for binary functions, they do.



Which alternating dimaps “are” binary functions?

Not all: for alternating dimaps, reductions do not commute in
general, whereas for binary functions, they do.

Definition

A strict binary representation of a minor-closed set A of

alternating dimaps is a triple (F,e,v) such that

(a) F:A— {binary functions}

(b) e =(eg | G € A) is a family of bijections
e E(G) — E(F(G));

(c) v e Cwith |v| =1,

(d) F(G®) ~ LIF(G) for all G € A;

(e) F(Glule) = F(G) ||, cc(e) forall G € A, e € E(G) and
p € {lw,w?}.



Which alternating dimaps are binary functions?

Definitions
Gy = ultraloop
iC; = disjoint union of i ultraloops
0C; = empty alternating dimap
U = {iG|i=0,...,k}
Uo = {iG|ieNU{0}}
Theorem

If A is a minor-closed class of alternating dimaps which has a strict
binary representation then

| 2 A:@, or
» A =1U, for some k, or
» A=U,.



Which alternating dimaps are binary functions?
Proof. (Outline) If A = (): done. So suppose A # 0.

Since A is minor-closed, it must contain the empty alt. dimap 0C;.
It must be represented by £ : 2% — C with f(0) =1, i.e., f = (1).

If |[A] =1 then we are done. This F gives a strict binary
representation, and A = Uj.

If |LA] > 2, then it must contain the ultraloop C;. Its image F(Cy)

is given by
F(CL) = < \@1_1 )

Proof: (i is self-trial, so F(C;) must be too. So F(C;) must be
an eigenvector for eigenvalue 1 of the matrix M(w).

If | A| = 2 then we are done. This F gives a strict binary
representation, and A = {empty, ultraloop} = U;.



Which alternating dimaps are binary functions?

Suppose |A| > 3. Then A must have at least one alternating
dimap Gy on two edges.
For any such G, all reductions give the ultraloop C;.

So all reductions of F(Gy) give F(() = ( \@1_ 1 )

1 \®2
Then show that F(Gy) = ( V31 ) .

Therefore F(Gy) is self-trial, so G, must be too.

So G, = 2C; (the only self-trial alternating dimap on two edges).
So far, we have at most one alternating dimap in A with each
possible number of edges (0, 1, 2).

Show by induction that A has at most one member with k edges,
and that it is kCy, with

F(KCy) = ( ﬁl_ . >®k.

This is (the guts of) the strict binary representation. 0]
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