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Complexity of MIPS

MIPS is
» NP-hard to solve exactly
(Krishnamoorthy & Deo, 1979; Lewis & Yannakakis, 1980)
> also hard to approximate (Lund & Yannakakis, 1993):
Je > 0: cannot get performace ratio n=¢ unless P = NP.
> approximable with performance ratio Q(n~*(log n/ log log n)?)
(Halldérsson, 2000)



Bounded degree MIPS

“Real” graphs have low degrees.

Approximation algorithms: max degree < d:

» Halldérsson & Lau, 1997:

proportion of vertices included:
1

[(d+1)/3]
> linear time
» subgraphs found have max degree < 2

» Edwards & Farr, GD 2001:

proportion of vertices included:
3

d+1
> time O(mn)
» subgraphs found are series-parallel
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Future work
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Finding an Independent Set (classical heuristic)

Input: G =(V,E)

P:=0, R:=V

Loop: if v € R has degree < 0 in P, move it to P.
Output: P

Stops when every vertex in R has degree > 1 in P.
Count E(P, R) from each side:

dlp| = |R|
dip| = n—|P|
(d+1)|P| > n
n
Pl >
Pl =z d+1
: 1 ,
Proportion: ——— (Turén)

d+1



Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree <1 in
move it to P.
Output: P



Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree < 1 in the non-null portion P; of P,
move it to P.
Output: P



Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree < 1 in the non-null portion P; of P,
move it to P.
Output: P

Stops when every vertex in R has degree > 2 in P;.



Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree < 1 in the non-null portion P; of P,
move it to P.
Output: P

Stops when every vertex in R has degree > 2 in P;.
Py := {isolated vertices in (P)}; P =P\ Po.
Count E(P1, R) from each side:

(d=1)|P| = 2R
(d —1)|P1|] > 2n-—2|P]
(d+1)|Pi|+2|Po] > 2n
2n
|P| = |P1| +|Po| >

d+1



Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree < 1 in the non-null portion P; of P,
move it to P.
Output: P

Stops when every vertex in R has degree > 2 in P;.
Py := {isolated vertices in (P)}; P =P\ Po.
Count E(P1, R) from each side:

(d=1)|P| = 2R
(d —1)|P1|] > 2n-—2|P]
(d+1)|Pi|+2|Po] > 2n
2n
P| = |P Po| >
Pl=IP+ 1P| > 5=

2

P tion:
roportion I 1

(Alon, Mubayi, Thomas, 2001)
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Input: G =(V,E)

P:=0, R:=V
Py := forest portion of (P); P1 =P\ Py.
Loop: if v € R has dp,(v) <2,
can either move it to P (increases |P|)
or swap it with an appropriate vertex in P.
(This swap may require dp,(v) < 1.)
Output: P

Stops when every vertex in R has
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Count E(P, R), or E(P1, R), from each side.
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Finds an induced series-parallel subgraph.
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Finding an Induced Outerplanar Subgraph

Algorithm from Morgan & Farr, 2007 (outline):
Input: G =(V,E)
P =1, R==V
P1 := union of components of size > 3 of (P).
Firstly: P := maximal induced forest of G,

then make some easy additions to P.
Loop: if v € R has degree <2 in Py,

can either move it to P (increases |P|)

or swap it with an appropriate vertex in P.
Output: P

When stopped, every vertex in R has degree > 3 in P;.
Count E(P1, R) from each side.
3

Obtain: Proportion: m
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Proportion of vertices removed
Max degree < d:

roportion < d—2
i el
prop Sdr1
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Proportion of vertices removed
Ave degree < d:

proportion d—2  3(d—[d])([d] —d)

<
—d+1 (d+1)(|d]+1)([d]+1)
E & F 2001,2002 2003,2007
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3. degree 2:
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Algorithm 1.

1. Input: Graph G.
2. P:=V(G) //  vertices to be kept
R:=10 //  vertices to be removed
r (G) V) -2
r(G) V) +1
3. while ( |R| < p and r((P)) is nonempty )
{
w := vertex in P with maximum degree in r((P))
P:= P\ {w}
R:= RuU{w}
}



Theorem (E & F, 2003, 2007)

If G has min degree > 3, then Algorithm 1 finds a series-parallel
subgraph of G, and the number |R(G)| of vertices removed

satisfies
<
6)l Z d



Theorem (E & F, 2003, 2007)

If G has min degree > 3, then Algorithm 1 finds a series-parallel
subgraph of G, and the number |R(G)| of vertices removed

satisfies
<
6)l Z d

Proof. Induction on n.

Inductive basis: empty graph
(min degree > 3: no vertices of degree 0,1,2).

Now let G be any graph with min degree > 3 ...
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Can use this result to analyse behaviour of Algorithm 1 for graphs
of given average degree:

Theorem (E & F, 2003, 2007)

If G is has average degree d > 4, or is connected and has average
degree d > 2, then Algorithm 1 finds and induced planar subgraph
of G of at least

(3 4 3(d—[d])(Id] — d) )n
d+1 " (d+1)([d]+1)(d]+1)

vertices.

Time complexity = O(nm).



Experiments

» Algorithms: Independent Set (IS), Induced Forest (T),
Halldérsson-Lau (HL), Vertex Addition (VA), Outerplanar
(OP2), Vertex Removal (VR), ...

» n=20,...,10000
» d=3,4,...,9
» random graphs:

d-regular (Steger-Wormald),
expected average degree d (classical)

> number of graphs of each type:
50 (for n < 1000), 20 (for n > 1000)
Further information:
» Morgan & Farr, JGAA, to appear (2007)
» http://www.csse.monash.edu.au/ kmorgan/MIPS.html
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Performance versus n: random d-regular graphs
0.65

SREPS ——
VSR
VR
QPL4EPS -

Proportion
o
B~
o1
T
L

035 |

03 E

025 | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n



MIPS and fragmentability

MIPS is useful for breaking graphs into small pieces.
Given G, with max/ave degree < d:

1. remove vertices from G to leave induced planar subgraph (P);
2. remove o(n) vertices from (P) to leave bounded size pieces
(e.g., apply Planar Separator Theorem (Lipton & Tarjan)

recursively).



MIPS and fragmentability

MIPS is useful for breaking graphs into small pieces.
Given G, with max/ave degree < d:
1. remove vertices from G to leave induced planar subgraph (P);

2. remove o(n) vertices from (P) to leave bounded size pieces
(e.g., apply Planar Separator Theorem (Lipton & Tarjan)
recursively).

Converely, bounds on fragmentability can give upper bound on size
of MIPS.

E.g., for d = 3, cannot do better than dj— 1 = T

For more info on fragmentability:
Edwards & Farr (2001, 2007),
Haxell, Pikhurko & Thomason (preprint)
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Future

work

Improve lower bound on proportion of vertices in MIPS.
3
Our best: _—
ur bes i1
4
Ceiling: a1 Consider Ky < Kg11.

How close to ceiling can we get? Is there a lower ceiling?

MIPS v MPS (ordinary Maximum Planar Subgraph):

in each, most good approximation algorithms give tree-like
graphs. Is this coincidence?

Does either of these problems help you solve the other?

» Explain experimental results mathematically.

Experimental comparison with maxima/ induced planar
subgraph.



