The Maximum Induced Planar Subgraph problem

Graham Farr

Faculty of IT
Monash University
Graham.Farr@infotech.monash.edu.au

6 July 2007

Joint work with Keith Edwards (Dundee) and Kerri Morgan

The problem

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)
Input: Graph G
Output: set P C V/(G) such that

» the induced subgraph (P) is planar,

> |P| is maximum.

The problem

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)
Input: Graph G
Output: set P C V/(G) such that

» the induced subgraph (P) is planar,

> |P| is maximum.

The problem

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)
Input: Graph G
Output: set P C V/(G) such that

» the induced subgraph (P) is planar,

> |P| is maximum.

The problem

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)
Input: Graph G
Output: set P C V/(G) such that

» the induced subgraph (P) is planar,

> |P| is maximum.

The problem

MAXIMUM INDUCED PLANAR SUBGRAPH (MIPS)
Input: Graph G
Output: set P C V/(G) such that

» the induced subgraph (P) is planar,

> |P| is maximum.

Complexity of MIPS

MIPS is
» NP-hard to solve exactly
(Krishnamoorthy & Deo, 1979; Lewis & Yannakakis, 1980)
> also hard to approximate (Lund & Yannakakis, 1993):
Je > 0: cannot get performace ratio n=¢ unless P = NP.
> approximable with performance ratio Q(n~*(log n/ log log n)?)
(Halldérsson, 2000)

Bounded degree MIPS

“Real” graphs have low degrees.

Approximation algorithms: max degree < d:

» Halldérsson & Lau, 1997:

proportion of vertices included:
1

[(d+1)/3]
> linear time
» subgraphs found have max degree < 2

» Edwards & Farr, GD 2001:

proportion of vertices included:
3

d+1
> time O(mn)
» subgraphs found are series-parallel

Today:

» Max degree < d: some vertex addition algorithms

Today:

» Max degree < d: some vertex addition algorithms
» independent set (induced null subgraph)

Today:

» Max degree < d: some vertex addition algorithms

» independent set (induced null subgraph)
» induced forest

Today:

» Max degree < d: some vertex addition algorithms
» independent set (induced null subgraph)
» induced forest
> induced series-parallel subgraph

Today:

» Max degree < d: some vertex addition algorithms

» independent set (induced null subgraph)
» induced forest

> induced series-parallel subgraph

» induced outerplanar subgraph

Today:

» Max degree < d: some vertex addition algorithms
» independent set (induced null subgraph)
» induced forest
> induced series-parallel subgraph
» induced outerplanar subgraph

» Average degree < d: vertex removal algorithm

Today:

» Max degree < d: some vertex addition algorithms

» independent set (induced null subgraph)
» induced forest

> induced series-parallel subgraph

» induced outerplanar subgraph

» Average degree < d: vertex removal algorithm

» Experiments

Today:

v

v

v

v

Max degree < d: some vertex addition algorithms

>

>
IS
>

independent set (induced null subgraph)
induced forest

induced series-parallel subgraph

induced outerplanar subgraph

Average degree < d: vertex removal algorithm

Experiments

Connection with fragmentability

Today:

v

vV v v Y

Max degree < d: some vertex addition algorithms

>

>
IS
>

independent set (induced null subgraph)
induced forest

induced series-parallel subgraph

induced outerplanar subgraph

Average degree < d: vertex removal algorithm

Experiments

Connection with fragmentability

Future work

Finding an Independent Set (classical heuristic)

Input: G =(V,E)

P:=0, R:=V

Loop: if v € R has degree < 0 in P, move it to P.
Output: P

Finding an Independent Set (classical heuristic)

Input: G =(V,E)

P:=0, R:=V

Loop: if v € R has degree < 0 in P, move it to P.
Output: P

Stops when every vertex in R has degree > 1 in P.

Finding an Independent Set (classical heuristic)

Input: G =(V,E)

P:=0, R:=V

Loop: if v € R has degree < 0 in P, move it to P.
Output: P

Stops when every vertex in R has degree > 1 in P.
Count E(P, R) from each side:

diP| > |R|
diP| > n—|P|

(d+1)|P| > n
[—

Finding an Independent Set (classical heuristic)

Input: G =(V,E)

P:=0, R:=V

Loop: if v € R has degree < 0 in P, move it to P.
Output: P

Stops when every vertex in R has degree > 1 in P.
Count E(P, R) from each side:

dlp| = |R|
dip| = n—|P|
(d+1)|P| > n
n
Pl >
Pl =z d+1
: 1 ,
Proportion: ——— (Turén)

d+1

Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree <1 in
move it to P.
Output: P

Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree < 1 in the non-null portion P; of P,
move it to P.
Output: P

Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree < 1 in the non-null portion P; of P,
move it to P.
Output: P

Stops when every vertex in R has degree > 2 in P;.

Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree < 1 in the non-null portion P; of P,
move it to P.
Output: P

Stops when every vertex in R has degree > 2 in P;.
Py := {isolated vertices in (P)}; P =P\ Po.
Count E(P1, R) from each side:

(d=1)|P| = 2R
(d —1)|P1|] > 2n-—2|P]
(d+1)|Pi|+2|Po] > 2n
2n
|P| = |P1| +|Po| >

d+1

Finding an Induced Forest
Input: G =(V,E)
P =1, R=V
Loop: if v € R has degree < 1 in the non-null portion P; of P,
move it to P.
Output: P

Stops when every vertex in R has degree > 2 in P;.
Py := {isolated vertices in (P)}; P =P\ Po.
Count E(P1, R) from each side:

(d=1)|P| = 2R
(d —1)|P1|] > 2n-—2|P]
(d+1)|Pi|+2|Po] > 2n
2n
P| = |P Po| >
Pl=IP+ 1P| > 5=

2

P tion:
roportion I 1

(Alon, Mubayi, Thomas, 2001)

Finding an Induced Planar Subgraph
Algorithm from Edwards & Farr, 2002 (outline):
Input: G =(V,E)

P:=0, R:=V
Py := forest portion of (P); P1 =P\ Py.
Loop: if v € R has dp,(v) <2,
can either move it to P (increases |P|)
or swap it with an appropriate vertex in P.
(This swap may require dp,(v) < 1.)
Output: P

Finding an Induced Planar Subgraph
Algorithm from Edwards & Farr, 2002 (outline):
Input: G =(V,E)

P:=0, R:=V
Py := forest portion of (P); P1 =P\ Py.
Loop: if v € R has dp,(v) <2,
can either move it to P (increases |P|)
or swap it with an appropriate vertex in P.
(This swap may require dp,(v) < 1.)
Output: P

Stops when every vertex in R has

dp(v) >3, or dp(v)=2 and dpy(v)>2

Finding an Induced Planar Subgraph
Algorithm from Edwards & Farr, 2002 (outline):
Input: G =(V,E)

P:=0, R:=V
Py := forest portion of (P); P1 =P\ Py.
Loop: if v € R has dp,(v) <2,
can either move it to P (increases |P|)
or swap it with an appropriate vertex in P.
(This swap may require dp,(v) < 1.)
Output: P

Stops when every vertex in R has
dp(v) >3, or dp(v)=2 and dpy(v)>2
Count E(P, R), or E(P1, R), from each side.

3
Obtain: P tion. @ ——
ain: Proportion 11

Finding an Induced Planar Subgraph
Algorithm from Edwards & Farr, 2002 (outline):
Input: G =(V,E)

P:=0, R:=V
Py := forest portion of (P); P1 =P\ Py.
Loop: if v € R has dp,(v) <2,
can either move it to P (increases |P|)
or swap it with an appropriate vertex in P.
(This swap may require dp,(v) < 1.)
Output: P

Stops when every vertex in R has
dp(v) >3, or dp(v)=2 and dpy(v)>2
Count E(P, R), or E(P1, R), from each side.

Obtain: P tion. @ ——
ain: Proportion 11

Finds an induced series-parallel subgraph.

Finding an Induced Outerplanar Subgraph

Algorithm from Morgan & Farr, 2007 (outline):
Input: G =(V,E)
P =1, R==V
P1 := union of components of size > 3 of (P).
Firstly: P := maximal induced forest of G,

then make some easy additions to P.
Loop: if v € R has degree <2 in Py,

can either move it to P (increases |P|)

or swap it with an appropriate vertex in P.
Output: P

Finding an Induced Outerplanar Subgraph

Algorithm from Morgan & Farr, 2007 (outline):
Input: G =(V,E)
P =1, R==V
P1 := union of components of size > 3 of (P).
Firstly: P := maximal induced forest of G,

then make some easy additions to P.
Loop: if v € R has degree <2 in Py,

can either move it to P (increases |P|)

or swap it with an appropriate vertex in P.
Output: P

When stopped, every vertex in R has degree > 3 in P;.

Finding an Induced Outerplanar Subgraph

Algorithm from Morgan & Farr, 2007 (outline):
Input: G =(V,E)
P =1, R==V
P1 := union of components of size > 3 of (P).
Firstly: P := maximal induced forest of G,

then make some easy additions to P.
Loop: if v € R has degree <2 in Py,

can either move it to P (increases |P|)

or swap it with an appropriate vertex in P.
Output: P

When stopped, every vertex in R has degree > 3 in P;.
Count E(P1, R) from each side.
3

Obtain: Proportion: m

Proportion of vertices removed

Max degree < d:
i < d—2
roportion —_—
prop =d+1

E & F 2001,2002

Proportion of vertices removed

Max degree < d:
i < d—2
roportion —_—
prop =d+1

E & F 2001,2002

Proportion of vertices removed
Max degree < d:

roportion <d_2
i el
prop Sdr1
E & F 2001,2002
Yoo
(]
P ([J
([J
[)
(]
(]
00— —6 w i i i i i
1 2 3 4 5 6 7 8 9

Proportion of vertices removed
Max degree < d:

roportion < d—2
i el
prop Sdr1
E & F 2001,2002
Yoo
0e—o
1

Proportion of vertices removed
Ave degree < d:

proportion d—2 3(d—[d])([d] —d)

<
—d+1 (d+1)(|d]+1)([d]+1)
E & F 2001,2002 2003,2007

Series-parallel reductions

1. isolated vertex:

Series-parallel reductions

1. isolated vertex: delete @

Series-parallel reductions

1. isolated vertex: delete

Series-parallel reductions

1. isolated vertex: delete

2. leaf:

Series-parallel reductions

1. isolated vertex: delete

2. leaf: delete @——

Series-parallel reductions

1. isolated vertex: delete

2. leaf: delete

Series-parallel reductions

1. isolated vertex: delete

2. leaf: delete

3. degree 2:

Series-parallel reductions

1. isolated vertex: delete

2. leaf: delete

3. degree 2:

Series-parallel reductions

1. isolated vertex: delete

2. leaf: delete

delete

3. degree2:. = 00&------

Series-parallel reductions

1. isolated vertex: delete
2. leaf: delete
delete

3. degree2:. = 00&------
insert
(if absent)

Series-parallel reductions

1. isolated vertex: delete
2. leaf: delete

delete
3. degree 2:

insert
(if absent)

do series-parallel reductions
for as long as possible

r(G)

reduced
graph

do series-parallel reductions
for as long as possible

reduced
graph

Example: NT

Qld
G: WA

NSW
SA

Q® 1=

do series-parallel reductions
for as long as possible

reduced
graph

Example: NT

Qld
G: WA

NSW
SA

Q® 1=

do series-parallel reductions
for as long as possible

reduced
graph

Example: NT

Qld
G: WA

NSW
SA

Q® 1=

do series-parallel reductions
for as long as possible

reduced
graph

Example: NT

Qld
G: WA

NSW
SA

Q® 1=

do series-parallel reductions
for as long as possible

reduced
graph

Example: NT

Qld
G:

NSW
SA

Q® 1=

do series-parallel reductions
for as long as possible

reduced
graph

Example: NT

Qld
G:

NSW
SA

Q® 1=

do series-parallel reductions
for as long as possible

reduced
graph
Example:

Qld
G:

NSW
SA

Q® 1=

do series-parallel reductions
for as long as possible

reduced
graph
Example:

Qld
G:

NSW
SA

Q® 1=

do series-parallel reductions
G —— . — r(G)
for as long as possible

reduced
graph

Example:

G :
NSW

SA

Vic

Q® 1=

do series-parallel reductions
G — . — r(G)
for as long as possible

reduced
graph

Example:

G :
NSW

SA

Vic

Q® 1=

do series-parallel reductions
for as long as possible

reduced
graph

Example:

G:

NSW

Q® 1=

do series-parallel reductions
for as long as possible

reduced
graph

Example:

G:

NSW

Q® 1=

do series-parallel reductions
for as long as possible

Example:

G:

@® Vi
Q® 1=

reduced
graph

do series-parallel reductions
for as long as possible

Example:

G:

@® Vi
@ Tas

reduced
graph

Example:

G:

do series-parallel reductions
for as long as possible

@® Vi

r(G)

reduced
graph

Example:

G:

do series-parallel reductions
for as long as possible

@® Vic

r(G)

reduced
graph

Example:

G :

do series-parallel reductions
for as long as possible

r(G)

reduced
graph

Example:

G:

do series-parallel reductions
for as long as possible

r(G)

reduced
graph

..s0 r(G) is

empty

Fact
G is series-parallel < r(G) is empty.

Fact
G is series-parallel < r(G) is empty.

Theorem (Duffin, 1965)

G is series-parallel < G contains no subdivision of K.

Fact
G is series-parallel < r(G) is empty.

Theorem (Duffin, 1965)

G is series-parallel < G contains no subdivision of K.

Algorithm 1.

1. Input: Graph G.
2. P:=V(G) // vertices to be kept
R:=10 // vertices to be removed
r (G) V) -2
r(G) V) +1
3. while (|R| < p and r((P)) is nonempty)
{
w := vertex in P with maximum degree in r((P))
P:= P\ {w}
R:= RuU{w}
}

Theorem (E & F, 2003, 2007)

If G has min degree > 3, then Algorithm 1 finds a series-parallel
subgraph of G, and the number |R(G)| of vertices removed

satisfies
<
6)l Z d

Theorem (E & F, 2003, 2007)

If G has min degree > 3, then Algorithm 1 finds a series-parallel
subgraph of G, and the number |R(G)| of vertices removed

satisfies
<
6)l Z d

Proof. Induction on n.

Inductive basis: empty graph
(min degree > 3: no vertices of degree 0,1,2).

Now let G be any graph with min degree > 3 ...

N(W)

rest of G

max deg

«O» «Fr «=>»

«=>

Q>

N(W)

rest of G

max deg

«O» «Fr «=>»

«=>

Q>

N(W)

rest of G

max deg

IR(G)| <

1+

«O» «Fr «=>»

«=>

Q>

N(w)

rest of G

max deg

IR(G)| <

1+

IRCG-w)l

Q>

N(w)

R(G)| <

1+

IR(r(G — w))|

N(w)

R(G)| <

1+

IR(r(G — w))|
induction:

N(W)

rest Of G

IR(G)| <

1+

IR(r(G — w))]
induction:

<

dr(G_W)(V) ~

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| <

1+

IR(r(G — w))]
induction:

<

dr(G_W)(V) ~

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| <

1+

IR(r(G — w))]
induction:

<

dr(G_W)(V) ~

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| <

1+

IR(r(G — w))|
induction:

<

dr(G_W)(V) B

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| <

1+

IR(r(G — w))|
induction:

<

dr(G_W)(V) B

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| <

1+

IR(r(G — w))|
induction:

<

dr(G_W)(V) B

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| <

1+

IR(r(G — w))|
induction:

<

dr(G_W)(V) B

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| <

1+

IR(r(G — w))|
induction:

<

Z d’(G—W)(V) B

2
VeV ((a—mwy Fre-w(v) +1

N(W)

rest Of G

IR(G)| <

1+

|R(r(G - W))|
induction:

<

Z d’(G—W)(V) B

2
VeV ((a—mwy Fre-w(v) +1

N(W)

rest Of G

IR(G)| <

1+

|R(r(G B W))‘
induction:

IA

Z d’(G—W)(V) B

2
VeV ((a—mwy Fre-w(v) +1

N(W)

rest Of G

IR(G)| <

1+

Z d’(G—W)(V) B

-
VeV ((a—mwy Fre-w(v) +1

N(W)

rest Of G

IR(G)| <

1+

dr(G_W)(V) B

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| <

1+

dr(G_W)(V) B

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| <

1+

Z d’(G—W)(V) _

2
VeV ((a—mwy Fre-w(v) +1

N(W)

rest Of G

IR(G)| <

1+

Z d’(G—W)(V) _

2
VeV ((a—mwy Fre-w(v) +1

N(W)

rest Of G

IR(G)| <

1+

Z d’(G—W)(V) _

2
VeV ((a—mwy Fre-w(v) +1

N(W)

rest Of G

IR(G)| <

1+

Z dr(G-w)(v) —

veV(r(G—w)) dr(G-w)(v) +

R(G)| <

1

+

N(w)

D

d
veV(r(G—w))

rest of G

dr(G_W)(V) _ 2
f(G—W)(V)+1

N(w)

rest Of G

IR(G)| <

1+

Z dr(G_W)(V) o
veV(r(G—w)) dr(G_W)(V) 1

IR(G)| <

1

+

N(w)

>

d
veV(r(G—w))

rest of G

dr(G—W)(V) . 2
1

N(W)

rest Of G

IR(G)| <

1+

d
veV(r(G—w))

N(W)

rest Of G

IR(G)| <

1+

N(W)

rest Of G

IR(G)| <

1+

Z dr(G_W)(V) _9
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

R(G)| <

1+

Z d’(G_W)(V) _

2
veV(r(G—w)) dr(G_W)(V) 1

N(W)

rest Of G

R(G)| <

1+

Z dr(G—W)(V) o
d
veV(r(G—w))

2
r(G_W)(V) + 1

N(W)

rest Of G

R(G)| <

1+

dr(G_W)(V) _o
d
veV(r(G—w))

r(G_W)(V) + 1

N(W)

rest Of G

R(G)| <

1+

dr(G_W)(V) _9
d,
veV(r(G—w))

r(G_W)(V) + 1

N(W)

rest Of G

IR(G)| < .

>

dr(G_W)(V) _9
veV(r(G—w))

dr(G_W)(V) 1

N(W)

rest Of G

IR(G)| < .

>

dr(G_W)(V) _9
veV(r(G—w))

dr(G_W)(V) 1

N(w) rest of G

max deg

d c_w(v)—2
RO 1+ 3 dGE;H
veV(G—w) G-w (V

N(w) rest of G

w
max deg
d -2
IR(G)| < 1+ Z de(‘/)l
veV(G—w) G—w (V)+
de_w(v) -2 de_w(v)—2
Z dG w(Vv) +1+ Z de_w(v)+1

veN(w veV(G—w—N(w))

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

w
max deg
[R(G)| < 1+
d (v)—1+1

N(w)

rest of G
d (v)-2
d (v)+1

N(w)

w
max deg
d(v) 3
R(G)| <
- - Z d(v) +
VEN(W)
d (V)12
Z +
vEN(w) d (v)—-1+1

oo

d
veV(G—w—N(w))

>

veV(G—w—N(w))

rest of G

d(v) —2
d(v) +1

(v) -2
(v)+1

fHac

N(w)

rest of G
w
maxdeg
d(v) -3 o
R(G)| <
LU D DI R0 Doy e
veN(w) veV(G—w—N(w))
d (V)12
% +
veN(w)d (V)—1+1

> d

d
veV(G—w—N(w))

(V)—2
(v)+1

Q>

N(W)

rest of G

IR(G)| <

1+

d(v) —3
y)

d(v) _9
+ Z
veN(w) d(v) veV(G—w—N(w)) d0) 1
d ()12
>)
veN(w) d (V)—1+1

> d

d
veV(G—w—N(w))

(V)—2

(v)+1

Q>

N(W)

rest of G

IR(G)| <

1+

> d(v) -3

d(v) =2
+ Z
veN(w) d(v) veV(G—w—N(w)) d(V) +1
P
>)
veN(w) d (V)—1+1

> d

d
veV(G—w—N(w))

(V)—2

(v)+1

Q>

N(W)

rest of G

IR(G)| <

Z d(v) -3 . Z
veN(w) d(v)

veV(G—w—N(w))

d(v) =2
d(v) +1

Q>

IR(G)| <

max deg

1

N(w)

rest of G

IR(G)| <

max deg

1

rest of G

IR(G)| <

max deg

1

rest of G

IR(G)| <

max deg

1

rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w)

rest of G

N(w)

rest of G

N(w) rest of G

w
max deg

3 d(v)—2
REG)I< 1 ;
ve%(:w) d(v)(d(v)+1) vev(zc:_w)

d(v)—3 d(v)-2 d(v) -2
> < d(v) _d(v)+1)+ > A1)+ 1

veN(w) veV(G—w

«O>» «Fr «=)r» « =) = Q>

N(w) rest of G

w
max deg

3 d(v)—2
IR(G)| < I +
ve%(:w) d(v)(d(v)+1) VGV(ZG:_W) d(v) +1
d(v)—3 d(v)-2 d(v)—2
> (d(v) _d(v)+1)+ 2 A1)+ 1

veN(w) veV(G—w

«O>» «Fr «=)r» « =) = Q>

N(w) rest of G

w
max deg

3 d(v)—2
IR(G)| < 1 - .
VE%(:W) d(v)(d(v)+1) ve\/(zc:—w) dv)+1
dv)=3 d(v)-2 d(v) -2
- +
ve%(:w) (dlv) dlv)+ 1) Vev(zc;—w) d(v) +1

Oy @ <= <Er E 9HAE

N(w) rest of G

w
max deg

3 d(v)—2
IR(G)| < 1 — .
ve%(:w) d(v)(d(v)+1) ve\/(zG:—w) dv)+1
dv)=3 d(v)-2 d(v) -2
VE;(W) < d(v) d(v) + 1> - vev(ZG—W) d(v) +1

Oy @ <= <Er E 9HAE

IR(G)| <

N(w)

max deg
3
L= 2 @)+ D)

rest of G

IR(G)| <

N(w)

max deg
3
D e CCAESY

rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

max deg
dw) 3 d(v)—2
IR(C) < L= d(w)(d(w)+1) > d(v) +1

N(w) rest of G

N(w) rest of G

max deg
3 d(v)—2
IR(G)| < 1 — +
(d(w)+1) VGV(ZG:—W) d(v)+1
d(w) —2

N(w) rest of G

max deg
3 d(v)—2
IR(G)| < 1 — +
(d(w)+1) VGV(ZG:—W) d(v)+1
d(w) —2

N(w) rest of G

max deg
3 d(v)—2
IR(G)| < 1 — +
(d(w)+1) VGV(ZG:—W) d(v)+1
d(w) —2

N(w) rest of G

max deg
3 d(v)—2
IR(G)| < 1 — +
@D A d
d(w) —2

N(w) rest of G

max deg
3 d(v)—2
IR(G)| < 1 — +
@D A d
d(w) —2

N(w) rest of G

max deg
3 d(v)—2
IR(G)| < 1 — +
@ A d
d(w) —2

IR(G)| <

max deg

1

N(w)

rest of G

IR(G)| <

N(w)

max deg
3
: @)+ 1)
d(w) —2

rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

N(w) rest of G

max deg

R(6)I < d(w) - 2 oy A2

N(w) rest of G

max deg

R(6)I < d(w) - 2 oy A2

N(w) rest of G

max deg

R(6)I < d(w) - 2 oy A2

IR(G)| <

max deg

rest of G

d(w) — 2 d(v) —2
dw)+1 +ve\/(ZG:—W) d(v)+1
(v)—2
Z d (v)+1

Can use this result to analyse behaviour of Algorithm 1 for graphs
of given average degree:

Theorem (E & F, 2003, 2007)

If G is has average degree d > 4, or is connected and has average
degree d > 2, then Algorithm 1 finds and induced planar subgraph
of G of at least

(3 4 3(d—[d])(Id] — d))n
d+1 " (d+1)([d]+1)(d]+1)

vertices.

Time complexity = O(nm).

Experiments

» Algorithms: Independent Set (IS), Induced Forest (T),
Halldérsson-Lau (HL), Vertex Addition (VA), Outerplanar
(OP2), Vertex Removal (VR), ...

» n=20,...,10000
» d=3,4,...,9
» random graphs:

d-regular (Steger-Wormald),
expected average degree d (classical)

> number of graphs of each type:
50 (for n < 1000), 20 (for n > 1000)
Further information:
» Morgan & Farr, JGAA, to appear (2007)
» http://www.csse.monash.edu.au/ kmorgan/MIPS.html

Proportion

Performance

0.8

versus degree: random d-regular graphs

" VSR+EPS
VSR

Degree

Proportion

Performance

0.9

versus degree: expected ave. degree d

0.2

" VSR+EPS
VSR

L L L L
5 6 7 8 9
Expected Average Degree

Performance versus n: random d-regular graphs
0.65

SREPS ——
VSR
VR
QPL4EPS -

Proportion
o
B~
o1
T
L

035 |

03 E

025 | | | | | | | | |
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

n

MIPS and fragmentability

MIPS is useful for breaking graphs into small pieces.
Given G, with max/ave degree < d:

1. remove vertices from G to leave induced planar subgraph (P);
2. remove o(n) vertices from (P) to leave bounded size pieces
(e.g., apply Planar Separator Theorem (Lipton & Tarjan)

recursively).

MIPS and fragmentability

MIPS is useful for breaking graphs into small pieces.
Given G, with max/ave degree < d:
1. remove vertices from G to leave induced planar subgraph (P);

2. remove o(n) vertices from (P) to leave bounded size pieces
(e.g., apply Planar Separator Theorem (Lipton & Tarjan)
recursively).

Converely, bounds on fragmentability can give upper bound on size
of MIPS.

E.g., for d = 3, cannot do better than dj— 1 = T

For more info on fragmentability:
Edwards & Farr (2001, 2007),
Haxell, Pikhurko & Thomason (preprint)

Future work

» Improve lower bound on proportion of vertices in MIPS.

3
Our best: _—
ur bes i1
4
Ceiling: a1 Consider Ky < Kg11.

How close to ceiling can we get? Is there a lower ceiling?

Future work

» Improve lower bound on proportion of vertices in MIPS.

3
Our best: .
ur bes dr1

How close to ceiling can we get? Is there a lower ceiling?

» MIPS v MPS (ordinary Maximum Planar Subgraph):
in each, most good approximation algorithms give tree-like
graphs. Is this coincidence?
Does either of these problems help you solve the other?

Future

work

Improve lower bound on proportion of vertices in MIPS.
3
Our best: _—
ur bes i1
4
Ceiling: a1 Consider Ky < Kg11.

How close to ceiling can we get? Is there a lower ceiling?

MIPS v MPS (ordinary Maximum Planar Subgraph):

in each, most good approximation algorithms give tree-like
graphs. Is this coincidence?

Does either of these problems help you solve the other?

Explain experimental results mathematically.

Future

work

Improve lower bound on proportion of vertices in MIPS.
3
Our best: _—
ur bes i1
4
Ceiling: a1 Consider Ky < Kg11.

How close to ceiling can we get? Is there a lower ceiling?

MIPS v MPS (ordinary Maximum Planar Subgraph):

in each, most good approximation algorithms give tree-like
graphs. Is this coincidence?

Does either of these problems help you solve the other?

» Explain experimental results mathematically.

Experimental comparison with maxima/ induced planar
subgraph.

