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Counting colourings

» proper colourings

Adjacent vertices receive
different colours

» chromatic polynomial:

P(G; q) = # g-colourings of G



Deletion-contraction

For any edge e:

P(G:q) = P(G\ e;q) - P(G/eq)

IS
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Partition functions: Potts models

» general g-colourings (may be improper)

Good and bad edges

» Partition function:

Z(G;K,q) = Z o—K-(# good edges)

all g-colourings
(not just proper)
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All-terminal reliability

» Choose edges randomly: Pr(edge) = p

» Want chosen edges to contain a spanning tree

O @)

chosen edges

O O

» Reliability:

M(G, p) = Pr(chosen edges contain a spanning tree)
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weight enumerator of a linear code

Jones polynomial of an alternating link
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Tutte-Whitney polynomials

» The rank function of a graph:
for all X C E:

p(X) := (# vertices that meet X) — (# components of X).

» Whitney rank generating function:

R(G;x,y) Z s P(E)=p(X IXI p(X)
XCE

» Tutte polynomial:

T(G;x,y)=R(G;x—1,y — 1).



The “Recipe Theorem”

Theorem
(Tutte 1947 — Brylawski 1972 — Oxley & Welsh 1979)
If a function f on graphs ...

» s invariant under isomorphism,
» satisfies a deletion-contraction relation,

» is multiplicative over components
(iie., f(GLUGy) =f(G1)-f(Ga)),
...then f is essentially a (partial) evaluation of the Tutte-Whitney
polynomial.



The “Recipe Theorem”

Theorem
(Tutte 1947 — Brylawski 1972 — Oxley & Welsh 1979)
If a function f on graphs ...

» s invariant under isomorphism,
» satisfies a deletion-contraction relation,

» is multiplicative over components
(ie. F(GLUG) = F(G1) - F(Ga)),

...then f is essentially a (partial) evaluation of the Tutte-Whitney
polynomial.

Example

P(G;q) = (—1)"B)gMIR(G; —q, 1)
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Network reliability:

History
van Slyke &
Ising Potts Frank, 1971
1952
Stat Mech:
partition
functions
: Fortuin & \ Oxley &
Graphs: Birkhoff ~ Whitney, 1935 Tutte Kasteleyn V)ilelyh
Chrom 1912 Tutte, 1947 1954 Velst
poly
i - Greene [histle-
Linear codes: MacWilliams 1974 thwaite
weight 1963 1987
enumerator
Knots:

Jones poly
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Complexity of computing all of R(G; x, y)

» Graphs: #P-hard (Linial, 1986)
» Bipartite graphs: #P-hard (Linial, 1986)
» Bipartite planar graphs:  #P-hard (Vertigan & Welsh, 1992)
» Planar graphs, max degree 3: #P-hard (Vertigan, 1990)
» Square grid subgraphs, max deg 3: #P-hard (GF, 2006)
» Square grid graphs: Open (in #P1)
» Bounded tree-width:  p-time (Noble, 1998; Andrzejak, 1998)



Complexity of evaluating at specific points

Theorem

(Jaeger, Vertigan and Welsh, 1990)

The problem of determining R(G; x,y), given a graph G, is
#P-hard at all points (x, y) except those where xy = 1 and
(x,¥) =(0,0),(-1,-2),(-2,-1),(-2,-2).
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Generalisations

Extensions from graphs to:

» representable matroids (Smith), matroids (Tutte, Crapo),
greedoids (Gordon & McMahon), Boolean functions or set
systems (GF), hyperplane arrangements (Welsh & Whittle,
Ardila), semimatroids (Ardila), signed graphs (Murasugi),
rooted graphs (Wu, King & Lu), K-terminal graphs (Traldi),
biased graphs (Zaslavsky), matroid perspectives (Las
Vergnas), matroid pairs (Welsh & Kayibi), bimatroids (Kung),
graphic polymatroids (Borzacchini), general polymatroids
(Oxley & Whittle), ...

...or extend the polynomials:

» multivariate polynomials of various kinds: variables at each
vertex (Noble & Welsh), or edge (Fortuin & Kasteleyn, Traldi,
Kung, Sokal, Bollobas & Riordan, Zaslavsky, Ellis-Monaghan
& Riordan, Britz).
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Generalisations

Common themes:
> interesting partial evaluations

» deletion-contraction relations

» Recipe Theorems

» easier proofs

> roots

» how much of the graph is determined by the polynomial?

We now look at a generalisation to Boolean functions . ..
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Count rowspace members that are 0 outside W:

2p(E)—p(E\W) — Z indRowspace(X)
XCW

2xce ind(X)
ZXQE\W ind(X)

p(W) = log, (

Generalise to other functions

(not necessarily indicator functions of rowspaces) (GF, 1993):
Forany f:2E —{0,1} ...or... =R ...:

Define Qf by:

(QF)(W) = log, ( Sxce F(X) )

Lxcew F(X)
Inversion: if p : 2F — {0,1} then define QTp by
(QTp)(V) = (-1 Z (—1)|Wl2r(E)=p(E\W)

wcv
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Properties of the transform @

Basic properties:

> (QQTp)(V) = p( ) p(0)
> QTEQT = Q1
> QRTQ=Q

Relationship with the Hadamard transform:

(W) = zi S (-1 WXl (x)

XCE

Q

f Qf
Hadamard transform | | matroid-style dual
P —— (ofy =qf
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Extending the Whitney rank generating function

R(fix,y) = 3 x@(EI-QF00, IXI=GF(X)
XCE
Ri(fix.y) = x%(E) 3 () @0y
XCE

Example:

E={1,2)




Extending the Whitney rank generating function

R(f;x,y) = ZXQf(E)*Qf(X)yIX\*Qf(X)
XCE
Rilfix,y) = x¥E Y7 (xy) =0y IX
XCE
Example:

X |f
0 |1
E=1{1,2} {1} |1
{2} |1
{1,2} |0

R(f; X,y) — Xlog23 + 2Xy2—log23 + y2—/og23



Deletion-contraction

Forec E, X C E\ {e}:

Deletion Contraction

f(X)+f(XU{e}) f(X

7@) + () (F1eX) = F@)-

~—

(F\e)(X) =




Deletion-contraction

Forec E, X C E\ {e}:

Deletion Contraction
() = CETC a0 =)

Deletion-contraction rule:

Rifix.y) = <22 (0 RGP\ ex )+ S R(F e )
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Interpolating between contraction and deletion

Foree E, X C E\{e}:

Contraction Deletion
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Contraction A-minor Deletion
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Interpolating between contraction and deletion

Foree E, X C E\{e}:

Contraction A-minor Deletion
(A=0) (A=1)
(f//e)(X) (Fll,e)(X) (F\e)(X)
@ f(X)+ (X U{e}) f(X)+f(XUu{e})
f(0) f(0) + Af({e}) f(0) + f({e})
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Duality

Duality between deletion and contraction can be extended. Define

1—A
A= —
1+ A
Then -
fllie=7fll.e
Fixed points:
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A-rank functions
Define QW f by:

(QWF)(W) = log, ( (A P AMFX) )

DoXCE\W AWAVIO:)IWAVIE(X)

Duality:



A-rank functions
Define QW f by:

(@Y F)(W) = log, ( (1+ M)V g AXIF(X) )

DoXCE\W AWAVIO:)IWAVIE(X)

Duality:

Inversion:
(QWp)(v) =

(=D = )71

Z (-1l + )\*)—\Wl()\*)\Wﬂ‘_/\)\|Wﬁ\7|2/J(E)—p(E\W)
wcv
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A continuum of A\-Whitney functions

RV(fix,y) = ZXQ(A)f(E)*Q(A)f(X)yIX\fQ“)f(X)
XCE

RV (Fix,y) = E’Z xy)~ @V FX) X
XCE



A continuum of A\-Whitney functions

RV(Fix,y) = Y x@VAE)-Q0, IXI-QA)
XCE
RV (Fix,y) = xQVEN ™ (xy)= @1 IXI
XCE
R(Fix.y) (Vx+Y)IEL RO(fix,y)  R(fix,y)

0 V2 -1 A 1
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Properties of the A-Whitney function:

RV(fix,y)
> obeys a deletion-contraction-type relation
(with operations ||, T

» contains the weight enumerator of a nonlinear code
... but this is also in R(f;x,y), i.e., don't need };

» contains the partition function of the Ashkin-Teller model
on a graph G
... which is not determined by R(G; x, y),
so do need \.
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Ashkin-Teller model (1943)

» 4-colourings (may be improper): colours are (£1,+1)

+1

+1

+1

LD

P
+1
Product colours:
Good and bad edges
D

» Partition function (symmetric Ashkin-Teller):

ZAT(G; Ka K,v q) =

(# good “left" edges)
(# good “right” edges)

K.
-1 + K-
e(2K+K')|E| Z e + K’ (# good “product” edges)

|
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Ashkin-Teller model (1943)

Special cases:

» K = K’: Potts model (up to a factor)

» K’ =0: product of two Ising models (each g = 2)
For these, Zo7(G) is a specialisation of R(G : x, y).

In general, Zp1(G) is not a specialisation of R(G : x,y).
Example (M. C. Gray; see Tutte (1974)):

These graphs have same R(G; x, y), but different Zp1(G)
(even in symmetric case).
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