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Collaboration Networks are the Next
Phase of the Internet
By Kalen Smith on 15 Oct 2010 in Technology
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THEORY OF
RANDOM MAGNETS

After almost a decade of intense research on their unusual
phases and even more unusual dynamical behavior, random
magnets have emerged as prototypes for a wide variety of
systems with frozen-in disorder.

Daniel 5. Fisher, Geoffrey M. Grinstein and Anil Khurana
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Phase transition; threshold
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» Threshold; sharp threshold.
» “G(n, p) is connected” has a sharp threshold.

» “G(n, p) contains a triangle” has a (coarse) threshold
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Random CSPs

Every clause in a k-SAT formula F (with m clauses on n literals)
has the form
Xp VX, VX Ve VX .

F is satisfiable if there is a solution (xi,...,x,) such that every
clause of F is satisfied.

A random instance F with m clauses and n literals is chosen
uniformly at random from the set of (2n)%™ formulas.

More CSPs:

k-NAESAT, k-XORSAT, k-COL of graphs, 2-COL of k-uniform
hypergraphs.
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Theorem (Friedgut 1999)

k-SAT has a sharp threshold at m/n = ci(n).

> Is it true lim,_ oo ck(n) = cx? (only known: true for k = 2)
» What is 37 (only known: ¢ = 1)
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For large k...

» Kirousis, Kranakis, Krizanc, Stamatiou 1998; Franz, Leone
2003: ¢, < 2KIn2 — (14 1n2)/2 + ok(1).
» Achlioptas, Peres 2004:
ck >2%In2 — (k/2)In2 — (1 +1n2/2) + ok (1).
» Mertens, Mézard, Zecchina 2006:
ck =2KIn2 — (1 4+1n2)/2 + ox(1) (LRSB).
» Coja-Oghlan, Panagiotou 2013:
ck > 2KIn2 —(3/2)In2 + ok(1).
> Coja-Oghlan 2014: ¢, = 2XIn2 — (1 +1n2)/2 + ok (1).
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Main challenge: large deviations

v

Z: the number of k-SAT solutions
EZ — oco;

we need vVarZ

v

= O(EZ) to conclude Z >0
But vVarZ > 3a"EZ.
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What causes large deviations?

Section 3

k-SAT solutions are not symmetric;
“Degree sequence”;

clusters.

Marginal distribution (The marginal distribution is computed
by physicists (cavity method));
And we need to know more on the solution geometry:
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For large k...
SAT UB | SAT LB | Algorithmic Barrier
2K1n2 2kIn2 k
k-SAT —(1+|32)/2 —(1+|32)/2 2%Ink/k
k-COL 2KE | ek o (1/2)kInk
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Connectivity of solutions

Section 3

Let x and y be two solutions of F.

The Hamming distance between x and y is the number of i such
that x; # y;.

X

0011101011001010011
y 0101111000001110101

dH(Xﬂ y) =38.
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Connectivity of solutions
Let

» F: a SAT formula.
» f = f(n): any function of n between 1 and n.
Let Ff be the graphs such that

» V/(F¢): the set of solutions of F.

» E(Ff): o and 7 are adjacent if dy(o,7) < f.
f-connected.

If ¢ and 7 are in the same component of Fs, we say they are
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What physicists say...

Section 3

It was observed and hypothesized (by statistical physicists) that
when m/n exceeds a certain threshold, the solution space of many
CSPs is partitioned into clusters.
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What mathematicians say...

» k-XORSAT clustering threshold determined (AM12,IKKM12)
» k-SAT has well-separated clusters (DMMZ08,MMZ05)

» k-SAT (NAESAT,COL) clusters appear after (asymptotically
in k) the hypothesized clustering threshold (AC08)

» k-SAT clusters contains frozen variables (AR09)
» freezing threshold for k-COL, k-NAESAT (MR13)
» Condensation occurs in 2-COL in hypergraph (CZ12)
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Section 3

Linear system vs XORSAT formula

A clause in an k-XORSAT formula F (with m clauses) has the form
X1PxXoPB X3P D Xy,

where x; @ xz is true (= 1) if and only if exactly one of the
variables is true (= 1).
F is linear:

X1OxDX3D - Dxx=x1+x2+ (1+x3)+ -+ xk(mod 2).
An assignment satisfying F is a solution to a linear system of the
following form

where x = (x1, ..., Xp) is a vector of boolean variables;
A'is an m X n matrix.

:
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where x = (

Ax = b(mod 2),
A is an m X n matrix.

Xp) is a vector of boolean variables;

] = =

DA

:
University of Waterloo




Solution geometry of a random k-XORSAT near the clustering threshold

Section 0
:

Section 1
:

Section 2

Section 3

Linear system vs XORSAT formula

A clause in an k-XORSAT formula F (with m clauses) has the form

X1 Dx2DX3D - D xg,

where x; & x is true (= 1) if and only if exactly one of the
variables is true (= 1).
F is linear:

X1DxoDX3D - DXk =X1 +X2+(1+X3)+"'+Xk(mod 2).
An assignment satisfying F is a solution to a linear system of the
following form

Ax = b(mod 2),
where x = (xi,...,Xp) is a vector of boolean variables;
A'is an m X n matrix.
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Section 2

Section 3

k-XORSAT clusters: the set of solutions extended from a

particular solution on the 2-core (plus some complications).
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Clusters

k-XORSAT clusters: the set of solutions extended from a
particular solution on the 2-core (plus some complications).

The following is proved in dependently by Achlioptas and Molloy,
and Ibrahimi et al. about random r-XORSAT clustering.

Theorem (AM12,IKKM12)
A.a.s. the following statements are true.

(a) If m < (c* — €)n, then all solutions are in a single
O(log n)-connected cluster.

(b) If m > (c* + €)n, then all solutions are partitioned into
well-connected well-separated clusters.(all clusters are
O(log n)-connected; every pair of clusters are §(n)-separated)

Qe
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and Ibrahimi et al. about random r-XORSAT clustering.

Theorem (AM12,IKKM12)
A.a.s. the following statements are true.

(a) If m < (c* — €)n, then all solutions are in a single
O(log n)-connected cluster.
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Clusters

k-XORSAT clusters: the set of solutions extended from a
particular solution on the 2-core (plus some complications).

The following is proved in dependently by Achlioptas and Molloy,
and Ibrahimi et al. about random r-XORSAT clustering.

Theorem (AM12,IKKM12)

A.a.s. the following statements are true.

(a) If m < (c* — €)n, then all solutions are in a single
O(log n)-connected cluster.

(b) If m > (c* + €)n, then all solutions are partitioned into
well-connected well-separated clusters.(all clusters are
O(log n)-connected; every pair of clusters are Q(n)-separated)

c* corresponds to the emergence threshold of the 2-core.
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2-core threshold

Theorem (Kim '06)

Let H be a random k-uniform hypergraph with n vertices and cn

edges. There is a constant c* > 0 (depending on k and can be
specified) such that

(a) if c < c* — n~Y/2%¢ then w.h.p. H has an empty 2-core;

(b) if ¢ > c* 4 nY/2%¢, then w.h.p. H has a 2-core with size
Q(n).

=] F = = DA
;
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Clusters

Section 2

Section 3

Theorem (G. and Molloy '13)

Suppose m = (c* +n~%)n, § > 0 small. Then, a.a.s.
(a) every cluster is n°%)-connected;

(b) every pair of clusters are n*~9()_separated:

(c) (a) is tight — in every cluster, there are two solutions that are
not n®)_connected.

o = = E E 9Oace
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Theorem (G. and Molloy '13)

Suppose m = (c* +n~%)n, § > 0 small. Then, a.a.s.
(a) every cluster is n°©)-connected:

(b) every pair of clusters are n*~9()_separated:

(c) (a) is tight — in every cluster, there are two solutions that are
not n®©)_connected.
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Inside the cluster-Upper bound

depth(v): the least number of vertices needs to be removed before
v in any stripping sequence. (These are the set of vertices
reachable from v in the digraph.)

When ¢ = ¢* + ¢, depth(v) = O(log n) for all v ¢ 2-core;

When ¢ = ¢* + n~?, the maximum depth becomes n®(9)

o 5 = = £ DA
;
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v in any stripping sequence. (These are the set of vertices
reachable from v in the digraph.)

When ¢ = ¢* + ¢, depth(v) = O(log n) for all v ¢ 2-core;

When ¢ = ¢* 4+ n~9, the maximum depth becomes n®).
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v in any stripping sequence. (These are the set of vertices
reachable from v in the digraph.)

When ¢ = ¢* + ¢, depth(v) = O(log n) for all v ¢ 2-core;
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Lower bound of maximum depth
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Why stripping becomes slow?

. L.t/ﬂ,

Co0)
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Why stripping becomes slow?

. L.t/ﬂ,

derivative =0

Co0)

derivative <0 _l:/
r.
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: :
Stripping number
Theorem (G. and Molloy '13)
Assume ¢ = c* 4+ n°, 0 < § < 1/2, the stripping number is
between n%/? and n%/? log n.
Idea behind the proof Approximate L; by a “lazy” random walk
— it takes long for L; to reach 0. []
It implies the lower bound on the maximum depth.
=} F = E E 9Oace
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Theorem (G. and Molloy '13)

Assume ¢ = c* 4+ n~%, 0 < § < 1/2, the stripping number is
between n%/? and n%/? log n.

Idea behind the proof Approximate L; by a “lazy” random walk
— it takes long for L; to reach 0. O
It implies the lower bound on the maximum depth.
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Upper bound of maximum depth
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Upper bound of maximum depth
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Upper bound of maximum depth

Theorem (G. and Molloy '13)
Suppose ¢ = c*+n~%, § > 0 small.

(a) depth(v) = n®©) for all v ¢ 2-core;
(b) max{depth(v)} = n®0),

Proof (a). Use Edge-Selection + solving a recurrence + applying
Talagrand Inequality.
(b). From the lower bound of the stripping number.

o 5 = = E DA
;
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(b). From the lower bound of the stripping number.

Solution geometry of a random k-XORSAT near the clustering threshold

A
University of Waterloo




Section 0
:

Section 1
:

Section 2

Section 3

Upper bound of maximum depth

Theorem (G. and Molloy '13)
Suppose ¢ = c*+n°%, § > 0 small.

(a) depth(v) = n°®) for all v ¢ 2-core;
(b) max{depth(v)} = n®®).

Proof (a). Use Edge-Selection + solving a recurrence + applying
Talagrand Inequality.

(b). From the lower bound of the stripping number.
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Section 0 Section 1 Section 2

Section 3
Inside the cluster
Theorem (G. and Molloy '13)
Assume ¢ = c* 4+ n~%,§ > 0 small. Then a.a.s.
(a) every cluster is n°%)-connected;
(b) there exists two solutions in each cluster that are NOT
n®0)_connected.
Proof (a) follows as the maximum depth of vertices outside the
2-core is n9(9).
However, the lower bound of the maximum depth does NOT imply
part (b).
=] F = = £ DA
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Theorem (G. and Molloy '13)
Assume ¢ = c* 4+ n~%,§ > 0 small. Then a.a.s.
(a) every cluster is n°©)-connected;
(b) there exists two solutions in each cluster that are NOT
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Between clusters
Theorem (G. and Molloy '13)

Assume ¢ = c*+n~% r> 3,5 >0 small. Then a.a.s. each pair of
clusters is n*=90)_separated.

Note that this theorem does not exclude the possibility that
clusters are Q(n)-separated.

Proof

Take x and y disagree on the 2-core;

= x and y disagree on a set S of variables in the 2-core;

= |eN S| is even for every e in the 2-core;
= I(S);

o 5 = = E DA
;
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Between clusters
Theorem (G. and Molloy 2013)

Assume ¢ = c*4+n~%, r> 3,5 >0 small. Then a.a.s. each pair of
clusters is n*=90)_separated.

Note that this theorem does not exclude the possibility that
clusters are Q(n)-separated.

Proof

Take x and y disagree on the 2-core;

= x and y disagree on a set S of variables in the 2-core;

= |eN S| is even for every e in the 2-core;

= I(S);

= average degree of [(S) is at least 3;
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Between clusters
Theorem (G. and Molloy '13)

Assume ¢ = c*4+n~%, r> 3,5 >0 small. Then a.a.s. each pair of
clusters is n*=90)_separated.

Note that this theorem does not exclude the possibility that
clusters are Q(n)-separated.

Proof

Take x and y disagree on the 2-core;

= x and y disagree on a set S of variables in the 2-core;
= |eN S| is even for every e in the 2-core;

= I(S);

= average degree of [(S) is at least 3;

(a) A sparse random graph is locally tree-like;
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Between clusters

Theorem (G. and Molloy '13)

Assume c = c*+n% r>3,5 >0 small. Then a.a.s. each pair of
clusters is n*=90)_separated.

Note that this theorem does not exclude the possibility that
clusters are Q(n)-separated.

Proof

Take x and y disagree on the 2-core;

= x and y disagree on a set S of variables in the 2-core;

= |eN S| is even for every e in the 2-core;

= I(S);

= average degree of ['(S) is at least 3;

(a) A sparse random graph is locally tree-like; (b) Branching

parameter =1 — (;
] = = =
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a small graph: average
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case 2: b small, a>> b.

ge

$ such a path cannot be
long

cases 1,2 => a+b must be large
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Between clusters

Theorem (G. and Molloy '13)

Assume ¢ = c*4+n~%, r> 3,5 >0 small. Then a.a.s. each pair of
clusters is n*=90)_separated.

Note that this theorem does not exclude the possibility that
clusters are (n)-separated.

Proof

Take x and y disagree on the 2-core;

= x and y disagree on a set S of variables in the 2-core;

= |eN S| is even for every e in the 2-core;

= I(S);

= average degree of [(S) is at least 3;

(a) A sparse random graph is locally tree-like; (b) Branching
parameter =1 — (;

= x and y are well-separated. e S

Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo
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Future work

» For ¢ = ¢* + n~9, are clusters o(n)-connected or
Q(n)-separated?

> ¢ = c* — n~% (stripping number, depth, cluster connectivity)?

> ¢ = c* + O(n~/?) (stripping number, depth, cluster
connectivity)?

» What happens to the first graph containing a 2-core?

=] F = E E 9Oace
: :
Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo
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Future work

» For ¢ = ¢* + n~9, are clusters o(n)-connected or
Q(n)-separated?

» ¢ = c* — n~9 (stripping number, depth, cluster connectivity)?

» ¢ = c* + O(n~1/?) (stripping number, depth, cluster
connectivity)?
What happens to the first graph containing a 2-core?

o 5 = = £ DA
;

:
Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo

00




Section 0 Section 1 Section 2 Section 3
: :

Future work

» For ¢ = ¢* + n~9, are clusters o(n)-connected or
Q(n)-separated?

» ¢ = c* — n~9 (stripping number, depth, cluster connectivity)?

c = c* + O(n~'/?) (stripping number, depth, cluster

connectivity)?

v

v
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