Solution geometry of a random k-XORSAT near the clustering threshold

Jane Gao

University of Waterloo

Monash University – Discrete Maths Seminar

June 30, 2014

Collaborator: Mike Molloy

Section 2

A few words about random structures

Section 1

Section 0

- ▶ What are random structures?
- ► Why study random strcutures?

Section 3

- ▶ What are random structures?
- ▶ Why study random strcutures?

- ▶ What are random structures?
- Why study random strcutures?

Collaboration Networks are the Next Phase of the Internet

By Kalen Smith on 15 Oct 2010 in Technology

Photo by Marc Smith

THEORY OF RANDOM MAGNETS

After almost a decade of intense research on their unusual phases and even more unusual dynamical behavior, random magnets have emerged as prototypes for a wide variety of systems with frozen-in disorder.

Daniel S. Fisher, Geoffrey M. Grinstein and Anil Khurana

- ▶ What are random structures?
- Why study random strcutures?
- What to study in random structures?
- Evolution of random structures phase transitions.

- ▶ What are random structures?
- Why study random strcutures?
- What to study in random structures?
- Evolution of random structures phase transitions.

- ▶ What are random structures?
- Why study random strcutures?
- What to study in random structures?
- Evolution of random structures phase transitions.

- ► Threshold; sharp threshold.
- "G(n, p) is connected" has a sharp threshold.
- "G(n, p) contains a triangle" has a (coarse) threshold.

- ► Threshold; sharp threshold.
- "G(n, p) is connected" has a sharp threshold.
- "G(n, p) contains a triangle" has a (coarse) threshold.

- ► Threshold; sharp threshold.
- "G(n, p) is connected" has a sharp threshold.
- "G(n, p) contains a triangle" has a (coarse) threshold.

- ► Threshold; sharp threshold.
- "G(n, p) is connected" has a sharp threshold.
- "G(n, p) contains a triangle" has a (coarse) threshold.

Section 0 Section 1 Section 2 Section 3

Random CSPs

Every clause in a k-SAT formula F (with m clauses on n literals) has the form

$$x_{i_1} \vee x_{i_2} \vee \bar{x}_{i_3} \vee \cdots \vee x_{i_k}$$
.

F is satisfiable if there is a solution (x_1, \ldots, x_n) such that every clause of F is satisfied.

A random instance F with m clauses and n literals is chosen uniformly at random from the set of $(2n)^{km}$ formulas.

More CSPs:

k-NAESAT, *k*-XORSAT, *k*-COL of graphs, 2-COL of *k*-uniform hypergraphs.

Section 0 Section 1 Section 2 Section 3

Random CSPs

Every clause in a k-SAT formula F (with m clauses on n literals) has the form

$$x_{i_1} \vee x_{i_2} \vee \bar{x}_{i_3} \vee \cdots \vee x_{i_k}$$
.

F is satisfiable if there is a solution (x_1, \ldots, x_n) such that every clause of F is satisfied.

A random instance F with m clauses and n literals is chosen uniformly at random from the set of $(2n)^{km}$ formulas.

More CSPs:

k-NAESAT, *k*-XORSAT, *k*-COL of graphs, 2-COL of *k*-uniform hypergraphs.

Section 0 Section 1 Section 2 Section 3

Random CSPs

Every clause in a k-SAT formula F (with m clauses on n literals) has the form

$$x_{i_1} \vee x_{i_2} \vee \bar{x}_{i_3} \vee \cdots \vee x_{i_k}$$
.

F is satisfiable if there is a solution (x_1, \ldots, x_n) such that every clause of F is satisfied.

A random instance F with m clauses and n literals is chosen uniformly at random from the set of $(2n)^{km}$ formulas.

More CSPs:

k-NAESAT, *k*-XORSAT, *k*-COL of graphs, 2-COL of *k*-uniform hypergraphs.

Theorem (Friedgut 1999)

- ▶ Is it true $\lim_{n\to\infty} c_k(n) = c_k$? (only known: true for k=2)
- ▶ What is c_3 ? (only known: $c_2 = 1$)

Theorem (Friedgut 1999)

- ▶ Is it true $\lim_{n\to\infty} c_k(n) = c_k$? (only known: true for k=2)
- ▶ What is c_3 ? (only known: $c_2 = 1$)

Theorem (Friedgut 1999)

- ▶ Is it true $\lim_{n\to\infty} c_k(n) = c_k$? (only known: true for k=2)
- ▶ What is c_3 ? (only known: $c_2 = 1$)

Theorem (Friedgut 1999)

- ▶ Is it true $\lim_{n\to\infty} c_k(n) = c_k$? (only known: true for k=2)
- ▶ What is c_3 ? (only known: $c_2 = 1$)

Theorem (Friedgut 1999)

- ▶ Is it true $\lim_{n\to\infty} c_k(n) = c_k$? (only known: true for k=2)
- What is c_3 ? (only known: $c_2 = 1$)

Theorem (Friedgut 1999)

- ▶ Is it true $\lim_{n\to\infty} c_k(n) = c_k$? (only known: true for k=2)
- ▶ What is c_3 ? (only known: $c_2 = 1$)

- ► Kirousis, Kranakis, Krizanc, Stamatiou 1998; Franz, Leone 2003: $c_k < 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.
- Achlioptas, Peres 2004: $c_k \ge 2^k \ln 2 - (k/2) \ln 2 - (1 + \ln 2/2) + o_k(1).$
- ► Mertens, Mézard, Zecchina 2006: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$ (1RSB).
- ► Coja-Oghlan, Panagiotou 2013: $c_k > 2^k \ln 2 (3/2) \ln 2 + o_k(1)$.
- ► Coja-Oghlan 2014: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.

- ► Kirousis, Kranakis, Krizanc, Stamatiou 1998; Franz, Leone 2003: $c_k < 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.
- Achlioptas, Peres 2004: $c_k \ge 2^k \ln 2 - (k/2) \ln 2 - (1 + \ln 2/2) + o_k(1).$
- ► Mertens, Mézard, Zecchina 2006: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$ (1RSB).
- ► Coja-Oghlan, Panagiotou 2013: $c_k \ge 2^k \ln 2 (3/2) \ln 2 + o_k(1)$.
- ► Coja-Oghlan 2014: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.

- ► Kirousis, Kranakis, Krizanc, Stamatiou 1998; Franz, Leone 2003: $c_k \le 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.
- Achlioptas, Peres 2004: $c_k \ge 2^k \ln 2 (k/2) \ln 2 (1 + \ln 2/2) + o_k(1).$
- ► Mertens, Mézard, Zecchina 2006: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$ (1RSB).
- ► Coja-Oghlan, Panagiotou 2013: $c_k \ge 2^k \ln 2 (3/2) \ln 2 + o_k(1)$.
- ► Coja-Oghlan 2014: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.

- ► Kirousis, Kranakis, Krizanc, Stamatiou 1998; Franz, Leone 2003: $c_k \le 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.
- Achlioptas, Peres 2004: $c_k \ge 2^k \ln 2 (k/2) \ln 2 (1 + \ln 2/2) + o_k(1)$.
- ► Mertens, Mézard, Zecchina 2006: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$ (1RSB).
- ► Coja-Oghlan, Panagiotou 2013: $c_k \ge 2^k \ln 2 (3/2) \ln 2 + o_k(1)$.
- ► Coja-Oghlan 2014: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.

- ► Kirousis, Kranakis, Krizanc, Stamatiou 1998; Franz, Leone 2003: $c_k \le 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.
- Achlioptas, Peres 2004: $c_k \ge 2^k \ln 2 - (k/2) \ln 2 - (1 + \ln 2/2) + o_k(1).$
- ► Mertens, Mézard, Zecchina 2006: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$ (1RSB).
- Coja-Oghlan, Panagiotou 2013: $c_k \ge 2^k \ln 2 (3/2) \ln 2 + o_k(1)$.
- ► Coja-Oghlan 2014: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.

- ► Kirousis, Kranakis, Krizanc, Stamatiou 1998; Franz, Leone 2003: $c_k \le 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.
- Achlioptas, Peres 2004: $c_k \ge 2^k \ln 2 - (k/2) \ln 2 - (1 + \ln 2/2) + o_k(1).$
- ► Mertens, Mézard, Zecchina 2006: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$ (1RSB).
- ► Coja-Oghlan, Panagiotou 2013: $c_k \ge 2^k \ln 2 (3/2) \ln 2 + o_k(1)$.
- ► Coja-Oghlan 2014: $c_k = 2^k \ln 2 (1 + \ln 2)/2 + o_k(1)$.

- \triangleright *Z*: the number of *k*-SAT solutions;
- \triangleright **E** $Z \to \infty$;
- we need $\sqrt{\text{Var}Z} = O(\textbf{E}Z)$ to conclude Z > 0;
- ▶ But $\sqrt{\text{Var}Z} \ge a^n \mathbf{E}Z$.

- ► *Z*: the number of *k*-SAT solutions;
- ightharpoonup **E** $Z \to \infty$;
- we need $\sqrt{\text{Var}Z} = O(\mathbf{E}Z)$ to conclude Z > 0;
- ▶ But $\sqrt{\text{Var}Z} \ge a^n \mathbf{E}Z$.

- \triangleright *Z*: the number of *k*-SAT solutions;
- ▶ $EZ \rightarrow \infty$;
- we need $\sqrt{VarZ} = O(EZ)$ to conclude Z > 0;
- ▶ But $\sqrt{\text{Var}Z} \ge a^n \mathbf{E}Z$.

- \triangleright *Z*: the number of *k*-SAT solutions;
- ▶ $EZ \rightarrow \infty$;
- we need $\sqrt{\text{Var}Z} = O(\text{E}Z)$ to conclude Z > 0;
- ▶ But $\sqrt{VarZ} \ge a^n EZ$.

- ► *Z*: the number of *k*-SAT solutions;
- ▶ $EZ \rightarrow \infty$;
- we need $\sqrt{\text{Var}Z} = O(\text{E}Z)$ to conclude Z > 0;
- ▶ But $\sqrt{\text{Var}Z} \ge a^n \mathbf{E}Z$.

What causes large deviations?

- ► *k*-SAT solutions are not symmetric;
- "Degree sequence";
- Marginal distribution (The marginal distribution is computed by physicists (cavity method));
- ► And we need to know more on the solution geometry: clusters.

- k-SAT solutions are not symmetric;
- "Degree sequence";
- Marginal distribution (The marginal distribution is computed by physicists (cavity method));
- ► And we need to know more on the solution geometry: clusters.

- k-SAT solutions are not symmetric;
- "Degree sequence";
- Marginal distribution (The marginal distribution is computed by physicists (cavity method));
- And we need to know more on the solution geometry: clusters.

- k-SAT solutions are not symmetric;
- "Degree sequence";
- Marginal distribution (The marginal distribution is computed by physicists (cavity method));
- ► And we need to know more on the solution geometry: clusters.

- k-SAT solutions are not symmetric;
- "Degree sequence";
- Marginal distribution (The marginal distribution is computed by physicists (cavity method));
- And we need to know more on the solution geometry: clusters.

- k-SAT solutions are not symmetric;
- "Degree sequence";
- Marginal distribution (The marginal distribution is computed by physicists (cavity method));
- And we need to know more on the solution geometry: clusters.

For large k...

	SAT UB	SAT LB	Algorithmic Barrier
k-SAT	$2^k \ln 2 - (1 + \ln 2)/2$	$2^k \ln 2 - (1 + \ln 2)/2$	$2^k \ln k/k$
k-COL	2k ln k – ln k	2k ln k ln k2 ln 2	$(1/2)k \ln k$
2-COL k-hypergraph	$2^{k-1} \ln 2 - \ln 2/2$	$2^{k-1} \ln 2 - (1+\ln 2)/2$	$2^{k-1} \ln k/k$

Let \mathbf{x} and \mathbf{y} be two solutions of F.

The Hamming distance between \mathbf{x} and \mathbf{y} is the number of i such that $x_i \neq y_i$.

$$d_{H}(\mathbf{x}, \mathbf{y}) = 8.$$

Let \mathbf{x} and \mathbf{y} be two solutions of F.

The Hamming distance between **x** and **y** is the number of *i* such that $x_i \neq y_i$.

$$d_H(x, y) = 8.$$

Let \mathbf{x} and \mathbf{y} be two solutions of F.

The Hamming distance between \mathbf{x} and \mathbf{y} is the number of i such that $x_i \neq y_i$.

$$d_H(\mathbf{x},\mathbf{y})=8.$$

Let

- ► F: a SAT formula.
- f = f(n): any function of n between 1 and n.

Let F_f be the graphs such that

- \triangleright $V(F_f)$: the set of solutions of F.
- ▶ $E(F_f)$: σ and τ are adjacent if $d_H(\sigma, \tau) \leq f$.

If σ and τ are in the same component of F_f , we say they are f-connected.

Let

- ► F: a SAT formula.
- f = f(n): any function of n between 1 and n.

Let F_f be the graphs such that

- \triangleright $V(F_f)$: the set of solutions of F.
- ▶ $E(F_f)$: σ and τ are adjacent if $d_H(\sigma, \tau) \leq f$.

If σ and τ are in the same component of F_f , we say they are f-connected.

Let

- F: a SAT formula.
- f = f(n): any function of n between 1 and n.

Let F_f be the graphs such that

- \triangleright $V(F_f)$: the set of solutions of F.
- ▶ $E(F_f)$: σ and τ are adjacent if $d_H(\sigma, \tau) \leq f$.

If σ and τ are in the same component of F_f , we say they are f-connected.

What physicists say...

It was observed and hypothesized (by statistical physicists) that when m/n exceeds a certain threshold, the solution space of many CSPs is partitioned into clusters.

What physicists say...

It was observed and hypothesized (by statistical physicists) that when m/n exceeds a certain threshold, the solution space of many CSPs is partitioned into clusters.

[Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova 2007]

Section 0 Section 1 Section 2 Section 3

What mathematicians say...

- ► *k*-XORSAT clustering threshold determined (AM12,IKKM12)
- ► *k*-SAT has well-separated clusters (DMMZ08,MMZ05)
- ▶ k-SAT (NAESAT,COL) clusters appear after (asymptotically in k) the hypothesized clustering threshold (AC08)
- k-SAT clusters contains frozen variables (AR09)
- ▶ freezing threshold for k-COL, k-NAESAT (MR13)
- Condensation occurs in 2-COL in hypergraph (CZ12)

Birth of k-XORSAT clusters

Birth of k-XORSAT clusters: $c^* - \epsilon < c < c^* + \epsilon$

Birth of the 2-core

(c*-n⁵,c*+n⁵)

Birth of clusters

Birth of k-XORSAT clusters: $c^* - \epsilon < c < c^* + \epsilon$

n^{1-§}-separated

Birth of k-XORSAT clusters: $c^* - \epsilon < c < c^* + \epsilon$

A clause in an k-XORSAT formula F (with m clauses) has the form

$$x_1 \oplus x_2 \oplus \bar{x}_3 \oplus \cdots \oplus x_k$$

where $x_1 \oplus x_2$ is true (=1) if and only if exactly one of the variables is true (=1).

F is linear:

$$x_1 \oplus x_2 \oplus \overline{x}_3 \oplus \cdots \oplus x_k = x_1 + x_2 + (1 + x_3) + \cdots + x_k \pmod{2}$$
.

An assignment satisfying ${\it F}$ is a solution to a linear system of the following form

$$A\mathbf{x} = \mathbf{b} \pmod{2}$$
,

where $\mathbf{x} = (x_1, \dots, x_n)$ is a vector of boolean variables;

A is an $m \times n$ matrix.

A clause in an k-XORSAT formula F (with m clauses) has the form

$$x_1 \oplus x_2 \oplus \bar{x}_3 \oplus \cdots \oplus x_k$$
,

where $x_1 \oplus x_2$ is true (=1) if and only if exactly one of the variables is true (=1).

F is linear:

$$x_1 \oplus x_2 \oplus \overline{x}_3 \oplus \cdots \oplus x_k = x_1 + x_2 + (1+x_3) + \cdots + x_k \pmod{2}.$$

An assignment satisfying F is a solution to a linear system of the following form

$$A\mathbf{x} = \mathbf{b} \pmod{2}$$
,

where $\mathbf{x} = (x_1, \dots, x_n)$ is a vector of boolean variables;

A is an $m \times n$ matrix.

A clause in an k-XORSAT formula F (with m clauses) has the form

$$x_1 \oplus x_2 \oplus \bar{x}_3 \oplus \cdots \oplus x_k$$
,

where $x_1 \oplus x_2$ is true (=1) if and only if exactly one of the variables is true (=1).

F is linear:

$$x_1 \oplus x_2 \oplus \overline{x}_3 \oplus \cdots \oplus x_k = x_1 + x_2 + (1 + x_3) + \cdots + x_k \pmod{2}.$$

An assignment satisfying F is a solution to a linear system of the following form

$$A\mathbf{x} = \mathbf{b} \pmod{2}$$
,

where $\mathbf{x} = (x_1, \dots, x_n)$ is a vector of boolean variables; A is an $m \times n$ matrix

A clause in an k-XORSAT formula F (with m clauses) has the form

$$x_1 \oplus x_2 \oplus \bar{x}_3 \oplus \cdots \oplus x_k$$

where $x_1 \oplus x_2$ is true (=1) if and only if exactly one of the variables is true (=1).

F is linear:

$$x_1 \oplus x_2 \oplus \overline{x}_3 \oplus \cdots \oplus x_k = x_1 + x_2 + (1 + x_3) + \cdots + x_k \pmod{2}.$$

An assignment satisfying F is a solution to a linear system of the following form

$$A\mathbf{x} = \mathbf{b} \pmod{2}$$
,

where $\mathbf{x} = (x_1, \dots, x_n)$ is a vector of boolean variables;

A is an $m \times n$ matrix.

$$x_1 + x_4 + x_5 = 1$$

$$x_2 + x_4 + x_7 = 0$$

$$x_2 + x_7 + x_6 = 0$$

$$x_5 + x_4 + x_2 = 1$$

$$\begin{array}{c} (2) + \chi_4 + \chi_5 = 1 \\ \chi_2 + \chi_4 + \chi_7 = 0 \\ \chi_2 + \chi_7 + \chi_6 = 0 \\ \chi_5 + \chi_6 + \chi_2 = 1 \\ \vdots$$

$$\begin{array}{c} (x_1 + x_2 + x_3 = 1) \\ x_2 + x_4 + x_7 = 0 \\ x_2 + x_7 + x_6 = 0 \\ x_5 + x_6 + x_2 = 1 \\ \vdots \end{array}$$

$$\begin{array}{c} (x) + x_1 + x_2 = 1 \\ x_2 + (x_1) + x_7 = 0 \\ x_2 + x_7 + x_6 = 0 \\ x_5 + x_6 + x_2 = 1 \\ \vdots \end{array}$$

$$x_{1} = 1 - x_{4} - x_{5}$$

$$x_{2} = -x_{2} - x_{7}$$

$$x_{3} + x_{4} + x_{5} = 1$$

$$x_{2} + x_{1} + x_{7} = 0$$

$$x_{2} + x_{1} + x_{6} = 0$$

$$x_{5} + x_{6} + x_{2} = 1$$

$$\vdots$$

Linear system vs hypergraph

$$x_{2} = -x_{2} - x_{5}$$

$$x_{4} = -x_{2} - x_{5}$$

$$x_{5} + x_{4} + x_{5} = 1$$

$$x_{5} + x_{7} + x_{7} = 0$$

$$x_{5} + x_{7} + x_{5} = 0$$

$$x_{5} + x_{7} + x_{5} = 0$$

$$x_{7} + x_{7} + x_{7} = 0$$

k-XORSAT clusters: the set of solutions extended from a particular solution on the 2-core (plus some complications).

k-XORSAT clusters: the set of solutions extended from a particular solution on the 2-core (plus some complications). The following is proved in dependently by Achlioptas and Molloy, and Ibrahimi et al. about random r-XORSAT clustering.

Theorem (AM12,IKKM12)

A.a.s. the following statements are true.

- (a) If $m < (c^* \epsilon)n$, then all solutions are in a single $O(\log n)$ -connected cluster.
- (b) If $m > (c^* + \epsilon)n$, then all solutions are partitioned into well-connected well-separated clusters.(all clusters are $O(\log n)$ -connected; every pair of clusters are $\Omega(n)$ -separated)

k-XORSAT clusters: the set of solutions extended from a particular solution on the 2-core (plus some complications). The following is proved in dependently by Achlioptas and Molloy, and Ibrahimi et al. about random r-XORSAT clustering.

Theorem (AM12,IKKM12)

A.a.s. the following statements are true.

- (a) If $m < (c^* \epsilon)n$, then all solutions are in a single $O(\log n)$ -connected cluster.
- (b) If $m > (c^* + \epsilon)n$, then all solutions are partitioned into well-connected well-separated clusters (all clusters are $O(\log n)$ -connected; every pair of clusters are $\Omega(n)$ -separated)

k-XORSAT clusters: the set of solutions extended from a particular solution on the 2-core (plus some complications). The following is proved in dependently by Achlioptas and Molloy, and Ibrahimi et al. about random r-XORSAT clustering.

Theorem (AM12,IKKM12)

A.a.s. the following statements are true.

- (a) If $m < (c^* \epsilon)n$, then all solutions are in a single $O(\log n)$ -connected cluster.
- (b) If $m > (c^* + \epsilon)n$, then all solutions are partitioned into well-connected well-separated clusters.(all clusters are $O(\log n)$ -connected; every pair of clusters are $\Omega(n)$ -separated)
- c^* corresponds to the emergence threshold of the 2-core.

2-core threshold

Theorem (Kim '06)

Let H be a random k-uniform hypergraph with n vertices and cn edges. There is a constant $c^* > 0$ (depending on k and can be specified) such that

- (a) if $c < c^* n^{-1/2 + \epsilon}$, then w.h.p. H has an empty 2-core;
- (b) if $c > c^* + n^{-1/2+\epsilon}$, then w.h.p. H has a 2-core with size $\Omega(n)$.

Theorem (G. and Molloy '13)

Suppose $m = (c^* + n^{-\delta})n$, $\delta > 0$ small. Then, a.a.s.

- (a) every cluster is $n^{O(\delta)}$ -connected;
- (b) every pair of clusters are $n^{1-O(\delta)}$ -separated;
- (c) (a) is tight in every cluster, there are two solutions that are not $n^{\Theta(\delta)}$ -connected.

Theorem (G. and Molloy '13)

Suppose $m = (c^* + n^{-\delta})n$, $\delta > 0$ small. Then, a.a.s.

- (a) every cluster is $n^{O(\delta)}$ -connected;
- (b) every pair of clusters are $n^{1-O(\delta)}$ -separated;
- (c) (a) is tight in every cluster, there are two solutions that are not $n^{\Theta(\delta)}$ -connected.

$$x_{2} = -x_{2} - x_{5}$$

$$x_{4} = -x_{2} - x_{5}$$

$$x_{4} + x_{5} = 1$$

$$x_{2} + x_{4} + x_{7} = 0$$

$$x_{2} + x_{7} + x_{6} = 0$$

$$x_{5} + x_{4} + x_{2} = 1$$

$$x_{6} = 6$$

depth(v): the least number of vertices needs to be removed before v in any stripping sequence. (These are the set of vertices reachable from v in the digraph.)

When $c = c^* + \epsilon$, $depth(v) = O(\log n)$ for all $v \notin 2$ -core; When $c = c^* + n^{-\delta}$, the maximum depth becomes $n^{\Theta(\delta)}$.

depth(v): the least number of vertices needs to be removed before v in any stripping sequence. (These are the set of vertices reachable from v in the digraph.)

When $c = c^* + \epsilon$, $depth(v) = O(\log n)$ for all $v \notin 2$ -core;

When $c = c^* + n^{-\delta}$, the maximum depth becomes $n^{\Theta(\delta)}$.

depth(v): the least number of vertices needs to be removed before v in any stripping sequence. (These are the set of vertices reachable from v in the digraph.)

When $c = c^* + \epsilon$, $depth(v) = O(\log n)$ for all $v \notin 2$ -core;

When $c = c^* + n^{-\delta}$, the maximum depth becomes $n^{\Theta(\delta)}$.

depth(v): the least number of vertices needs to be removed before v in any stripping sequence. (These are the set of vertices reachable from v in the digraph.)

When $c = c^* + \epsilon$, $depth(v) = O(\log n)$ for all $v \notin 2$ -core;

When $c = c^* + n^{-\delta}$, the maximum depth becomes $n^{\Theta(\delta)}$.

Lower bound of maximum depth

Why stripping becomes slow?

Why stripping becomes slow?

Stripping number

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $0<\delta<1/2$, the stripping number is between $n^{\delta/2}$ and $n^{\delta/2}\log n$.

Idea behind the proof Approximate L_t by a "lazy" random walk – it takes long for L_t to reach 0.

It implies the lower bound on the maximum depth.

Stripping number

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $0<\delta<1/2$, the stripping number is between $n^{\delta/2}$ and $n^{\delta/2}\log n$.

Idea behind the proof Approximate L_t by a "lazy" random walk – it takes long for L_t to reach 0.

It implies the lower bound on the maximum depth.

Stripping number

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $0<\delta<1/2$, the stripping number is between $n^{\delta/2}$ and $n^{\delta/2}\log n$.

Idea behind the proof Approximate L_t by a "lazy" random walk it takes long for L_t to reach Ω

- it takes long for L_t to reach 0.

It implies the lower bound on the maximum depth.


```
Expose So, S, --- S; V
Expose dien, d'(v), d'+(v)
Edge Selection
```



```
Expose So, S,.... Sj. V
Expose dicol, d*(v), d**(v)
Edge Selections
                A ド 大··· ドトトン
```

```
Expose So, Si, -- Sj. V
Expose dicol, d*(v), d*+(v)
Edge Selections
```


Theorem (G. and Molloy '13)

Suppose $c = c^* + n^{-\delta}$, $\delta > 0$ small.

- (a) $depth(v) = n^{O(\delta)}$ for all $v \notin 2$ -core;
- (b) $\max\{depth(v)\} = n^{\Theta(\delta)}$.

Proof (a). Use Edge-Selection + solving a recurrence + applying Talagrand Inequality.

(b). From the lower bound of the stripping number.

Theorem (G. and Molloy '13)

Suppose $c = c^* + n^{-\delta}$, $\delta > 0$ small.

- (a) $depth(v) = n^{O(\delta)}$ for all $v \notin 2$ -core;
- (b) $\max\{depth(v)\} = n^{\Theta(\delta)}$.

Proof (a). Use Edge-Selection + solving a recurrence + applying Talagrand Inequality.

(b). From the lower bound of the stripping number.

Theorem (G. and Molloy '13)

Suppose $c = c^* + n^{-\delta}$, $\delta > 0$ small.

- (a) $depth(v) = n^{O(\delta)}$ for all $v \notin 2$ -core;
- (b) $\max\{depth(v)\} = n^{\Theta(\delta)}$.

Proof (a). Use Edge-Selection + solving a recurrence + applying Talagrand Inequality.

(b). From the lower bound of the stripping number.

Inside the cluster

Theorem (G. and Molloy '13)

Assume $c = c^* + n^{-\delta}$, $\delta > 0$ small. Then a.a.s.

- (a) every cluster is $n^{O(\delta)}$ -connected;
- (b) there exists two solutions in each cluster that are **NOT** $n^{\Theta(\delta)}$ -connected.

Proof (a) follows as the maximum depth of vertices outside the 2-core is $n^{O(\delta)}$.

However, the lower bound of the maximum depth does **NOT** imply part (b).

Inside the cluster

Theorem (G. and Molloy '13)

Assume $c = c^* + n^{-\delta}$, $\delta > 0$ small. Then a.a.s.

- (a) every cluster is $n^{O(\delta)}$ -connected;
- (b) there exists two solutions in each cluster that are **NOT** $n^{\Theta(\delta)}$ -connected.

Proof (a) follows as the maximum depth of vertices outside the 2-core is $n^{O(\delta)}$.

However, the lower bound of the maximum depth does **NOT** imply part (b).

Inside the cluster

Theorem (G. and Molloy '13)

Assume $c = c^* + n^{-\delta}$, $\delta > 0$ small. Then a.a.s.

- (a) every cluster is $n^{O(\delta)}$ -connected;
- (b) there exists two solutions in each cluster that are **NOT** $n^{\Theta(\delta)}$ -connected.

Proof (a) follows as the maximum depth of vertices outside the 2-core is $n^{O(\delta)}$.

However, the lower bound of the maximum depth does **NOT** imply part (b).

Here is why?

The way to cope with it...

The way to cope with it...

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $r\geq 3$, $\delta>0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

Take x and y disagree on the 2-core;

 \Rightarrow x and y disagree on a set S of variables in the 2-core;

 $\Rightarrow |e \cap S|$ is even for every e in the 2-core;

 $\Rightarrow \Gamma(S);$

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $r\geq 3$, $\delta>0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

- \Rightarrow x and y disagree on a set S of variables in the 2-core;
- $\Rightarrow |e \cap S|$ is even for every e in the 2-core;
- $\Rightarrow \Gamma(S);$

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $r\geq 3$, $\delta>0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

- \Rightarrow x and y disagree on a set S of variables in the 2-core;
- $\Rightarrow |e \cap S|$ is even for every e in the 2-core;
- $\Rightarrow \Gamma(S);$

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $r\geq 3$, $\delta>0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

- \Rightarrow x and y disagree on a set S of variables in the 2-core;
- $\Rightarrow |e \cap S|$ is even for every e in the 2-core;
- $\Rightarrow \Gamma(S)$;

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $r\geq 3$, $\delta>0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

- \Rightarrow x and y disagree on a set S of variables in the 2-core;
- \Rightarrow $|e \cap S|$ is even for every e in the 2-core;
- $\Rightarrow \Gamma(S)$;

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $r\geq 3$, $\delta>0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

- \Rightarrow x and y disagree on a set S of variables in the 2-core;
- $\Rightarrow |e \cap S|$ is even for every e in the 2-core;
- $\Rightarrow \Gamma(S)$;

Theorem (G. and Molloy 2013)

Assume $c=c^*+n^{-\delta}$, $r\geq 3$, $\delta>0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

- \Rightarrow x and y disagree on a set S of variables in the 2-core;
- \Rightarrow $|e \cap S|$ is even for every e in the 2-core;
- $\Rightarrow \Gamma(S)$;
- \Rightarrow average degree of $\Gamma(S)$ is at least 3;

case 1: a=O(b), both a, b small.

case 1: a=O(b), both a, b small.

⇒ a small graph: average degree >2

Theorem (G. and Molloy '13)

Assume $c = c^* + n^{-\delta}$, $r \ge 3$, $\delta > 0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

- \Rightarrow x and y disagree on a set S of variables in the 2-core;
- $\Rightarrow |e \cap S|$ is even for every e in the 2-core;
- $\Rightarrow \Gamma(S)$;
- \Rightarrow average degree of $\Gamma(S)$ is at least 3;
- (a) A sparse random graph is locally tree-like;

case 1: a=O(b), both a, b small.

⇒ a small graph: average degree >2

case 2: b small, a>> b.

case 1: a=O(b), both a, b small.

⇒ a small graph: average degree >2

case 2: b small, a>> b.

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $r\geq 3$, $\delta>0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

- \Rightarrow x and y disagree on a set S of variables in the 2-core;
- $\Rightarrow |e \cap S|$ is even for every *e* in the 2-core;
- $\Rightarrow \Gamma(S)$;
- \Rightarrow average degree of $\Gamma(S)$ is at least 3;
- (a) A sparse random graph is locally tree-like; (b) Branching parameter $= 1 \zeta$;

case 1: a=O(b), both a, b small.

⇒ a small graph: average degree >2

case 2: b small, a>> b.

⇒ such a path cannot be long

Theorem (G. and Molloy '13)

Assume $c=c^*+n^{-\delta}$, $r\geq 3$, $\delta>0$ small. Then a.a.s. each pair of clusters is $n^{1-O(\delta)}$ -separated.

Note that this theorem does not exclude the possibility that clusters are $\Omega(n)$ -separated.

Proof

- \Rightarrow x and y disagree on a set S of variables in the 2-core;
- \Rightarrow $|e \cap S|$ is even for every e in the 2-core;
- $\Rightarrow \Gamma(S)$;
- \Rightarrow average degree of $\Gamma(S)$ is at least 3;
- (a) A sparse random graph is locally tree-like; (b) Branching parameter $= 1 \zeta$;
- $\Rightarrow x$ and y are well-separated.

- ▶ For $c = c^* + n^{-\delta}$, are clusters o(n)-connected or $\Omega(n)$ -separated?
- $ightharpoonup c = c^* n^{-\delta}$ (stripping number, depth, cluster connectivity)?
- ▶ $c = c^* + O(n^{-1/2})$ (stripping number, depth, cluster connectivity)?
- ▶ What happens to the first graph containing a 2-core?

- ► For $c = c^* + n^{-\delta}$, are clusters o(n)-connected or $\Omega(n)$ -separated?
- $c = c^* n^{-\delta}$ (stripping number, depth, cluster connectivity)?
- ▶ $c = c^* + O(n^{-1/2})$ (stripping number, depth, cluster connectivity)?
- ▶ What happens to the first graph containing a 2-core?

- ► For $c = c^* + n^{-\delta}$, are clusters o(n)-connected or $\Omega(n)$ -separated?
- $c = c^* n^{-\delta}$ (stripping number, depth, cluster connectivity)?
- ▶ $c = c^* + O(n^{-1/2})$ (stripping number, depth, cluster connectivity)?
- ▶ What happens to the first graph containing a 2-core?

- ► For $c = c^* + n^{-\delta}$, are clusters o(n)-connected or $\Omega(n)$ -separated?
- $c = c^* n^{-\delta}$ (stripping number, depth, cluster connectivity)?
- ▶ $c = c^* + O(n^{-1/2})$ (stripping number, depth, cluster connectivity)?
- What happens to the first graph containing a 2-core?

- ► For $c = c^* + n^{-\delta}$, are clusters o(n)-connected or $\Omega(n)$ -separated?
- ▶ $c = c^* n^{-\delta}$ (stripping number, depth, cluster connectivity)?
- ▶ $c = c^* + O(n^{-1/2})$ (stripping number, depth, cluster connectivity)?
- What happens to the first graph containing a 2-core?