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Phase transition; threshold

I Threshold; sharp threshold.

I “G (n, p) is connected” has a sharp threshold.

I “G (n, p) contains a triangle” has a (coarse) threshold.

Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo



Section 0 Section 1 Section 2 Section 3

Phase transition; threshold

I Threshold; sharp threshold.

I “G (n, p) is connected” has a sharp threshold.

I “G (n, p) contains a triangle” has a (coarse) threshold.

Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo



Section 0 Section 1 Section 2 Section 3

Phase transition; threshold

I Threshold; sharp threshold.

I “G (n, p) is connected” has a sharp threshold.

I “G (n, p) contains a triangle” has a (coarse) threshold.

Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo



Section 0 Section 1 Section 2 Section 3

Phase transition; threshold

I Threshold; sharp threshold.

I “G (n, p) is connected” has a sharp threshold.

I “G (n, p) contains a triangle” has a (coarse) threshold.

Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo



Section 0 Section 1 Section 2 Section 3

Random CSPs

Every clause in a k-SAT formula F (with m clauses on n literals)
has the form

xi1 ∨ xi2 ∨ x̄i3 ∨ · · · ∨ xik .

F is satisfiable if there is a solution (x1, . . . , xn) such that every
clause of F is satisfied.
A random instance F with m clauses and n literals is chosen
uniformly at random from the set of (2n)km formulas.
More CSPs:
k-NAESAT, k-XORSAT, k-COL of graphs, 2-COL of k-uniform
hypergraphs.
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k-SAT threshold

Theorem (Friedgut 1999)

k-SAT has a sharp threshold at m/n = ck(n).

I Is it true limn→∞ ck(n) = ck? (only known: true for k = 2)

I What is c3? (only known: c2 = 1)
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For large k ...

I Kirousis, Kranakis, Krizanc, Stamatiou 1998; Franz, Leone
2003: ck ≤ 2k ln 2− (1 + ln 2)/2 + ok(1).

I Achlioptas, Peres 2004:
ck ≥ 2k ln 2− (k/2) ln 2− (1 + ln 2/2) + ok(1).

I Mertens, Mézard, Zecchina 2006:
ck = 2k ln 2− (1 + ln 2)/2 + ok(1) (1RSB).

I Coja-Oghlan, Panagiotou 2013:
ck ≥ 2k ln 2− (3/2) ln 2 + ok(1).

I Coja-Oghlan 2014: ck = 2k ln 2− (1 + ln 2)/2 + ok(1).
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Main challenge: large deviations

I Z : the number of k-SAT solutions;

I EZ →∞;

I we need
√
VarZ = O(EZ ) to conclude Z > 0;

I But
√
VarZ ≥ anEZ .
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What causes large deviations?

I k-SAT solutions are not symmetric;

I “Degree sequence”;

I Marginal distribution (The marginal distribution is computed
by physicists (cavity method));

I And we need to know more on the solution geometry:
clusters.
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For large k ...

SAT UB SAT LB Algorithmic Barrier

k-SAT 2k ln 2
−(1+ln 2)/2

2k ln 2
−(1+ln 2)/2 2k ln k/k

k-COL 2k ln k
− ln k

2k ln k
− ln k−2 ln 2 (1/2)k ln k

2-COL
k-hypergraph

2k−1 ln 2
− ln 2/2

2k−1 ln 2
−(1+ln 2)/2 2k−1 ln k/k
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Connectivity of solutions

Let x and y be two solutions of F .
The Hamming distance between x and y is the number of i such
that xi 6= yi .

x 0011101011001010011

y 0101111000001110101

dH(x, y) = 8.
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Connectivity of solutions

Let

I F : a SAT formula.

I f = f (n): any function of n between 1 and n.

Let Ff be the graphs such that

I V (Ff ): the set of solutions of F .

I E (Ff ): σ and τ are adjacent if dH(σ, τ) ≤ f .

If σ and τ are in the same component of Ff , we say they are
f -connected.
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What physicists say...

It was observed and hypothesized (by statistical physicists) that
when m/n exceeds a certain threshold, the solution space of many
CSPs is partitioned into clusters.
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Clustering picture
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What mathematicians say...

I k-XORSAT clustering threshold determined (AM12,IKKM12)

I k-SAT has well-separated clusters (DMMZ08,MMZ05)

I k-SAT (NAESAT,COL) clusters appear after (asymptotically
in k) the hypothesized clustering threshold (AC08)

I k-SAT clusters contains frozen variables (AR09)

I freezing threshold for k-COL, k-NAESAT (MR13)

I Condensation occurs in 2-COL in hypergraph (CZ12)
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Birth of k-XORSAT clusters
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Linear system vs XORSAT formula
A clause in an k-XORSAT formula F (with m clauses) has the form

x1 ⊕ x2 ⊕ x̄3 ⊕ · · · ⊕ xk ,

where x1 ⊕ x2 is true (= 1) if and only if exactly one of the
variables is true (= 1).
F is linear:

x1 ⊕ x2 ⊕ x̄3 ⊕ · · · ⊕ xk = x1 + x2 + (1 + x3) + · · ·+ xk(mod 2).

An assignment satisfying F is a solution to a linear system of the
following form

Ax = b(mod 2),

where x = (x1, . . . , xn) is a vector of boolean variables;
A is an m × n matrix.
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Linear system vs hypergraph
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Clusters

k-XORSAT clusters: the set of solutions extended from a
particular solution on the 2-core (plus some complications).

The following is proved in dependently by Achlioptas and Molloy,
and Ibrahimi et al. about random r -XORSAT clustering.

Theorem (AM12,IKKM12)

A.a.s. the following statements are true.

(a) If m < (c∗ − ε)n, then all solutions are in a single
O(log n)-connected cluster.

(b) If m > (c∗ + ε)n, then all solutions are partitioned into
well-connected well-separated clusters.(all clusters are
O(log n)-connected; every pair of clusters are Ω(n)-separated)

c∗ corresponds to the emergence threshold of the 2-core.
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(b) If m > (c∗ + ε)n, then all solutions are partitioned into
well-connected well-separated clusters.(all clusters are
O(log n)-connected; every pair of clusters are Ω(n)-separated)

c∗ corresponds to the emergence threshold of the 2-core.
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2-core threshold

Theorem (Kim ’06)

Let H be a random k-uniform hypergraph with n vertices and cn
edges. There is a constant c∗ > 0 (depending on k and can be
specified) such that

(a) if c < c∗ − n−1/2+ε, then w.h.p. H has an empty 2-core;

(b) if c > c∗ + n−1/2+ε, then w.h.p. H has a 2-core with size
Ω(n).
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Clusters

Theorem (G. and Molloy ’13)

Suppose m = (c∗ + n−δ)n, δ > 0 small. Then, a.a.s.

(a) every cluster is nO(δ)-connected;

(b) every pair of clusters are n1−O(δ)-separated;

(c) (a) is tight – in every cluster, there are two solutions that are
not nΘ(δ)-connected.
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Inside the cluster-Upper bound

depth(v): the least number of vertices needs to be removed before
v in any stripping sequence. (These are the set of vertices
reachable from v in the digraph.)
When c = c∗ + ε, depth(v) = O(log n) for all v /∈ 2-core;
When c = c∗ + n−δ, the maximum depth becomes nΘ(δ).
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Lower bound of maximum depth

Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo



Section 0 Section 1 Section 2 Section 3

Why stripping becomes slow?
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Stripping number

Theorem (G. and Molloy ’13)

Assume c = c∗ + n−δ, 0 < δ < 1/2, the stripping number is
between nδ/2 and nδ/2 log n.

Idea behind the proof Approximate Lt by a “lazy” random walk
– it takes long for Lt to reach 0.
It implies the lower bound on the maximum depth.
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Upper bound of maximum depth

Theorem (G. and Molloy ’13)

Suppose c = c∗ + n−δ, δ > 0 small.

(a) depth(v) = nO(δ) for all v /∈ 2-core;

(b) max{depth(v)} = nΘ(δ).

Proof (a). Use Edge-Selection + solving a recurrence + applying
Talagrand Inequality.
(b). From the lower bound of the stripping number.
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Inside the cluster

Theorem (G. and Molloy ’13)

Assume c = c∗ + n−δ, δ > 0 small. Then a.a.s.

(a) every cluster is nO(δ)-connected;

(b) there exists two solutions in each cluster that are NOT
nΘ(δ)-connected.

Proof (a) follows as the maximum depth of vertices outside the
2-core is nO(δ).
However, the lower bound of the maximum depth does NOT imply
part (b).

Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo



Section 0 Section 1 Section 2 Section 3

Inside the cluster

Theorem (G. and Molloy ’13)

Assume c = c∗ + n−δ, δ > 0 small. Then a.a.s.

(a) every cluster is nO(δ)-connected;

(b) there exists two solutions in each cluster that are NOT
nΘ(δ)-connected.

Proof (a) follows as the maximum depth of vertices outside the
2-core is nO(δ).
However, the lower bound of the maximum depth does NOT imply
part (b).

Solution geometry of a random k-XORSAT near the clustering threshold University of Waterloo



Section 0 Section 1 Section 2 Section 3

Inside the cluster

Theorem (G. and Molloy ’13)

Assume c = c∗ + n−δ, δ > 0 small. Then a.a.s.

(a) every cluster is nO(δ)-connected;

(b) there exists two solutions in each cluster that are NOT
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Here is why?
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The way to cope with it...
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Between clusters

Theorem (G. and Molloy ’13)

Assume c = c∗ + n−δ, r ≥ 3, δ > 0 small. Then a.a.s. each pair of
clusters is n1−O(δ)-separated.

Note that this theorem does not exclude the possibility that
clusters are Ω(n)-separated.
Proof
Take x and y disagree on the 2-core;
⇒ x and y disagree on a set S of variables in the 2-core;
⇒ |e ∩ S | is even for every e in the 2-core;
⇒ Γ(S);

⇒ average degree of Γ(S) is at least 3;
(a) A sparse random graph is locally tree-like; (b) Branching
parameter = 1− ζ;
⇒ x and y are well-separated.
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Future work

I For c = c∗ + n−δ, are clusters o(n)-connected or
Ω(n)-separated?

I c = c∗ − n−δ (stripping number, depth, cluster connectivity)?

I c = c∗ + O(n−1/2) (stripping number, depth, cluster
connectivity)?

I What happens to the first graph containing a 2-core?
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