# Mixing time of the Swendsen-Wang process on the complete graph

#### Tim Garoni

School of Mathematical Sciences Monash University





#### Collaborators

▶ Peter Lin (Monash University → University of Washington)

# Probability on Graphs

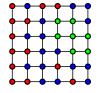
Introduction

•000

- Many problems in statistical mechanics are of the form:
  - ▶ Consider a sequence of finite graphs  $G_n = (V_n, E_n)$  with:
    - $ightharpoonup G_n \subset G_{n+1}$  and  $|V_{n+1}| > |V_n|$
    - E.g. complete graphs  $K_n$ , or tori  $\mathbb{Z}_n^d$
  - Construct sample space  $\Omega_n$  of combinatorial objects built from  $G_n$
  - ▶ Define (up to normalization) a probability  $\pi_{n,\beta}(\cdot)$  on  $\Omega_n$

# Probability on Graphs

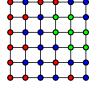
- Many problems in statistical mechanics are of the form:
  - ▶ Consider a sequence of finite graphs  $G_n = (V_n, E_n)$  with:
    - $G_n \subset G_{n+1}$  and  $|V_{n+1}| > |V_n|$
    - ▶ E.g. complete graphs  $K_n$ , or tori  $\mathbb{Z}_n^d$
  - ▶ Construct sample space  $\Omega_n$  of combinatorial objects built from  $G_n$
  - ▶ Define (up to normalization) a probability  $\pi_{n,\beta}(\cdot)$  on  $\Omega_n$
- E.g. Potts model:



- $\Omega = [q]^V$  for fixed  $q \in \{2, 3, 4 \ldots\}$
- $\pi(\sigma) = \frac{1}{Z} e^{-\beta H(\sigma)} \text{ for } \sigma \in \Omega$ 
  - $H(\sigma) = -\sum_{uv \in E} \delta_{\sigma_u, \sigma_v}$ 
    - $\beta = 1/\text{temperature}$

•000

- Many problems in statistical mechanics are of the form:
  - ▶ Consider a sequence of finite graphs  $G_n = (V_n, E_n)$  with:
    - $ightharpoonup G_n \subset G_{n+1}$  and  $|V_{n+1}| > |V_n|$
    - E.g. complete graphs  $K_n$ , or tori  $\mathbb{Z}_n^d$
  - Construct sample space  $\Omega_n$  of combinatorial objects built from  $G_n$
  - ▶ Define (up to normalization) a probability  $\pi_{n,\beta}(\cdot)$  on  $\Omega_n$
- E.g. Potts model:



- $\Omega = [q]^V$  for fixed  $q \in \{2, 3, 4 \dots\}$
- $\pi(\sigma) = \frac{1}{Z} e^{-\beta H(\sigma)} \text{ for } \sigma \in \Omega$ 
  - $\vdash H(\sigma) = -\sum_{uv \in E} \delta_{\sigma_u,\sigma_v}$
  - $\beta = 1/\text{temperature}$
- If  $\beta \approx 0$  then  $\pi(\cdot) \approx$  uniform on  $\Omega$

("Disorder")

• If  $\beta \gg 1$  preference for  $u \sim v$  to have  $\sigma_u = \sigma_v$ 

("Order")

• Phase transition between order and disorder at critical  $\beta_c$ 

- We often don't know how to normalize  $\pi(\cdot)$ 
  - ▶ E.g. Potts partition function Z is (essentially) the Tutte polynomial

Introduction

- We often don't know how to normalize  $\pi(\cdot)$ 
  - ▶ E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
  - Construct a transition matrix P on Ω which:
    - ▶ Is irreducible (i.e.  $\sigma \leftrightarrow \sigma'$  under P for all  $\sigma, \sigma' \in \Omega$ )
    - ▶ Has stationary distribution  $\pi(\cdot)$  (so  $\pi = \pi P$ )

- We often don't know how to normalize  $\pi(\cdot)$ 
  - E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
  - Construct a transition matrix P on Ω which:
    - ▶ Is irreducible (i.e.  $\sigma \leftrightarrow \sigma'$  under P for all  $\sigma, \sigma' \in \Omega$ )
    - ▶ Has stationary distribution  $\pi(\cdot)$  (so  $\pi = \pi P$ )
  - Generate random samples with (approximate) distribution  $\pi$

- We often don't know how to normalize  $\pi(\cdot)$ 
  - E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
  - Construct a transition matrix P on Ω which:
    - ▶ Is irreducible (i.e.  $\sigma \leftrightarrow \sigma'$  under P for all  $\sigma, \sigma' \in \Omega$ )
    - ▶ Has stationary distribution  $\pi(\cdot)$  (so  $\pi = \pi P$ )
  - Generate random samples with (approximate) distribution  $\pi$
- E.g. Single-vertex Glauber chain for Potts model:



Introduction

- We often don't know how to normalize  $\pi(\cdot)$ 
  - E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
  - Construct a transition matrix P on Ω which:
    - ▶ Is irreducible (i.e.  $\sigma \leftrightarrow \sigma'$  under P for all  $\sigma, \sigma' \in \Omega$ )
    - ▶ Has stationary distribution  $\pi(\cdot)$  (so  $\pi = \pi P$ )
  - Generate random samples with (approximate) distribution  $\pi$
- E.g. Single-vertex Glauber chain for Potts model:



Introduction

0000

▶ Transitions:  $\sigma \mapsto \sigma'$ 

- We often don't know how to normalize  $\pi(\cdot)$ 
  - E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
  - Construct a transition matrix P on Ω which:
    - ▶ Is irreducible (i.e.  $\sigma \leftrightarrow \sigma'$  under P for all  $\sigma, \sigma' \in \Omega$ )
    - ▶ Has stationary distribution  $\pi(\cdot)$  (so  $\pi = \pi P$ )
  - Generate random samples with (approximate) distribution  $\pi$
- E.g. Single-vertex Glauber chain for Potts model:



Introduction

- ▶ Transitions:  $\sigma \mapsto \sigma'$ 
  - ▶ Uniformly choose  $v \in V$

- We often don't know how to normalize  $\pi(\cdot)$ 
  - E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
  - Construct a transition matrix P on Ω which:
    - ▶ Is irreducible (i.e.  $\sigma \leftrightarrow \sigma'$  under P for all  $\sigma, \sigma' \in \Omega$ )
    - ▶ Has stationary distribution  $\pi(\cdot)$  (so  $\pi = \pi P$ )
  - Generate random samples with (approximate) distribution  $\pi$
- E.g. Single-vertex Glauber chain for Potts model:



Introduction

- ▶ Transitions:  $\sigma \mapsto \sigma'$ 
  - ▶ Uniformly choose  $v \in V$

- We often don't know how to normalize  $\pi(\cdot)$ 
  - E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
  - Construct a transition matrix P on Ω which:
    - ▶ Is irreducible (i.e.  $\sigma \leftrightarrow \sigma'$  under P for all  $\sigma, \sigma' \in \Omega$ )
    - ▶ Has stationary distribution  $\pi(\cdot)$  (so  $\pi = \pi P$ )
  - Generate random samples with (approximate) distribution  $\pi$
- E.g. Single-vertex Glauber chain for Potts model:



- ▶ Transitions:  $\sigma \mapsto \sigma'$ 
  - ▶ Uniformly choose  $v \in V$
  - $\sigma'_u = \sigma_u$  for  $u \neq v$
  - Choose  $\sigma'_v \in [q]$  independently of  $\sigma_v$  via

$$\pi(\sigma'_v|\{\sigma_u\}_{u\in V\setminus v}) = \frac{e^{\beta\#\{u\sim v:\sigma'_v=\sigma_u\}}}{\sum_{\sigma_v\in[q]}e^{\beta\#\{u\sim v:\sigma_v=\sigma_u\}}}$$

- We often don't know how to normalize  $\pi(\cdot)$ 
  - E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
  - Construct a transition matrix P on Ω which:
    - ▶ Is irreducible (i.e.  $\sigma \leftrightarrow \sigma'$  under P for all  $\sigma, \sigma' \in \Omega$ )
    - ▶ Has stationary distribution  $\pi(\cdot)$  (so  $\pi = \pi P$ )
  - Generate random samples with (approximate) distribution  $\pi$
- E.g. Single-vertex Glauber chain for Potts model:



- ▶ Transitions:  $\sigma \mapsto \sigma'$ 
  - ▶ Uniformly choose  $v \in V$
  - $\sigma'_u = \sigma_u$  for  $u \neq v$
  - Choose  $\sigma'_v \in [q]$  independently of  $\sigma_v$  via

$$\pi(\sigma'_v|\{\sigma_u\}_{u\in V\setminus v}) = \frac{e^{\beta\#\{u\sim v:\sigma'_v=\sigma_u\}}}{\sum_{\sigma_v\in[q]}e^{\beta\#\{u\sim v:\sigma_v=\sigma_u\}}}$$

- We often don't know how to normalize  $\pi(\cdot)$ 
  - E.g. Potts partition function Z is (essentially) the Tutte polynomial
- But we can often do the following:
  - Construct a transition matrix P on Ω which:
    - ▶ Is irreducible (i.e.  $\sigma \leftrightarrow \sigma'$  under P for all  $\sigma, \sigma' \in \Omega$ )
    - ▶ Has stationary distribution  $\pi(\cdot)$  (so  $\pi = \pi P$ )
  - Generate random samples with (approximate) distribution  $\pi$
- E.g. Single-vertex Glauber chain for Potts model:



- ▶ Transitions:  $\sigma \mapsto \sigma'$ 
  - ▶ Uniformly choose  $v \in V$
  - $\sigma'_u = \sigma_u$  for  $u \neq v$
  - Choose  $\sigma'_v \in [q]$  independently of  $\sigma_v$  via

$$\pi(\sigma'_v|\{\sigma_u\}_{u\in V\setminus v}) = \frac{e^{\beta\#\{u\sim v:\sigma'_v=\sigma_u\}}}{\sum_{\sigma_v\in[q]}e^{\beta\#\{u\sim v:\sigma_v=\sigma_u\}}}$$

0000

#### Consider an irreducible aperiodic Markov chain on a finite state space $\Omega$ with transition matrix P and stationary distribution $\pi$

$$d(t) := \max_{x \in \Omega} \|P^t(x,\cdot) - \pi(\cdot)\| \le C\alpha^t, \qquad \text{ for } \alpha \in (0,1)$$

▶ Total variation distance between distributions  $\mu$  and  $\nu$  on  $\Omega$ 

$$\|\mu - \nu\| := \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|$$

0000

 Consider an irreducible aperiodic Markov chain on a finite state space  $\Omega$  with transition matrix P and stationary distribution  $\pi$ 

Main Theorem

$$d(t) := \max_{x \in \Omega} \|P^t(x,\cdot) - \pi(\cdot)\| \leq C\alpha^t, \qquad \text{ for } \alpha \in (0,1)$$

▶ Total variation distance between distributions  $\mu$  and  $\nu$  on  $\Omega$ 

$$\|\mu - \nu\| := \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|$$

**Mixing time** quantifies the rate of convergence

$$t_{\text{mix}}(\epsilon) := \min \{ t : d(t) \le \epsilon \}$$

# Mixing times

 Consider an irreducible aperiodic Markov chain on a finite state space  $\Omega$  with transition matrix P and stationary distribution  $\pi$ 

Main Theorem

$$d(t) := \max_{x \in \Omega} \|P^t(x,\cdot) - \pi(\cdot)\| \leq C\alpha^t, \qquad \text{ for } \alpha \in (0,1)$$

▶ Total variation distance between distributions  $\mu$  and  $\nu$  on  $\Omega$ 

$$\|\mu - \nu\| := \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|$$

Mixing time quantifies the rate of convergence

$$t_{\text{mix}}(\epsilon) := \min \{ t : d(t) \le \epsilon \}$$

▶ How does  $t_{mix}$  depend on size of  $\Omega$ ?

# Mixing times

Introduction

 Consider an irreducible aperiodic Markov chain on a finite state space  $\Omega$  with transition matrix P and stationary distribution  $\pi$ 

$$d(t) := \max_{x \in \Omega} \|P^t(x,\cdot) - \pi(\cdot)\| \leq C\alpha^t, \qquad \text{ for } \alpha \in (0,1)$$

▶ Total variation distance between distributions  $\mu$  and  $\nu$  on  $\Omega$ 

$$\|\mu - \nu\| := \max_{A \subseteq \Omega} |\mu(A) - \nu(A)|$$

Mixing time quantifies the rate of convergence

$$t_{\text{mix}}(\epsilon) := \min \{ t : d(t) \le \epsilon \}$$

- ▶ How does  $t_{mix}$  depend on size of  $\Omega$ ?
  - If  $t_{\text{mix}} = O(\text{poly}(\log |\Omega|))$  we have rapid mixing
  - Otherwise, we have torpid mixing

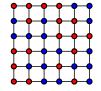
- ▶ Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model



Introduction

000

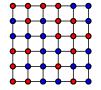
- lacktriangle Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model





000

- ▶ Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model



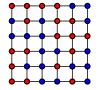


Given  $\sigma_t \in [q]^V$ , SW chooses  $\sigma_{t+1}$  as follows:

▶ Independently for each  $i \in [q]$  perform independent bond percolation on  $G[\sigma_{\star}^{-1}(i)]$  with  $p=1-e^{-\beta}$ .

000

- ▶ Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model





Main Theorem

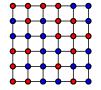
Given  $\sigma_t \in [q]^V$ , SW chooses  $\sigma_{t+1}$  as follows:

▶ Independently for each  $i \in [q]$  perform independent bond percolation on  $G[\sigma_{\star}^{-1}(i)]$  with  $p=1-e^{-\beta}$ .

Introduction

000

- ▶ Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model

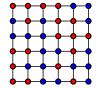




Given  $\sigma_t \in [q]^V$ , SW chooses  $\sigma_{t+1}$  as follows:

▶ Independently for each  $i \in [q]$  perform independent bond percolation on  $G[\sigma_{\star}^{-1}(i)]$  with  $p=1-e^{-\beta}$ .

- ▶ Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model



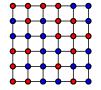


Given  $\sigma_t \in [q]^V$ , SW chooses  $\sigma_{t+1}$  as follows:

▶ Independently for each  $i \in [q]$  perform independent bond percolation on  $G[\sigma_t^{-1}(i)]$  with  $p=1-e^{-\beta}$ . Let  $A_{t+1} \subseteq E(G)$  be the union of all occupied edges

000

- ▶ Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model

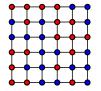




Given  $\sigma_t \in [q]^V$ , SW chooses  $\sigma_{t+1}$  as follows:

Independently for each  $i \in [q]$  perform independent bond percolation on  $G[\sigma_t^{-1}(i)]$  with  $p=1-e^{-\beta}$ . Let  $A_{t+1} \subseteq E(G)$  be the union of all occupied edges

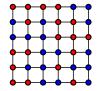
- lacktriangle Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model





- Independently for each  $i \in [q]$  perform independent bond percolation on  $G[\sigma_t^{-1}(i)]$  with  $p=1-e^{-\beta}$ . Let  $A_{t+1} \subseteq E(G)$  be the union of all occupied edges
- ▶ Independently & uniformly q-colour each component of  $(V, A_{t+1})$

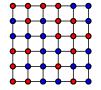
- ▶ Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model





- Independently for each  $i \in [q]$  perform independent bond percolation on  $G[\sigma_t^{-1}(i)]$  with  $p=1-e^{-\beta}$ . Let  $A_{t+1} \subseteq E(G)$  be the union of all occupied edges
- ▶ Independently & uniformly q-colour each component of  $(V, A_{t+1})$

- ▶ Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model



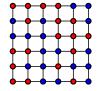


- Independently for each  $i \in [q]$  perform independent bond percolation on  $G[\sigma_t^{-1}(i)]$  with  $p=1-e^{-\beta}$ . Let  $A_{t+1} \subseteq E(G)$  be the union of all occupied edges
- ▶ Independently & uniformly q-colour each component of  $(V, A_{t+1})$

Introduction

000

- Irreducible aperiodic Markov chain on  $[q]^V$
- Stationary distribution is q-state Potts model





Given  $\sigma_t \in [q]^V$ , SW chooses  $\sigma_{t+1}$  as follows:

- ▶ Independently for each  $i \in [q]$  perform independent bond percolation on  $G[\sigma_t^{-1}(i)]$  with  $p=1-e^{-\beta}$ . Let  $A_{t+1} \subseteq E(G)$  be the union of all occupied edges
- ▶ Independently & uniformly q-colour each component of  $(V, A_{t+1})$

SW transitions given by  $\mu(\sigma_{t+1}|A_{t+1})\mu(A_{t+1}|\sigma_t)$  where  $\mu(A,\sigma)$  is Edwards-Sokal coupling of Potts and Fortuin-Kasteleyn models

#### On $K_n$ :

▶ Potts model has transition at  $\beta = \lambda_c/n$  with  $\lambda_c = \Theta(1)$ 

Main Theorem

- ▶ Continuous transition for q = 2 (Ising)
- ▶ Discontinuous transition for  $q \ge 3$

#### On $K_n$ :

- ▶ Potts model has transition at  $\beta = \lambda_c/n$  with  $\lambda_c = \Theta(1)$ 
  - ightharpoonup Continuous transition for q=2 (Ising)
  - ▶ Discontinuous transition for q > 3
- ▶ Potts energy depends only on magnetization  $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} \, n \, s(\sigma) \cdot s(\sigma) + \, \, \text{constant} \label{eq:definition}$$

Main Theorem

•  $s^i(\sigma) = |\sigma^{-1}(i)|/n =$  fraction of vertices coloured  $i \in [q]$  by  $\sigma$ 

#### On $K_n$ :

- ▶ Potts model has transition at  $\beta = \lambda_{\rm c}/n$  with  $\lambda_{\rm c} = \Theta(1)$ 
  - Continuous transition for q=2 (Ising)
  - ▶ Discontinuous transition for  $q \ge 3$
- ▶ Potts energy depends only on magnetization  $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} \, n \, s(\sigma) \cdot s(\sigma) + \text{ constant}$$

- $\blacktriangleright \ s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$
- ▶ Let  $SW_n(\lambda, q) = SW$  process on  $K_n$  with parameters  $\lambda$  and q

#### On $K_n$ :

- ▶ Potts model has transition at  $\beta = \lambda_c/n$  with  $\lambda_c = \Theta(1)$ 
  - ightharpoonup Continuous transition for q=2 (Ising)
  - ▶ Discontinuous transition for q > 3
- ▶ Potts energy depends only on magnetization  $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} \, n \, s(\sigma) \cdot s(\sigma) + \text{ constant}$$

- $s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$
- ▶ Let  $SW_n(\lambda, q) = SW$  process on  $K_n$  with parameters  $\lambda$  and qGiven  $\sigma_t \in [q]^n$ ,  $SW_n(\lambda, q)$  chooses  $\sigma_{t+1}$  as follows:

#### On $K_n$ :

- ▶ Potts model has transition at  $\beta = \lambda_c/n$  with  $\lambda_c = \Theta(1)$ 
  - ightharpoonup Continuous transition for q=2 (Ising)
  - ▶ Discontinuous transition for q > 3
- ▶ Potts energy depends only on magnetization  $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} \, n \, s(\sigma) \cdot s(\sigma) + \text{ constant}$$

Main Theorem

- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$  fraction of vertices coloured  $i \in [q]$  by  $\sigma$
- Let  $SW_n(\lambda, q) = SW$  process on  $K_n$  with parameters  $\lambda$  and qGiven  $\sigma_t \in [q]^n$ ,  $SW_n(\lambda, q)$  chooses  $\sigma_{t+1}$  as follows:
  - ▶ Independently for each  $i \in [q]$  choose Erdös-Renyi graph  $\mathcal{G}(\sigma_{\star}^{-1}(i), \lambda/n)$ .

#### On $K_n$ :

- ▶ Potts model has transition at  $\beta = \lambda_c/n$  with  $\lambda_c = \Theta(1)$ 
  - ightharpoonup Continuous transition for q=2 (Ising)
  - ▶ Discontinuous transition for q > 3
- ▶ Potts energy depends only on magnetization  $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}$$

Main Theorem

- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$  fraction of vertices coloured  $i \in [q]$  by  $\sigma$
- Let  $SW_n(\lambda, q) = SW$  process on  $K_n$  with parameters  $\lambda$  and qGiven  $\sigma_t \in [q]^n$ ,  $SW_n(\lambda, q)$  chooses  $\sigma_{t+1}$  as follows:
  - ▶ Independently for each  $i \in [q]$  choose Erdös-Renyi graph  $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$ . Let  $A_{t+1} = \bigcup_{i \in [a]} \mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$ .

#### On $K_n$ :

- ▶ Potts model has transition at  $\beta = \lambda_c/n$  with  $\lambda_c = \Theta(1)$ 
  - ightharpoonup Continuous transition for q=2 (Ising)
  - ▶ Discontinuous transition for q > 3
- ▶ Potts energy depends only on magnetization  $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}$$

- $s^i(\sigma) = |\sigma^{-1}(i)|/n =$  fraction of vertices coloured  $i \in [q]$  by  $\sigma$
- Let  $SW_n(\lambda, q) = SW$  process on  $K_n$  with parameters  $\lambda$  and q

#### Given $\sigma_t \in [q]^n$ , $SW_n(\lambda, q)$ chooses $\sigma_{t+1}$ as follows:

- ▶ Independently for each  $i \in [q]$  choose Erdös-Renyi graph  $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$ . Let  $A_{t+1} = \bigcup_{i \in [q]} \mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$ .
- ▶ Independently and uniformly q-colour each component of  $(V, A_{t+1})$

# SW process on complete graph

#### On $K_n$ :

- ▶ Potts model has transition at  $\beta = \lambda_c/n$  with  $\lambda_c = \Theta(1)$ 
  - ightharpoonup Continuous transition for q=2 (Ising)
  - ▶ Discontinuous transition for q > 3
- ▶ Potts energy depends only on magnetization  $s(\sigma)$

$$-\beta H(\sigma) = \frac{\lambda}{2} n s(\sigma) \cdot s(\sigma) + \text{constant}$$

Main Theorem

- $s^i(\sigma) = |\sigma^{-1}(i)|/n = \text{fraction of vertices coloured } i \in [q] \text{ by } \sigma$
- Let  $SW_n(\lambda, q) = SW$  process on  $K_n$  with parameters  $\lambda$  and q

### Given $\sigma_t \in [q]^n$ , $SW_n(\lambda, q)$ chooses $\sigma_{t+1}$ as follows:

- ▶ Independently for each  $i \in [q]$  choose Erdös-Renyi graph  $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$ . Let  $A_{t+1} = \bigcup_{i \in [q]} \mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$ .
- ▶ Independently and uniformly q-colour each component of  $(V, A_{t+1})$

Note: edge probability in  $\mathcal{G}(\sigma_t^{-1}(i), \lambda/n)$  is  $\lambda/n = s^i(\sigma_t)\lambda/|\sigma_t^{-1}(i)|$ 

# Potts model on $K_n$ has **continuous** phase transition when q=2

## Rapid mixing for q=2

Potts model on  $K_n$  has **continuous** phase transition when q=2

## Theorem (Cooper, Dyer, Frieze & Rue 2000)

If q=2 then  $\mathrm{SW}_n(\lambda,q)$  has mixing time

$$t_{\text{mix}} = O(\sqrt{n})$$

for all  $\lambda \not\in (\lambda_{\rm c} - \delta, \lambda_{\rm c} + \delta)$  with  $\delta \sqrt{\log n} \to \infty$  as  $n \to \infty$ .

# Rapid mixing for q=2

Potts model on  $K_n$  has **continuous** phase transition when q=2

### Theorem (Cooper, Dyer, Frieze & Rue 2000)

If q=2 then  $SW_n(\lambda,q)$  has mixing time

$$t_{\text{mix}} = O(\sqrt{n})$$

for all  $\lambda \notin (\lambda_c - \delta, \lambda_c + \delta)$  with  $\delta \sqrt{\log n} \to \infty$  as  $n \to \infty$ .

### Theorem (Long, Nachmias, Ning, & Peres 2012)

If q=2 then  $SW_n(\lambda,q)$  has mixing time

$$t_{\text{mix}} = \begin{cases} \Theta(1) & \lambda < \lambda_{\text{c}} \\ \Theta(n^{1/4}) & \lambda = \lambda_{\text{c}} \\ \Theta(\log n) & \lambda > \lambda_{\text{c}} \end{cases}$$

**Ray, Tamayo, & Klein** (1989) conjectured  $n^{1/4}$  at  $\lambda_c$ 

Introduction

Potts model on  $K_n$  has **discontinuous** phase transition when  $q \geq 3$ 

## Torpid mixing for $q \ge 3$

Potts model on  $K_n$  has **discontinuous** phase transition when  $q \ge 3$ 

Theorem (Gore & Jerrum 1999)

If  $q \geq 3$  then  $\mathrm{SW}_n(\lambda_\mathrm{c},q)$  has mixing time

$$t_{\rm mix} = \exp(\mathbf{\Omega}(\sqrt{n}))$$

# Torpid mixing for $q \ge 3$

Potts model on  $K_n$  has **discontinuous** phase transition when  $q \ge 3$ 

### Theorem (Gore & Jerrum 1999)

If  $q \geq 3$  then  $\mathrm{SW}_n(\lambda_\mathrm{c},q)$  has mixing time

$$t_{\text{mix}} = \exp(\mathbf{\Omega}(\sqrt{n}))$$

Theorem (Cuff, Ding, Louidor, Lubetzky, Peres, Sly 2012) If q > 3 then the single-site Glauber process for the Potts model has

$$t_{\text{mix}} = \begin{cases} \Theta(n \log n) & \lambda < \lambda_{\text{o}}(q) \\ \Theta(n^{4/3}) & \lambda = \lambda_{\text{o}}(q) \\ \exp(\Omega(n)) & \lambda > \lambda_{\text{o}}(q) \end{cases}$$

where  $\lambda_{\rm o}(q) < \lambda_{\rm c}(q)$ , so torpid mixing begins **before** transition

# Magnetization distribution

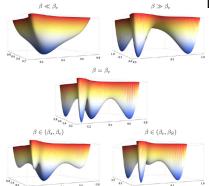


Figure: From Cuff et. al 2012

Large n distribution of  $s(\sigma)$  known explicitly:

$$-\frac{1}{n}\log \mathbb{P}(s(\sigma) = a) \sim \phi_{\lambda}(a) - \inf_{a \in \Delta^{q-1}} \phi_{\lambda}(a)$$

$$\phi_{\lambda}(a) = \sum_{i=1}^{q} \left( a_i \log a_i - \frac{1}{2} \lambda a_i^2 \right)$$

Minima of  $\phi_{\lambda}$  correspond either to:

- ▶ disordered state:  $s^i = 1/q$  for all  $i \in [q]$
- ▶ ordered states:  $s^i = \alpha > 1/q$  and  $s^j = \frac{1-\alpha}{q-1}$  for  $j \neq i$

 $\lambda_{\rm o}(q) := \inf\{\lambda \geq 0 : \text{there exist ordered local minima of } \phi_{\lambda}\},$  $\lambda_{\rm d}(q) := \sup\{\lambda \geq 0 : \text{the disordered state locally minimizes } \phi_{\lambda}\}.$ 

### Theorem (Lin & G. 2013)

If  $q \geq 3$  then  $\mathrm{SW}_n(\lambda, q)$  has mixing time

$$t_{\text{mix}} = \begin{cases} \Theta(1) & \lambda < \lambda_{\text{o}}(q) \\ \Theta(n^{1/3}) & \lambda = \lambda_{\text{o}}(q) \\ \exp(\Omega(\sqrt{n})) & \lambda_{\text{o}}(q) < \lambda < \lambda_{\text{d}}(q) \\ \Theta(\log(n)) & \lambda \geq \lambda_{\text{d}}(q) \end{cases}$$

### Theorem (Lin & G. 2013)

If  $q \geq 3$  then  $\mathrm{SW}_n(\lambda, q)$  has mixing time

$$t_{\text{mix}} = \begin{cases} \Theta(1) & \lambda < \lambda_{\text{o}}(q) \\ \Theta(n^{1/3}) & \lambda = \lambda_{\text{o}}(q) \\ \exp(\Omega(\sqrt{n})) & \lambda_{\text{o}}(q) < \lambda < \lambda_{\text{d}}(q) \\ \Theta(\log(n)) & \lambda \geq \lambda_{\text{d}}(q) \end{cases}$$

- ▶ Gore & Jerrum's torpid mixing result extends to a non-trivial interval  $(\lambda_o(q), \lambda_d(q))$  containing  $\lambda_c(q)$
- ▶ Nothing special happens at  $\lambda_{c}(q)$
- ▶ Non-trivial scaling arises at  $\lambda_{o}(q)$
- Low and high temperature same as Ising case

### Sketch of Proof

▶ If  $Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \mathcal{F}_t]$  then

$$s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \tag{*}$$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

- $\bullet$   $\theta(\lambda)$   $n = \mathbb{E}(\text{size of giant component})$  in Erdös-Renyi  $\mathcal{G}(n, \lambda/n)$
- $\mathcal{F}_t$  is the  $\sigma$ -algebra generated by  $\{\sigma_s : s \leq t\}$
- $(Y_t)_{t\geq 0}$  is a sequence of martingale increments with respect to  $\mathcal{F}_t$
- $\operatorname{var}(\bar{Y}_t|\mathcal{F}_t) = \Theta(n^{-1})$
- Conditioning on a certain a.a.s. event makes (\*) exact

### Sketch of Proof

▶ If  $Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \mathcal{F}_t]$  then

$$s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \tag{*}$$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

- $\bullet$   $\theta(\lambda)$   $n = \mathbb{E}(\text{size of giant component})$  in Erdös-Renyi  $\mathcal{G}(n, \lambda/n)$
- $\mathcal{F}_t$  is the  $\sigma$ -algebra generated by  $\{\sigma_s : s \leq t\}$
- $(Y_t)_{t\geq 0}$  is a sequence of martingale increments with respect to  $\mathcal{F}_t$
- $\operatorname{var}(Y_t|\mathcal{F}_t) = \Theta(n^{-1})$
- Conditioning on a certain a.a.s. event makes (\*) exact
- ▶ Roots of  $D_{\lambda,q}$  coincide with minima of Potts free energy  $\phi_{\lambda,q}$

$$\begin{split} &\lambda_{\mathrm{o}} = \inf\{\lambda \geq 0: D_{\lambda,q}(x) \text{ has a root on } (1/q,1]\} \\ &\lambda_{\mathrm{d}} = \sup\{\lambda \geq 0: D_{\lambda,q}(1/q) = 0\} \end{split}$$

### Sketch of Proof

▶ If  $Y_{t+1} := s_{t+1}^1 - \mathbb{E}[s_{t+1}^1 | \mathcal{F}_t]$  then

$$s_{t+1}^1 \approx s_t^1 + D(s_t^1) + Y_{t+1} \tag{*}$$

where

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$

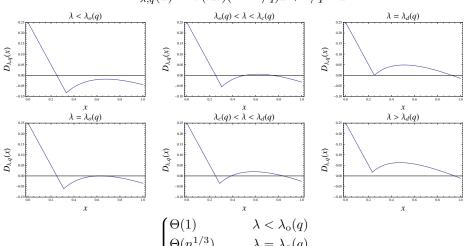
- $\bullet$   $\theta(\lambda)$   $n = \mathbb{E}(\text{size of giant component})$  in Erdös-Renyi  $\mathcal{G}(n, \lambda/n)$
- $\mathcal{F}_t$  is the  $\sigma$ -algebra generated by  $\{\sigma_s : s \leq t\}$
- $(Y_t)_{t\geq 0}$  is a sequence of martingale increments with respect to  $\mathcal{F}_t$
- $\operatorname{var}(Y_t|\mathcal{F}_t) = \Theta(n^{-1})$
- Conditioning on a certain a.a.s. event makes (\*) exact
- ▶ Roots of  $D_{\lambda,q}$  coincide with minima of Potts free energy  $\phi_{\lambda,q}$

$$\begin{split} &\lambda_{\mathrm{o}} = \inf\{\lambda \geq 0: D_{\lambda,q}(x) \text{ has a root on } (1/q,1]\} \\ &\lambda_{\mathrm{d}} = \sup\{\lambda \geq 0: D_{\lambda,q}(1/q) = 0\} \end{split}$$

ightharpoonup Coupling arguments reduce mixing time to hitting time of  $s_t^1$ 

# Swendsen-Wang drift

$$D_{\lambda,q}(x) := \theta(\lambda x)(1 - 1/q)x + 1/q - x$$



$$t_{\text{mix}} = \begin{cases} \Theta(1) & \lambda < \lambda_{\text{o}}(q) \\ \Theta(n^{1/3}) & \lambda = \lambda_{\text{o}}(q) \\ \exp(\Omega(\sqrt{n})) & \lambda_{\text{o}}(q) < \lambda < \lambda_{\text{d}}(q) \\ \Theta(\log(n)) & \lambda \geq \lambda_{\text{d}}(q) \end{cases}$$

## Hitting times for stochastic difference equations

### Lemma (Lin & G. 2013)

Consider the family of processes defined for each  $n \in \mathbb{N}$  by

$$X_{t+1} = X_t + n^{-\gamma} D(X_t) + Y_{t+1}^{(n)}$$

- ightharpoonup D has a unique root at  $x_*$
- $D(x_* + h) = c|h|^k + \Theta(h^{k+1})$  for some c > 0 and k > 2.
- $\operatorname{var}(Y_{t+1}^{(n)}|\mathcal{F}_t) = \Theta(n^{-\nu})$  for some  $\nu > 0$
- $M_t^{(n)} = \sum_{s=1}^t Y_s^{(n)}$  is a martingale for each  $n \in \mathbb{N}$
- Some technical assumptions which are true for SW and Glauber

#### Define

$$\tau(a, b) = \inf\{t \ge 0 : X_t \ge b | X_0 = a\}$$

Let  $a \in (x_* - \epsilon, x_*]$ . For each sufficiently small  $\alpha > 0$ 

$$\mathbb{P}\left(\tau(a, x_* + \epsilon) \le \alpha n^{\frac{2\gamma + \nu(k-1)}{k+1}}\right) = \Omega(1),$$

$$\mathbb{P}\left(\tau(a, x_* + \epsilon) > \alpha n^{\frac{2\gamma + \nu(k-1)}{k+1}}\right) = \Omega(1).$$

# Scaling Exponents for SW and Glauber

#### Potts SW:

▶  $q \ge 3$  for  $\lambda = \lambda_{\rm o}$  has  $\gamma = 0, \, k = 2, \nu = 1$ , so it takes  $\Theta(n^{1/3})$  time to traverse the non-stationary root

## Scaling Exponents for SW and Glauber

#### Potts SW:

▶  $q \ge 3$  for  $\lambda = \lambda_0$  has  $\gamma = 0$ ,  $k = 2, \nu = 1$ , so it takes  $\Theta(n^{1/3})$  time to traverse the non-stationary root

### Ising SW:

▶ 
$$q=2$$
 for  $\lambda=\lambda_{\rm c}$  has  $\gamma=0,\,k=2,\nu=\frac{3}{4}$ , agreeing with  $t_{\rm mix}=\Theta(n^{1/4})$  (Long *et al.* 2011)

#### Potts SW:

 $ightharpoonup q \geq 3$  for  $\lambda = \lambda_0$  has  $\gamma = 0$ ,  $k = 2, \nu = 1$ , so it takes  $\Theta(n^{1/3})$  time to traverse the non-stationary root

#### Ising SW:

ightharpoonup q=2 for  $\lambda=\lambda_c$  has  $\gamma=0,\,k=2,\nu=\frac{3}{4}$ , agreeing with  $t_{\rm mix} = \Theta(n^{1/4})$  (Long *et al.* 2011)

#### Glauber dynamics:

- lsing Glauber for  $\lambda = \lambda_c$  has  $k = 3, \gamma = 1, \nu = 2$ , agreeing with  $t_{\rm mix} = \Theta(n^{3/2})$  (Levin *et al.* 2010)
- ▶ Potts Glauber for  $q \ge 3$  and  $\lambda = \lambda_0$  has  $k = 2, \gamma = 1, \nu = 2$ , agreeing with  $t_{\rm mix} = \Theta(n^{4/3})$  (Cuff et al. 2012)

## Scaling Exponents for SW and Glauber

#### Potts SW:

▶  $q \ge 3$  for  $\lambda = \lambda_{\rm o}$  has  $\gamma = 0, \, k = 2, \nu = 1$ , so it takes  $\Theta(n^{1/3})$  time to traverse the non-stationary root

#### Ising SW:

▶ q=2 for  $\lambda=\lambda_{\rm c}$  has  $\gamma=0,\,k=2,\nu=\frac{3}{4}$ , agreeing with  $t_{\rm mix}=\Theta(n^{1/4})$  (Long *et al.* 2011)

### Glauber dynamics:

- Ising Glauber for  $\lambda=\lambda_{\rm c}$  has  $k=3, \gamma=1, \nu=2$ , agreeing with  $t_{\rm mix}=\Theta(n^{3/2})$  (Levin *et al.* 2010)
- ▶ Potts Glauber for  $q \ge 3$  and  $\lambda = \lambda_{\rm o}$  has  $k = 2, \gamma = 1, \nu = 2$ , agreeing with  $t_{\rm mix} = \Theta(n^{4/3})$  (Cuff *et al.* 2012)

#### **Censored Glauber dynamics:**

▶ Potts censored Glauber for  $q \ge 3$  and  $\lambda_d(q)$  has  $k = 2, \gamma = 1, \nu = 2$ , suggesting  $t_{\text{mix}} = \Theta(n^{4/3})$ 

#### Potts SW:

 $ightharpoonup q \geq 3$  for  $\lambda = \lambda_0$  has  $\gamma = 0$ ,  $k = 2, \nu = 1$ , so it takes  $\Theta(n^{1/3})$  time to traverse the non-stationary root

#### Ising SW:

• q=2 for  $\lambda=\lambda_{\rm c}$  has  $\gamma=0,\,k=2,\nu=\frac{3}{4}$ , agreeing with  $t_{\rm mix} = \Theta(n^{1/4})$  (Long *et al.* 2011)

#### Glauber dynamics:

- lsing Glauber for  $\lambda = \lambda_c$  has  $k = 3, \gamma = 1, \nu = 2$ , agreeing with  $t_{\rm mix} = \Theta(n^{3/2})$  (Levin *et al.* 2010)
- ▶ Potts Glauber for  $q \ge 3$  and  $\lambda = \lambda_0$  has  $k = 2, \gamma = 1, \nu = 2$ , agreeing with  $t_{\rm mix} = \Theta(n^{4/3})$  (Cuff et al. 2012)

#### Censored Glauber dynamics:

▶ Potts censored Glauber for q > 3 and  $\lambda_d(q)$  has  $k=2, \gamma=1, \nu=2$ , suggesting  $t_{\rm mix}=\Theta(n^{4/3})$ 

#### Note that:

- At  $\lambda_0(q)$ ,  $t_{\text{mix}}^{(SW)} = \Theta(n^{1/3}) = \frac{1}{n} t_{\text{mix}}^{(Glb)}$
- At  $\lambda_{\rm d}(q)$ ,  $t_{\rm mix}^{\rm (SW)} = \Theta(\log n)$  while  $\frac{1}{n} t_{\rm mix}^{\rm (Censored Glb)} \stackrel{?}{=} \Theta(n^{1/3})$

## Open problems...

▶ Rigorize conjectured results for the Potts censored Glauber chain

- ▶ Rigorize conjectured results for the Potts censored Glauber chain
- ▶ Jon Machta (private communication) has conjectured mixing time asymptotics at  $\lambda_c$  for all real q>1 for complete graph Chayes-Machta chain. Can this be proved?

- Rigorize conjectured results for the Potts censored Glauber chain
- ▶ Jon Machta (private communication) has conjectured mixing time asymptotics at  $\lambda_c$  for all real q>1 for complete graph Chayes-Machta chain. Can this be proved?
- Can one say anything for the Glauber chain for the Fortuin-Kasteleyn model?