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Probability on Graphs

» Many problems in statistical mechanics are of the form:
» Consider a sequence of finite graphs G,, = (V,,, E) with:
> Gp C Gpgr and [V > Vi
» E.g. complete graphs K, or tori ZZ
» Construct sample space 2,, of combinatorial objects built from G,,
» Define (up to normalization) a probability 7, s(-) on Q,
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Probability on Graphs

» Many problems in statistical mechanics are of the form:
» Consider a sequence of finite graphs G,, = (V,,, E) with:

> Gp C Gpgr and [V > Vi
» E.g. complete graphs K, or tori ZZ

» Construct sample space 2,, of combinatorial objects built from G,,
» Define (up to normalization) a probability 7, s(-) on Qy,

» E.g. Potts model:

» Q= [q]" forfixed ¢ € {2,3,4...}
> (o) = %e—ﬁH(v) foro 0

> H(U) = - ZUUEE 60'u,0'v
> 3 = 1/temperature

> If 3~ 0then 7(-) = uniform on (“Disorder”)
> If 3> 1 preference for u ~ v to have o, = o, (“Order”)
» Phase transition between order and disorder at critical 5.
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Markov-chain Monte Carlo

» We often don’t know how to normalize = (+)
» E.g. Potts partition function Z is (essentially) the Tutte polynomial
» But we can often do the following:

» Construct a transition matrix P on  which:

> |sirreducible (i.e. o <+ o’ under P for all o, 0’ € Q)
> Has stationary distribution 7 (-) (so # = 7 P)

» Generate random samples with (approximate) distribution =
» E.g. Single-vertex Glauber chain for Potts model:

) » Transitions: o — o’

> Uniformly choose v € V
> ol =oyforu#v

» Choose o), € [¢] independently of o, via

eﬁ#{ufwv:o';:o-u}
EU €lal eﬂ#{“"”":dv:”u}

ﬂ'(U; | {Uu}ue V\v) =
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Mixing times

» Consider an irreducible aperiodic Markov chain on a finite state
space 2 with transition matrix P and stationary distribution =

d(t) := max | P (x,-) — 7(-)|| < Cat, for o € (0,1)

» Total variation distance between distributions 1 and v on Q
I = vl == max |u(A) — v(4)]
» Mixing time quantifies the rate of convergence
tmix(€) :=min {¢ : d(t) < €}
» How does i,,;, depend on size of ?

> If tmix = O(poly(log|€?|)) we have rapid mixing
» Otherwise, we have torpid mixing
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Swendsen-Wang process

» Irreducible aperiodic Markov chain on [¢]"
» Stationary distribution is ¢-state Potts model

Given o, € [q]V, SW chooses o, ; as follows:

» Independently for each i € [¢] perform independent bond
percolation on G[o; ! (i)] withp =1 — =P,
Let A:11 € E(G) be the union of all occupied edges

» Independently & uniformly ¢-colour each component of (V, A;11)

SW transitions given by u(o41| A1) u(Ary1|ot) where p(A, o) is
Edwards-Sokal coupling of Potts and Fortuin-Kasteleyn models



Introduction Complete Graph Main Theorem Extensions and Discussion
0000 @000 [e]o]e]e) (e]e]

SW process on complete graph

On K,:
» Potts model has transition at 5 = A./n with A\c = ©(1)
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On K,:
» Potts model has transition at 5 = A./n with A\c = ©(1)

» Continuous transition for ¢ = 2 (Ising)
» Discontinuous transition for ¢ > 3

» Potts energy depends only on magnetization s(o)

—BH (o) = %ns(o) -s(o) + constant
» si(0) = |o~1(i)|/n = fraction of vertices coloured i € [q] by o
» Let SW,, (A, ¢) = SW process on K,, with parameters A and ¢

Given o; € [¢]", SW,, (), q) chooses o;; as follows:

» Independently for each i € [q] choose Erdds-Renyi graph
G(oy ' (4), A/n). Let Apy1 = Uie(G (o, (i), A/n).
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SW process on complete graph

On K,:
» Potts model has transition at 5 = A./n with A\c = ©(1)

» Continuous transition for ¢ = 2 (Ising)
» Discontinuous transition for ¢ > 3

» Potts energy depends only on magnetization s(o)
—BH (o) = %ns(o) -s(o) + constant
» si(0) = |o~1(i)|/n = fraction of vertices coloured i € [¢] by o

» Let SW,, (A, ¢) = SW process on K,, with parameters A and ¢

Given o; € [¢]", SW,, (), q) chooses o;; as follows:
» Independently for each i € [q] choose Erdds-Renyi graph
G(og (i), A/n). Let Aryr = UserqG(oy ' (i), A/n).
» Independently and uniformly g-colour each component of (V, A;41)

Note: edge probability in G(o; ' (i), \/n) is A\/n = s'(a¢)\/|o; (i)
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Potts model on K,, has continuous phase transition when ¢ = 2

Theorem (Cooper, Dyer, Frieze & Rue 2000)
If g = 2 then SW,,(\, q) has mixing time

tmix = O(\/ﬁ)
forall X\ & (\c — 8, \c + 8) with 6y/logn — oo asn — oo.
Theorem (Long, Nachmias, Ning, & Peres 2012)
If ¢ = 2 then SW (X, ¢) has mixing time

o(1) A< A
tmix = O(n/%) X=X
O(logn) A > A

» Ray, Tamayo, & Klein (1989) conjectured n'/* at ).
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Torpid mixing for ¢ > 3

Potts model on K, has discontinuous phase transition when ¢ > 3
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Torpid mixing for ¢ > 3
Potts model on K, has discontinuous phase transition when ¢ > 3

Theorem (Gore & Jerrum 1999)
If g > 3 then SW,,(\¢, q) has mixing time

tmix = exp(2(v/n))

Theorem (Cuff, Ding, Louidor, Lubetzky, Peres, Sly 2012)
If ¢ > 3 then the single-site Glauber process for the Potts model has
O(nlogn) A< A (q)

tmix = {4 O(n?/3) A= Ao(q
exp(2(n)) A > Ao(q)

~—

where \.(q) < A:(q), so torpid mixing begins before transition
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Magnetization distribution

Iy 5 Large n distribution of s(¢) known explicitly:

T " : ' o 10gP(s(0) =) ~ da(@) —nf a0
u L \ Pxa(a) = Z <ai log a; — %)\%2)

B € (Ber Bs)

B € (B, 8)
V r’ Minima of ¢, correspond either to:
» disordered state: s = 1/q for all i € [q]
> ordered states: s' = a > 1/q
Figure: From Cuff et. al 2012 and s” = }I_T? forj #

Ao(q) :=inf{X > 0 : there exist ordered local minima of ¢, },
Aa(q) ;= sup{\ > 0 : the disordered state locally minimizes ¢, }.
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Complete picture for SW,, (X, ¢) with ¢ > 3
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Complete picture for SW,, (X, ¢) with ¢ > 3

v

Gore & Jerrum’s torpid mixing result extends to a non-trivial
interval (A\,(q), Aa(g)) containing A.(q)

Nothing special happens at \.(q)
Non-trivial scaling arises at A,(q)
Low and high temperature same as Ising case

v

v

v
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Sketch of Proof
> If Vi1 :=si, — E[s}, | F] then
sy~ 8¢ + D(sp) + Ve (+)
where
Dy 4(x) =0z)1-1/q)z+1/q—=x
» 6(\)n = E(size of giant component) in Erdds-Renyi G(n, A/n)
» F is the o-algebra generated by {o; : s < t}
» (Y3):>0 is @ sequence of martingale increments with respect to F;
> var(Yi|F) = O(n™1)
» Conditioning on a certain a.a.s. event makes (x) exact
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> If E-‘,—l = si}-‘,—l — E[S%+1|.Ft] then

Sty ~ s+ D(sp) + Yi (%)

where
Dy 4(x) =0z)1-1/q)z+1/q—=x

6(\) n = E(size of giant component) in Erdds-Renyi G(n, A/n)

Fi is the o-algebra generated by {o, : s <t}

(Y:)+>0 is a sequence of martingale increments with respect to F,
var(Y;|F) = O(n™1)

Conditioning on a certain a.a.s. event makes (*) exact

» Roots of D, , coincide with minima of Potts free energy ¢, ,

vVvyVvVVvyvy

Ao = inf{\ > 0: Dy 4(z) has arooton (1/¢,1]}
Ma = sup{A > 0: Dy 4(1/q) = 0}
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Sketch of Proof
> If Vi) o= sk, — E[sk,,|F] then
Sty ~ s+ D(sp) + Yi (%)

where
Dy 4(x) =0z)1-1/q)z+1/q—=x

6(\) n = E(size of giant component) in Erdds-Renyi G(n, A/n)

Fi is the o-algebra generated by {o, : s <t}

(Y:)+>0 is a sequence of martingale increments with respect to F,
var(Y;|F) = O(n™1)

Conditioning on a certain a.a.s. event makes (*) exact

» Roots of D, , coincide with minima of Potts free energy ¢, ,

vVvyVvVVvyvy

Ao = inf{\ > 0: Dy 4(z) has arooton (1/¢,1]}
Ma = sup{A > 0: Dy 4(1/q) = 0}

» Coupling arguments reduce mixing time to hitting time of s}
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Swendsen-Wang drift
Dy 4(z) =0 )1 -1/q)z+1/q —z

Extensions and Discussion
(e]e]

A< Ao(Q) Ao(0) < A < A(Q) A= 24(0)
& & & —
X X X
A= 2(0) A(@) < A < Ag(q) 1> A4(@)
8 0 8 10 8 10
& & o & —
X X X
o(1) A< (9
1/3 _
_Jem3) A= Xo(q)
tmix -

exp(yn))  Ao(q) < A < Aalq)
O(log(n)) A >Aalg)
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Hitting times for stochastic difference equations
Lemma (Lin & G. 2013)

Consider the family of processes defined for eachn € N by
X1 = Xy + 077 D(X,) + Y
» D has a unique root at x«
> D(zs + h) = c|h|® + ©(hFt1) for some c > 0 and k > 2.
> var(Yt(_fh]-}) =0O(n~") forsomev > 0
» M™ =3t v{") is a martingale for eachn € N
» Some technical assumptions which are true for SW and Glauber

Define 7(a,b) = inf{t > 0: X, > b|Xo =a}

Leta € (z. — €, x.]. For each sufficiently small o. > 0

P (T(a,m* +e€) < anzwkyﬁfl)) = Q(1),

2y+v(k=1)

P (T(a,x* +e) > anT) = Q(1).
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Scaling Exponents for SW and Glauber
Potts SW:
» ¢g>3for\= )\, hasy =0, k=2,v=1,so0it takes O(n'/?) time
to traverse the non-stationary root
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Ising SW:
» g=2for A=\ hasy =0, k=2,v=3, agreeing with
tmix = O(n'/*) (Long et al. 2011)
Glauber dynamics:
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to traverse the non-stationary root
Ising SW:
» g=2for A=\ hasy =0, k=2,v=3, agreeing with
tmix = O(n'/*) (Long et al. 2011)
Glauber dynamics:
» Ising Glauber for A = A\ has k = 3,y = 1,v = 2, agreeing with
tmix = ©(n?/2) (Levin et al. 2010)
» Potts Glauberforg >3and A=), hask=2v=1,vr =2,
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Scaling Exponents for SW and Glauber
Potts SW:
» g>3for\= )\, hasy=0,k=2v=1,so0it takes O(n'/3) time
to traverse the non-stationary root
Ising SW:
» g=2for A=\ hasy =0, k=2,v=3, agreeing with
tmix = O(n'/*) (Long et al. 2011)
Glauber dynamics:
» Ising Glauber for A = A\ has k = 3,y = 1,v = 2, agreeing with
tmix = ©(n?/2) (Levin et al. 2010)
» Potts Glauberforg >3and A=), hask=2v=1,vr =2,
agreeing with ¢,,;, = ©(n*/?) (Cuff et al. 2012)
Censored Glauber dynamics:
» Potts censored Glauber for ¢ > 3 and A4(¢) has
k=2,v=1,v =2, suggesting ty,ix = O(n*/?)
Note that:
> At Ao(q), 10 = O(n'/3) = L4EP)

7 Ymix mix

> At \a(q), t5Y) = ©(log n) while L¢(Gensered @) L g 173

7 Ymix n “mix
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Open problems. ..

» Rigorize conjectured results for the Potts censored Glauber chain

» Jon Machta (private communication) has conjectured mixing time
asymptotics at A. for all real ¢ > 1 for complete graph
Chayes-Machta chain. Can this be proved?

» Can one say anything for the Glauber chain for the
Fortuin-Kasteleyn model?



