Markov-chain Monte Carlo algorithms for studying cycle spaces, with some applications to graph colouring

Tim Garoni

Department of Mathematics and Statistics University of Melbourne (?)

April 20, 2011 Monash Discrete Maths Seminar in preparation.

- 1. Qingquan Liu, Youjin Deng, TG Loop models in three dimensions,
- Qingquan Liu, Youjin Deng, TG, and Jesús Salas
 Irreducible Markov-chain Monte Carlo algorithm for zero-temperature Potts antiferromagnets,
 in preparation.
- Qingquan Liu, Youjin Deng, and TG, Worm Monte Carlo study of the honeycomb-lattice loop model, Nucl. Phys. B 846, 283-315 (2011).
- Wei Zhang, TG, and Youjin Deng, A worm algorithm for the fully-packed loop model, Nucl. Phys. B 814, 461-484 (2009).
- Youjin Deng, TG, and Alan D. Sokal, Dynamic Critical Behavior of the Worm Algorithm for the Ising Model, Phys. Rev. Lett. 99, 110601 (2007).

- ▶ Loops & Worms
 - ► O(n)-loop models

- ▶ Loops & Worms
 - ▶ O(n)-loop models
 - Basics of the Markov-chain Monte Carlo method

- ▶ Loops & Worms
 - ▶ O(n)-loop models
 - Basics of the Markov-chain Monte Carlo method
 - ▶ Worm algorithm for *O*(*n*)-loop models

- Loops & Worms
 - O(n)-loop models
 - Basics of the Markov-chain Monte Carlo method
 - ▶ Worm algorithm for *O*(*n*)-loop models
 - Proof of irreducibility in fully-packed limit

- Loops & Worms
 - O(n)-loop models
 - Basics of the Markov-chain Monte Carlo method
 - ▶ Worm algorithm for *O*(*n*)-loop models
 - Proof of irreducibility in fully-packed limit
- Antiferromagnetic Potts models at zero temperature

- Loops & Worms
 - O(n)-loop models
 - Basics of the Markov-chain Monte Carlo method
 - ▶ Worm algorithm for *O*(*n*)-loop models
 - Proof of irreducibility in fully-packed limit
- Antiferromagnetic Potts models at zero temperature
 - Review of Wang-Swendsen-Kotecký (WSK) algorithm

- Loops & Worms
 - O(n)-loop models
 - Basics of the Markov-chain Monte Carlo method
 - ▶ Worm algorithm for *O*(*n*)-loop models
 - Proof of irreducibility in fully-packed limit
- Antiferromagnetic Potts models at zero temperature
 - Review of Wang-Swendsen-Kotecký (WSK) algorithm

 - (Non)-irreducibility of WSK algorithm at zero temperature

- Loops & Worms
 - O(n)-loop models
 - Basics of the Markov-chain Monte Carlo method
 - ▶ Worm algorithm for *O*(*n*)-loop models
 - Proof of irreducibility in fully-packed limit
- Antiferromagnetic Potts models at zero temperature
 - Review of Wang-Swendsen-Kotecký (WSK) algorithm
 - (Non)-irreducibility of WSK algorithm at zero temperature
 - Using worm algorithm instead

Consider a finite graph G

- Physicists love the honeycomb lattice
- (Regular map of type {6,3} on the torus)

- Consider a finite graph G
 - Physicists love the honeycomb lattice
 - (Regular map of type {6,3} on the torus)
 - Take state space to be C(G)
 - Cycle space of G
 - ▶ $\{A \subset E : (V, A) \text{ has no odd vertices}\}$
 - ▶ = all disjoint unions of loops on G when $\Delta(G) \leq 3$

- Consider a finite graph G
 - Physicists love the honeycomb lattice
 - (Regular map of type {6,3} on the torus)
- ▶ Take state space to be C(G)
 - Cycle space of G
 - {A ⊂ E : (V, A) has no odd vertices}
 - ▶ = all disjoint unions of loops on G when $\Delta(G) \leq 3$
- Assign probabilities via

$$\phi_{G,n,x}(A) = \frac{n^{c(A)} x^{|A|}}{Z_{G,n,x}}, \qquad A \in \mathcal{C}(G)$$

ightharpoonup c(A) is cyclomatic number, |A| the number of bonds

- Consider a finite graph G
 - Physicists love the honeycomb lattice
 - (Regular map of type {6,3} on the torus)
 - ▶ Take state space to be C(G)
 - Cycle space of G
 - {A ⊂ E : (V, A) has no odd vertices}
 - ▶ = all disjoint unions of loops on G when $\Delta(G) \leq 3$
- Assign probabilities via

$$\phi_{G,n,x}(A) = \frac{n^{c(A)} x^{|A|}}{Z_{G,n,x}}, \qquad A \in \mathcal{C}(G)$$

- ightharpoonup c(A) is cyclomatic number, |A| the number of bonds
- ▶ Mathematical physics want to compute expectations wrt $\phi_{G,n,x}(\cdot)$

- Consider a finite graph G
 - Physicists love the honeycomb lattice
 - (Regular map of type {6,3} on the torus)
- ► Take state space to be C(G)
 - Cycle space of G
 - {A ⊂ E : (V, A) has no odd vertices}
 - ▶ = all disjoint unions of loops on G when $\Delta(G) \leq 3$
- Assign probabilities via

$$\phi_{G,n,x}(A) = \frac{n^{c(A)} x^{|A|}}{Z_{G,n,x}}, \qquad A \in \mathcal{C}(G)$$

- ightharpoonup c(A) is cyclomatic number, |A| the number of bonds
- ▶ Mathematical physics want to compute expectations wrt $\phi_{G,n,x}(\cdot)$
 - As $|V| \to \infty$ such models display *critical phenomena*: correlations on all scales, fractals,...

- Consider a finite graph G
 - Physicists love the honeycomb lattice
 - (Regular map of type {6,3} on the torus)
- ▶ Take state space to be C(G)
 - Cycle space of G
 - {A ⊂ E : (V, A) has no odd vertices}
 - ▶ = all disjoint unions of loops on G when $\Delta(G) \leq 3$
- Assign probabilities via

$$\phi_{G,n,x}(A) = \frac{n^{c(A)} x^{|A|}}{Z_{G,n,x}}, \qquad A \in \mathcal{C}(G)$$

- ightharpoonup c(A) is cyclomatic number, |A| the number of bonds
- ▶ Mathematical physics want to compute expectations wrt $\phi_{G,n,x}(\cdot)$
 - As $|V| \to \infty$ such models display *critical phenomena*: correlations on all scales, fractals,...
- ▶ If G is large its infeasible to calculate $Z_{G,n,x} = \sum_{A \in \mathcal{C}(G)} n^{c(A)} x^{|A|}$

Loops & Worms

•000000

- Consider a finite graph G
 - Physicists love the honeycomb lattice
 - (Regular map of type {6,3} on the torus)
- Take state space to be C(G)
 - Cycle space of G
 - {A ⊂ E : (V, A) has no odd vertices}
 - = all disjoint unions of loops on G when $\Delta(G) < 3$
- Assign probabilities via

$$\phi_{G,n,x}(A) = \frac{n^{c(A)} x^{|A|}}{Z_{G,n,x}}, \qquad A \in \mathcal{C}(G)$$

- ightharpoonup c(A) is cyclomatic number, |A| the number of bonds
- ▶ Mathematical physics want to compute expectations wrt $\phi_{G,n,x}(\cdot)$
 - As $|V| \to \infty$ such models display *critical phenomena*: correlations on all scales, fractals,...
- ▶ If G is large its infeasible to calculate $Z_{G,n,x} = \sum_{A \in C(G)} n^{c(A)} x^{|A|}$
- ▶ So how can we sample from $\phi_{G,n,x}(\cdot)$?

Consider:

Loops & Worms

- A finite set S (state space)
- ▶ A stochastic matrix $P: S \times S \rightarrow [0, 1]$ (transition matrix)
- ▶ A probability vector $\alpha : S \rightarrow [0, 1]$ (initial distribution)

Consider:

Loops & Worms

- A finite set S (state space)
- ▶ A stochastic matrix $P: S \times S \rightarrow [0, 1]$ (transition matrix)
- ▶ A probability vector $\alpha : S \rightarrow [0, 1]$ (initial distribution)
- ▶ Defines a Markov chain X₁, X₂,... on S
 - $ightharpoonup \mathbb{P}(X_0 = s) = \alpha(s)$
 - $\mathbb{P}(X_{n+1} = s' | X_n = s) = P(s \to s')$

Consider:

Loops & Worms

- A finite set S (state space)
- ▶ A stochastic matrix $P: S \times S \rightarrow [0, 1]$ (transition matrix)
- ▶ A probability vector $\alpha : S \rightarrow [0, 1]$ (initial distribution)
- ▶ Defines a Markov chain X₁, X₂,... on S
 - $ightharpoonup \mathbb{P}(X_0 = s) = \alpha(s)$
 - $\mathbb{P}(X_{n+1} = s' | X_n = s) = P(s \to s')$
- ▶ Probability vector π is a stationary distribution if $\pi P = \pi$

Consider:

Loops & Worms

- A finite set S (state space)
- ▶ A stochastic matrix $P: S \times S \rightarrow [0, 1]$ (transition matrix)
- ▶ A probability vector $\alpha : S \rightarrow [0, 1]$ (initial distribution)
- ▶ Defines a Markov chain X₁, X₂,... on S
 - $ightharpoonup \mathbb{P}(X_0 = s) = \alpha(s)$
 - $\mathbb{P}(X_{n+1} = s' | X_n = s) = P(s \to s')$
- ▶ Probability vector π is a stationary distribution if $\pi P = \pi$
 - Don't need to know Z to prove stationarity

Consider:

Loops & Worms

- A finite set S (state space)
- ▶ A stochastic matrix $P: S \times S \rightarrow [0, 1]$ (transition matrix)
- ▶ A probability vector $\alpha : S \rightarrow [0, 1]$ (initial distribution)
- ▶ Defines a Markov chain X₁, X₂,... on S
 - $ightharpoonup \mathbb{P}(X_0 = s) = \alpha(s)$
 - $\triangleright \mathbb{P}(X_{n+1} = s' | X_n = s) = P(s \rightarrow s')$
- ▶ Probability vector π is a stationary distribution if $\pi P = \pi$
 - Don't need to know Z to prove stationarity
- ▶ Detailed balance $(\pi_s P_{ss'} = \pi_{s'} P_{s's})$ implies stationarity

Consider:

Loops & Worms

- A finite set S (state space)
- ▶ A stochastic matrix $P: S \times S \rightarrow [0, 1]$ (transition matrix)
- ▶ A probability vector $\alpha : S \rightarrow [0, 1]$ (initial distribution)
- ▶ Defines a Markov chain X₁, X₂,... on S
 - $ightharpoonup \mathbb{P}(X_0 = s) = \alpha(s)$
 - $\mathbb{P}(X_{n+1} = s' | X_n = s) = P(s \to s')$
- ▶ Probability vector π is a stationary distribution if $\pi P = \pi$
 - Don't need to know Z to prove stationarity
- ▶ Detailed balance $(\pi_s P_{ss'} = \pi_{s'} P_{s's})$ implies stationarity
- ▶ *P* is irreducible if $s \leftrightarrow s'$ for all $s, s' \in S$

Consider:

Loops & Worms

- A finite set S (state space)
- ▶ A stochastic matrix $P: S \times S \rightarrow [0, 1]$ (transition matrix)
- ▶ A probability vector $\alpha : S \rightarrow [0, 1]$ (initial distribution)
- ▶ Defines a Markov chain X₁, X₂,... on S
 - $ightharpoonup \mathbb{P}(X_0 = s) = \alpha(s)$
 - $\mathbb{P}(X_{n+1} = s' | X_n = s) = P(s \to s')$
- ▶ Probability vector π is a stationary distribution if $\pi P = \pi$
 - Don't need to know Z to prove stationarity
- ▶ Detailed balance $(\pi_s P_{ss'} = \pi_{s'} P_{s's})$ implies stationarity
- ▶ *P* is irreducible if $s \leftrightarrow s'$ for all $s, s' \in S$
- If P is irreducible it has a unique stationary distribution π

Consider:

Loops & Worms

000000

- A finite set S (state space)
- ▶ A stochastic matrix $P: S \times S \rightarrow [0, 1]$ (transition matrix)
- ▶ A probability vector α : $S \rightarrow [0, 1]$ (initial distribution)
- ▶ Defines a Markov chain X₁, X₂,... on S
 - $ightharpoonup \mathbb{P}(X_0 = s) = \alpha(s)$
 - $\triangleright \mathbb{P}(X_{n+1} = s' | X_n = s) = P(s \rightarrow s')$
- ▶ Probability vector π is a stationary distribution if $\pi P = \pi$
 - Don't need to know Z to prove stationarity
- ▶ Detailed balance $(\pi_s P_{ss'} = \pi_{s'} P_{s's})$ implies stationarity
- ▶ *P* is irreducible if $s \leftrightarrow s'$ for all $s, s' \in S$
- If P is irreducible it has a unique stationary distribution π

Theorem (Ergodic Theorem)

If P is irreducible with stationary distribution π then for any initial distribution

$$\frac{1}{N}\sum_{n=1}^{N}f(X_n)\xrightarrow[N\to\infty]{}\sum_{s\in S}\pi(s)f(s) \qquad a.s.$$

Loops & Worms

0000000

• We want a transition matrix P in detailed balance with π

Loops & Worms

- We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ

Loops & Worms

- We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$

Loops & Worms

- ▶ We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \, \Psi(s \to s')$

Loops & Worms

- We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \Psi(s \to s')$
 - ▶ Demanding *P* be in detailed balance with π implies

$$\pi(s) a(s o s') \Psi(s o s') = \pi(s') a(s' o s) \Psi(s' o s)$$

Loops & Worms

0000000

- We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \rightarrow s') = a(s \rightarrow s') \Psi(s \rightarrow s')$
 - ▶ Demanding P be in detailed balance with π implies

$$\pi(s) a(s o s') \Psi(s o s') = \pi(s') a(s' o s) \Psi(s' o s)$$

 $a(s \rightarrow s') = \min(1, \pi(s')/\pi(s))$ is maximal solution

Loops & Worms

- We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \Psi(s \to s')$
 - ▶ Demanding P be in detailed balance with π implies

$$\pi(s) a(s \rightarrow s') \Psi(s \rightarrow s') = \pi(s') a(s' \rightarrow s) \Psi(s' \rightarrow s)$$

- $a(s \rightarrow s') = \min(1, \pi(s')/\pi(s))$ is maximal solution
- Irreducibility of P needs to be checked case-by-case

- ▶ We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- ▶ Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \, \Psi(s \to s')$
 - ▶ Demanding P be in detailed balance with π implies

$$\pi(s)\, \text{a}(s \rightarrow s')\, \Psi(s \rightarrow s') = \pi(s')\, \text{a}(s' \rightarrow s)\, \Psi(s' \rightarrow s)$$

- ▶ $a(s \rightarrow s') = \min(1, \pi(s')/\pi(s))$ is maximal solution
- Irreducibility of P needs to be checked case-by-case

▶ E.g. Ising model on G = (V, E)

$$\mathcal{S} = \{-1, 1\}^{V}$$

$$\bullet$$
 $\pi(\sigma) \propto e^{-H(\sigma)}$

- ▶ We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- ▶ Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \, \Psi(s \to s')$
 - ▶ Demanding P be in detailed balance with π implies

$$\pi(s) a(s o s') \Psi(s o s') = \pi(s') a(s' o s) \Psi(s' o s)$$

- $a(s \rightarrow s') = \min(1, \pi(s')/\pi(s))$ is maximal solution
- ▶ Irreducibility of *P* needs to be checked case-by-case

▶ E.g. Ising model on G = (V, E)

•
$$S = \{-1, 1\}^{V}$$

$$\bullet$$
 $\pi(\sigma) \propto e^{-H(\sigma)}$

Simplest Ψ for Ising model is

- ▶ We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- ▶ Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \, \Psi(s \to s')$
 - ▶ Demanding P be in detailed balance with π implies

$$\pi(s) a(s o s') \Psi(s o s') = \pi(s') a(s' o s) \Psi(s' o s)$$

- $a(s \rightarrow s') = \min(1, \pi(s')/\pi(s))$ is maximal solution
- Irreducibility of P needs to be checked case-by-case

 \blacktriangleright E.g. Ising model on G = (V, E)

$$S = \{-1, 1\}^{V}$$

$$\rightarrow \pi(\sigma) \propto e^{-H(\sigma)}$$

- Simplest Ψ for Ising model is
 - ▶ Pick v ∈ V uniformly at random

- ▶ We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- ▶ Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \, \Psi(s \to s')$
 - Demanding P be in detailed balance with π implies

$$\pi(s) a(s o s') \Psi(s o s') = \pi(s') a(s' o s) \Psi(s' o s)$$

- $a(s \rightarrow s') = \min(1, \pi(s')/\pi(s))$ is maximal solution
- Irreducibility of P needs to be checked case-by-case

 \blacktriangleright E.g. Ising model on G = (V, E)

$$S = \{-1, 1\}^{V}$$

$$\rightarrow \pi(\sigma) \propto e^{-H(\sigma)}$$

- Simplest Ψ for Ising model is
 - ▶ Pick v ∈ V uniformly at random

- ▶ We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- ▶ Construct P from Ψ by introducing acceptance probabilities
 - ▶ Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \, \Psi(s \to s')$
 - ▶ Demanding P be in detailed balance with π implies

$$\pi(s) \, \mathsf{a}(s o s') \, \Psi(s o s') = \pi(s') \, \mathsf{a}(s' o s) \, \Psi(s' o s)$$

- $a(s \rightarrow s') = \min(1, \pi(s')/\pi(s))$ is maximal solution
- ▶ Irreducibility of *P* needs to be checked case-by-case

ightharpoonup E.g. Ising model on G = (V, E)

$$\mathcal{S} = \{-1, 1\}^{V}$$

$$\rightarrow \pi(\sigma) \propto e^{-H(\sigma)}$$

- Simplest Ψ for Ising model is
 - ▶ Pick $v \in V$ uniformly at random
 - ▶ Propose $\sigma_V \rightarrow -\sigma_V$

- ▶ We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- ▶ Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \Psi(s \to s')$
 - ▶ Demanding P be in detailed balance with π implies

$$\pi(s) \, \mathsf{a}(s o s') \, \Psi(s o s') = \pi(s') \, \mathsf{a}(s' o s) \, \Psi(s' o s)$$

- $a(s \rightarrow s') = \min(1, \pi(s')/\pi(s))$ is maximal solution
- Irreducibility of P needs to be checked case-by-case

 \triangleright E.g. Ising model on G = (V, E)

•
$$S = \{-1, 1\}^V$$

$$\rightarrow \pi(\sigma) \propto e^{-H(\sigma)}$$

- Simplest Ψ for Ising model is
 - ightharpoonup Pick $v \in V$ uniformly at random
 - ▶ Propose $\sigma_V \rightarrow -\sigma_V$

- ▶ We want a transition matrix P in detailed balance with π
- Suppose we have a symmetric transition matrix Ψ
- Construct P from Ψ by introducing acceptance probabilities
 - Accept proposed transitions $\Psi(s \to s')$ with probability $a(s \to s')$
 - $P(s \to s') = a(s \to s') \, \Psi(s \to s')$
 - Demanding P be in detailed balance with π implies

$$\pi(s)\,a(s\rightarrow s')\,\Psi(s\rightarrow s')=\pi(s')\,a(s'\rightarrow s)\,\Psi(s'\rightarrow s)$$

- $a(s \rightarrow s') = \min(1, \pi(s')/\pi(s))$ is maximal solution
- Irreducibility of P needs to be checked case-by-case

ightharpoonup E.g. Ising model on G = (V, E)

•
$$S = \{-1, 1\}^V$$

$$\rightarrow \pi(\sigma) \propto e^{-H(\sigma)}$$

- Simplest Ψ for Ising model is
 - ▶ Pick $v \in V$ uniformly at random
 - ▶ Propose $\sigma_V \rightarrow -\sigma_V$
- ▶ Local moves from $S \rightarrow S$ easy to construct

Worm & Potts

Worm chains

Loops & Worms

0000000

▶ Local moves on C(G) not so obvious

Worm & Potts

Worm chains

- \blacktriangleright Local moves on $\mathcal{C}(\textbf{G})$ not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)

Loops & Worms

- ▶ Local moves on C(G) not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)

Loops & Worms

- ▶ Local moves on C(G) not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

Loops & Worms

0000000

- ▶ Local moves on C(G) not so obvious
- Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

Let ∂A be the set of all odd vertices in (V, A)

Loops & Worms

- ▶ Local moves on C(G) not so obvious
- Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

- Let ∂A be the set of all odd vertices in (V, A)
- State space of worm algorithm is

$$\mathcal{S}(G) = \{ (A, u, v) : \partial A = \{ u, v \} \}$$

Loops & Worms

0000000

- ▶ Local moves on C(G) not so obvious
- Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

- Let ∂A be the set of all odd vertices in (V, A)
- State space of worm algorithm is

$$\mathcal{S}(G) = \{(A, u, v) : \partial A = \{u, v\}\}$$

When u = v we take $\partial A = \emptyset$

Loops & Worms

- ▶ Local moves on C(G) not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

- Let ∂A be the set of all odd vertices in (V, A)
- State space of worm algorithm is

$$\mathcal{S}(\mathbf{G}) = \{ (\mathbf{A}, \mathbf{u}, \mathbf{v}) : \partial \mathbf{A} = \{ \mathbf{u}, \mathbf{v} \} \}$$

- When u = v we take $\partial A = \emptyset$
- Proposal matrix

$$\Psi_{n,x}[(A,u,v)\to (A\triangle uu',u',v)]=\frac{1}{2\,d(u)}$$

Loops & Worms

- ▶ Local moves on C(G) not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

- Let ∂A be the set of all odd vertices in (V, A)
- State space of worm algorithm is

$$\mathcal{S}(G) = \{ (A, u, v) : \partial A = \{ u, v \} \}$$

- When u = v we take $\partial A = \emptyset$
- Proposal matrix

$$\Psi_{n,x}[(A,u,v)\to (A\triangle uu',u',v)]=\frac{1}{2\,d(u)}$$

Loops & Worms

- ▶ Local moves on C(G) not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

- ▶ Let ∂A be the set of all odd vertices in (V, A)
- State space of worm algorithm is

$$S(G) = \{(A, u, v) : \partial A = \{u, v\}\}$$

- ▶ When u = v we take $\partial A = \emptyset$
- Proposal matrix

$$\Psi_{n,x}[(A,u,v)\to (A\triangle uu',u',v)]=\frac{1}{2\,d(u)}$$

Loops & Worms

- ▶ Local moves on C(G) not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

- Let ∂A be the set of all odd vertices in (V, A)
- State space of worm algorithm is

$$\mathcal{S}(G) = \{ (A, u, v) : \partial A = \{ u, v \} \}$$

- When u = v we take $\partial A = \emptyset$
- Proposal matrix

$$\Psi_{n,x}[(A,u,v)\to (A\triangle uu',u',v)]=\frac{1}{2\,d(u)}$$

Loops & Worms

- ▶ Local moves on C(G) not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

- Let ∂A be the set of all odd vertices in (V, A)
- State space of worm algorithm is

$$\mathcal{S}(G) = \{ (A, u, v) : \partial A = \{ u, v \} \}$$

- When u = v we take $\partial A = \emptyset$
- Proposal matrix

$$\Psi_{n,x}[(A,u,v)\to (A\triangle uu',u',v)]=\frac{1}{2\,d(u)}$$

Loops & Worms

- ▶ Local moves on C(G) not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

- ▶ Let ∂A be the set of all odd vertices in (V, A)
- State space of worm algorithm is

$$\mathcal{S}(G) = \{ (A, u, v) : \partial A = \{ u, v \} \}$$

- ▶ When u = v we take $\partial A = \emptyset$
- Proposal matrix

$$\Psi_{n,x}[(A,u,v)\to (A\triangle uu',u',v)]=\frac{1}{2\,d(u)}$$

Loops & Worms

0000000

- ▶ Local moves on C(G) not so obvious
- ▶ Enlarge C(G) to include two defects (odd vertices)
- Move the defects via random walk

- Let ∂A be the set of all odd vertices in (V, A)
- State space of worm algorithm is

$$\mathcal{S}(G) = \{(A, u, v) : \partial A = \{u, v\}\}$$

- When u = v we take $\partial A = \emptyset$
- Proposal matrix

$$\Psi_{n,x}[(A,u,v)\to (A\triangle uu',u',v)]=\frac{1}{2\,d(u)}$$

▶ Use Metropolis to construct $P_{n,x}$ in detailed balance with

$$\pi_{n,x}(A, u, v) \propto n^{c(A)} x^{|A|}$$

Loops & Worms

$$\begin{split} P_{n,x}[(A,u,v) &\to (A \triangle uu',u',v)] = P_{n,x}[(A,v,u) \to (A \triangle uu',v,u')] \\ &= \frac{1}{2 \, d(u)} \begin{cases} \min(1,x\,n) & uu' \not\in A \text{ and } u \leftrightarrow u' \text{ in } (V,A) \\ \min(1,x) & uu' \not\in A \text{ and } u \not\leftrightarrow u' \text{ in } (V,A) \\ \min(1,1/n\,x) & uu' \in A \text{ and } u \leftrightarrow u' \text{ in } (V,A \setminus uu') \\ \min(1,1/x) & uu' \in A \text{ and } u \not\leftrightarrow u' \text{ in } (V,A \setminus uu') \end{cases} \end{split}$$

Loops & Worms

0000000

$$P_{n,x}[(A, u, v) \rightarrow (A \triangle uu', u', v)] = P_{n,x}[(A, v, u) \rightarrow (A \triangle uu', v, u')]$$

$$= \frac{1}{2 d(u)} \begin{cases} \min(1, x \, n) & uu' \notin A \text{ and } u \leftrightarrow u' \text{ in } (V, A) \\ \min(1, x) & uu' \notin A \text{ and } u \nleftrightarrow u' \text{ in } (V, A) \\ \min(1, 1/n x) & uu' \in A \text{ and } u \nleftrightarrow u' \text{ in } (V, A \setminus uu') \\ \min(1, 1/x) & uu' \in A \text{ and } u \nleftrightarrow u' \text{ in } (V, A \setminus uu') \end{cases}$$

▶ Let $\overline{\pi}_{n,x}$ = restriction of $\pi_{n,x}$ to $\{(A, u, v) \in S : u = v\} = \mathcal{C}(G) \times V$

Loops & Worms

$$P_{n,x}[(A, u, v) \rightarrow (A \triangle uu', u', v)] = P_{n,x}[(A, v, u) \rightarrow (A \triangle uu', v, u')]$$

$$= \frac{1}{2 d(u)} \begin{cases} \min(1, x \, n) & uu' \notin A \text{ and } u \leftrightarrow u' \text{ in } (V, A) \\ \min(1, x) & uu' \notin A \text{ and } u \nleftrightarrow u' \text{ in } (V, A) \\ \min(1, 1/n \, x) & uu' \in A \text{ and } u \leftrightarrow u' \text{ in } (V, A \setminus uu') \\ \min(1, 1/x) & uu' \in A \text{ and } u \nleftrightarrow u' \text{ in } (V, A \setminus uu') \end{cases}$$

- ▶ Let $\overline{\pi}_{n,x}$ = restriction of $\pi_{n,x}$ to $\{(A, u, v) \in S : u = v\} = C(G) \times V$
 - $\overline{\pi}_{n,x}(A, v, v) = \phi_{n,x}(A)/V$
 - ▶ So $\langle X \rangle_{\overline{\pi}_{n,x}} = \langle X \rangle_{\phi_{n,x}}$ for all $X : \mathcal{C}(G) \to \mathbb{R}$

Loops & Worms

$$P_{n,x}[(A, u, v) \rightarrow (A \triangle uu', u', v)] = P_{n,x}[(A, v, u) \rightarrow (A \triangle uu', v, u')]$$

$$= \frac{1}{2 d(u)} \begin{cases} \min(1, x \, n) & uu' \notin A \text{ and } u \leftrightarrow u' \text{ in } (V, A) \\ \min(1, x) & uu' \notin A \text{ and } u \nleftrightarrow u' \text{ in } (V, A) \\ \min(1, 1/n \, x) & uu' \in A \text{ and } u \leftrightarrow u' \text{ in } (V, A \setminus uu') \\ \min(1, 1/x) & uu' \in A \text{ and } u \nleftrightarrow u' \text{ in } (V, A \setminus uu') \end{cases}$$

- ▶ Let $\overline{\pi}_{n,x}$ = restriction of $\pi_{n,x}$ to $\{(A, u, v) \in S : u = v\} = C(G) \times V$
 - $\overline{\pi}_{n,x}(A, v, v) = \phi_{n,x}(A)/V$
 - ▶ So $\langle X \rangle_{\overline{\pi}_{n,x}} = \langle X \rangle_{\phi_{n,x}}$ for all $X : \mathcal{C}(G) \to \mathbb{R}$
- Only observe $P_{n,x}$ chain when u=v

Loops & Worms

$$P_{n,x}[(A, u, v) \rightarrow (A \triangle uu', u', v)] = P_{n,x}[(A, v, u) \rightarrow (A \triangle uu', v, u')]$$

$$= \frac{1}{2 d(u)} \begin{cases} \min(1, x \, n) & uu' \notin A \text{ and } u \leftrightarrow u' \text{ in } (V, A) \\ \min(1, x) & uu' \notin A \text{ and } u \nleftrightarrow u' \text{ in } (V, A) \\ \min(1, 1/n x) & uu' \in A \text{ and } u \nleftrightarrow u' \text{ in } (V, A \setminus uu') \\ \min(1, 1/x) & uu' \in A \text{ and } u \nleftrightarrow u' \text{ in } (V, A \setminus uu') \end{cases}$$

- ▶ Let $\overline{\pi}_{n,x}$ = restriction of $\pi_{n,x}$ to $\{(A, u, v) \in S : u = v\} = \mathcal{C}(G) \times V$
 - $\overline{\pi}_{n,x}(A, v, v) = \phi_{n,x}(A)/V$
 - ▶ So $\langle X \rangle_{\overline{\pi}_{n,x}} = \langle X \rangle_{\phi_{n,x}}$ for all $X : \mathcal{C}(G) \to \mathbb{R}$
- ▶ Only observe $P_{n,x}$ chain when u = v
 - ▶ Get new chain, $\overline{P}_{n,x}$, in detailed balance with $\overline{\pi}_{n,x}$

Induced Markov chain on subspace

- ▶ Consider an irreducible P on a finite state space S
- ▶ In detailed balance with π

Loops & Worms

Worm & Potts

Induced Markov chain on subspace

- ▶ Consider an irreducible P on a finite state space S
- ▶ In detailed balance with π
- ▶ Only observe the process when $s \in \Sigma \subseteq S$

- Consider an irreducible P on a finite state space S
- In detailed balance with π

Loops & Worms

- ▶ Only observe the process when $s \in \Sigma \subseteq S$
- New process is irreducible Markov chain on Σ

Induced Markov chain on subspace

- Consider an irreducible P on a finite state space S
- In detailed balance with π
- ▶ Only observe the process when $s \in \Sigma \subseteq S$
- New process is irreducible Markov chain on Σ
- Transition matrix is

$$(\overline{P})_{ss'} := (P)_{ss'} + \sum_{n=0}^{\infty} \sum_{s_0, s_1, \dots, s_n \in \overline{\Sigma}} (P)_{ss_0} \prod_{l=1}^n (P)_{s_{l-1}s_l} (P)_{s_ns'}$$

Induced Markov chain on subspace

- \triangleright Consider an irreducible P on a finite state space S
- In detailed balance with π
- ▶ Only observe the process when $s \in \Sigma \subseteq S$
- New process is irreducible Markov chain on Σ
- Transition matrix is

Loops & Worms

0000000

$$(\overline{P})_{ss'} := (P)_{ss'} + \sum_{n=0}^{\infty} \sum_{s_0, s_1, \dots, s_n \in \overline{\Sigma}} (P)_{ss_0} \prod_{l=1}^{n} (P)_{s_{l-1}s_l} (P)_{s_ns'}$$

P is in detailed balance with

$$\overline{\pi}_{\mathtt{S}} = \frac{\pi_{\mathtt{S}}}{\sum_{\mathtt{S}' \in \Sigma} \pi_{\mathtt{S}'}}, \qquad \mathtt{S} \in \Sigma$$

Loops & Worms

000000

• We don't care about states in $\overline{\Sigma} := \mathcal{S} \setminus \Sigma$

Loops & Worms

- \blacktriangleright We don't care about states in $\overline{\Sigma}:=\mathcal{S}\setminus \Sigma$
- ▶ Therefore we can safely avoid rejections when $(A, u, v) \in \overline{\Sigma}$

Loops & Worms

- We don't care about states in $\overline{\Sigma} := S \setminus \Sigma$
- ▶ Therefore we can safely avoid rejections when $(A, u, v) \in \overline{\Sigma}$
 - Use rejection-free chain instead

$$(P')_{ss'} := egin{cases} (P)_{ss'} & s \in \Sigma \ \dfrac{(P)_{ss'}}{1-(P)_{ss}} & s \in \overline{\Sigma}, s'
eq s \ 0 & s \in \overline{\Sigma}, s' = s \end{cases}$$

Loops & Worms

000000

- We don't care about states in $\overline{\Sigma} := S \setminus \Sigma$
- ▶ Therefore we can safely avoid rejections when $(A, u, v) \in \Sigma$
 - Use rejection-free chain instead

$$(P')_{\mathtt{SS'}} := egin{cases} (P)_{\mathtt{SS'}} & \mathtt{s} \in \Sigma \ \dfrac{(P)_{\mathtt{SS'}}}{1-(P)_{\mathtt{SS}}} & \mathtt{s} \in \overline{\Sigma}, \mathtt{s'}
eq \mathtt{s} \ 0 & \mathtt{s} \in \overline{\Sigma}, \mathtt{s'} = \mathtt{s} \end{cases}$$

P' is in detailed balance with

$$\pi_s' = \begin{cases} \pi_s & s \in \Sigma \\ (1 - (P)_{ss}) \pi_s & s \in \overline{\Sigma} \end{cases}$$

Loops & Worms

000000

- We don't care about states in $\overline{\Sigma} := S \setminus \Sigma$
- ▶ Therefore we can safely avoid rejections when $(A, u, v) \in \overline{\Sigma}$
 - Use rejection-free chain instead

$$(P')_{ss'} := egin{cases} (P)_{ss'} & s \in \Sigma \ \dfrac{(P)_{ss'}}{1-(P)_{ss}} & s \in \overline{\Sigma}, s'
eq s \ 0 & s \in \overline{\Sigma}, s' = s \end{cases}$$

P' is in detailed balance with

$$\pi_{s}' = egin{cases} \pi_{s} & s \in \Sigma \\ (1 - (P)_{ss}) \, \pi_{s} & s \in \overline{\Sigma} \end{cases}$$

▶ $\overline{P'}$ is in detailed balance with $\overline{\pi'}_s = \overline{\pi}_s = \frac{\pi_s}{\sum_{s' \in \Sigma} \pi_{s'}}$, $s \in \Sigma$

Fully-packed loops

Loops & Worms

Let G be bicubic and take $x \to \infty$

Fully-packed loops

Let G be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(\textit{G}) := \{\textit{A} \in \mathcal{C}(\textit{G}) : |\textit{A}| = |\textit{V}|\}$$

Assign probabilities via

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

ightharpoonup c(A) is cyclomatic number

Fully-packed loops

Loops & Worms

Let G be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(G) := \{A \in \mathcal{C}(G) : |A| = |V|\}$$

Assign probabilities via

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

- ▶ c(A) is cyclomatic number
- \triangleright $\mathcal{F}(G)$ is subset of cycle space with maximal |A| (= |V|)

Loops & Worms

Let G be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(G) := \{A \in \mathcal{C}(G) : |A| = |V|\}$$

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

- ▶ c(A) is cyclomatic number
- \triangleright $\mathcal{F}(G)$ is subset of cycle space with maximal |A| (= |V|)
 - ▶ $A \in \mathcal{F}(G)$ iff (V, A) is a 2-factor iff $E \setminus A$ is a perfect matching

Loops & Worms

Let G be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(G) := \{A \in \mathcal{C}(G) : |A| = |V|\}$$

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

- c(A) is cyclomatic number
- \triangleright $\mathcal{F}(G)$ is subset of cycle space with maximal |A| (= |V|)
 - ▶ $A \in \mathcal{F}(G)$ iff (V, A) is a 2-factor iff $E \setminus A$ is a perfect matching
 - $\rightarrow n = 0$ corresponds to uniformly sampling Hamiltonian cycles

Loops & Worms

Let G be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(G) := \{A \in \mathcal{C}(G) : |A| = |V|\}$$

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

- c(A) is cyclomatic number
- ▶ $\mathcal{F}(G)$ is subset of cycle space with maximal |A| (= |V|)
 - ▶ $A \in \mathcal{F}(G)$ iff (V, A) is a 2-factor iff $E \setminus A$ is a perfect matching
 - ightharpoonup n = 0 corresponds to uniformly sampling Hamiltonian cycles
 - n = 1 corresponds to uniformly sampling dimer coverings

Loops & Worms

Let G be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(G) := \{ A \in \mathcal{C}(G) : |A| = |V| \}$$

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

- c(A) is cyclomatic number
- \triangleright $\mathcal{F}(G)$ is subset of cycle space with maximal |A| (= |V|)
 - ▶ $A \in \mathcal{F}(G)$ iff (V, A) is a 2-factor iff $E \setminus A$ is a perfect matching
 - $\rightarrow n = 0$ corresponds to uniformly sampling Hamiltonian cycles
 - n = 1 corresponds to uniformly sampling dimer coverings
 - n = 1 corresponds to dual Ising model

Loops & Worms

Let G be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(G) := \{A \in \mathcal{C}(G) : |A| = |V|\}$$

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

- c(A) is cyclomatic number
- \triangleright $\mathcal{F}(G)$ is subset of cycle space with maximal |A| (= |V|)
 - ▶ $A \in \mathcal{F}(G)$ iff (V, A) is a 2-factor iff $E \setminus A$ is a perfect matching
 - $\rightarrow n = 0$ corresponds to uniformly sampling Hamiltonian cycles
 - n = 1 corresponds to uniformly sampling dimer coverings
 - n = 1 corresponds to dual Ising model
 - ightharpoonup n = 2 related to q > 2 Potts models (more later...)

Let *G* be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(G) := \{ A \in \mathcal{C}(G) : |A| = |V| \}$$

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

- c(A) is cyclomatic number
- ▶ $\mathcal{F}(G)$ is subset of cycle space with maximal |A| (= |V|)
 - ▶ $A \in \mathcal{F}(G)$ iff (V, A) is a 2-factor iff $E \setminus A$ is a perfect matching
 - ightharpoonup n = 0 corresponds to uniformly sampling Hamiltonian cycles
 - ightharpoonup n = 1 corresponds to uniformly sampling dimer coverings
 - n = 1 corresponds to dual Ising model
 - ▶ n = 2 related to q > 2 Potts models (more later...)
- ▶ The simple worm algorithm is absorbing when $x = +\infty$

Let *G* be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(G) := \{ A \in \mathcal{C}(G) : |A| = |V| \}$$

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

- c(A) is cyclomatic number
- ▶ $\mathcal{F}(G)$ is subset of cycle space with maximal |A| (= |V|)
 - ▶ $A \in \mathcal{F}(G)$ iff (V, A) is a 2-factor iff $E \setminus A$ is a perfect matching
 - ightharpoonup n = 0 corresponds to uniformly sampling Hamiltonian cycles
 - ightharpoonup n = 1 corresponds to uniformly sampling dimer coverings
 - n = 1 corresponds to dual Ising model
 - ▶ n = 2 related to q > 2 Potts models (more later...)
- ▶ The simple worm algorithm is absorbing when $x = +\infty$
- ▶ Rejection-free algorithm remains valid

Loops & Worms

Let *G* be bicubic and take $x \to \infty$

State space is

$$\mathcal{F}(G) := \{A \in \mathcal{C}(G) : |A| = |V|\}$$

$$\phi_{G,n}(A) \propto n^{c(A)}, \qquad A \in \mathcal{F}(G)$$

- c(A) is cyclomatic number
- ▶ $\mathcal{F}(G)$ is subset of cycle space with maximal |A| (= |V|)
 - ▶ $A \in \mathcal{F}(G)$ iff (V, A) is a 2-factor iff $E \setminus A$ is a perfect matching
 - n = 0 corresponds to uniformly sampling Hamiltonian cycles
 - ightharpoonup n = 1 corresponds to uniformly sampling dimer coverings
 - n = 1 corresponds to dual Ising model
 - ▶ n = 2 related to q > 2 Potts models (more later...)
- ▶ The simple worm algorithm is absorbing when $x = +\infty$
- ▶ Rejection-free algorithm remains valid
 - ▶ n = 1 similar to Jerrum & Sinclair's perfect matching algorithm

$P'_{n,\infty}$ allows the following transitions:

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - ▶ Move one of the defects across $uu' \notin A$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
- If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
- If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
- If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - ▶ Move one of the defects across $uu' \notin A$
- If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - ▶ Move one of the defects across $uu' \notin A$
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - ▶ Move one of the defects across $uu' \notin A$
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

 $P'_{n,\infty}$ allows the following transitions:

- If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - ▶ Move one of the defects across $uu' \notin A$
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - ▶ Move one of the defects across $uu' \notin A$
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - ▶ Move one of the defects across $uu' \notin A$
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
 - ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$

- ▶ If $d_A(u) = d_A(v) = 2$ then
 - ▶ Move one of the defects across $uu' \notin A$
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
 - ▶ If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- ▶ $\mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$
 - ▶ If $(A, v, v) \in \mathcal{R}(G)$ then $A \in \mathcal{F}(G)$

$P'_{n,\infty}$ allows the following transitions:

- If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
 - If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- $ightharpoonup \mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$
 - ▶ If $(A, v, v) \in \mathcal{R}(G)$ then $A \in \mathcal{F}(G)$
 - ▶ Let P_n be the restriction of $P'_{n,\infty}$ to $\mathcal{R}(G)$

$P'_{n,\infty}$ allows the following transitions:

- If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
- If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- $ightharpoonup \mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$
 - ▶ If $(A, v, v) \in \mathcal{R}(G)$ then $A \in \mathcal{F}(G)$
 - ▶ Let P_n be the restriction of $P'_{n,\infty}$ to $\mathcal{R}(G)$
- $ightharpoonup \overline{P_n}$ is in detailed balance with $\phi_n(A) \propto n^{c(A)}$

$P'_{n,\infty}$ allows the following transitions:

- If $d_A(u) = d_A(v) = 2$ then
 - Move one of the defects across uu' ∉ A
- If $d_A(u) = d_A(v) = 3$ then
 - Delete one of the occupied edges at u or v
- If $d_A(u) = 1$ and $d_A(v) = 3$ then
 - Add one of the two vacant edges at u
- $ightharpoonup \mathcal{R}(G) = \{(A, u, v) \in \mathcal{S}(G) : |A| \ge |V|\}$ is closed under $P'_{n,\infty}$
 - ▶ If $(A, v, v) \in \mathcal{R}(G)$ then $A \in \mathcal{F}(G)$
 - ▶ Let P_n be the restriction of $P'_{n,\infty}$ to $\mathcal{R}(G)$
- $ightharpoonup \overline{P_n}$ is in detailed balance with $\phi_n(A) \propto n^{c(A)}$
- ▶ P_n is irreducible

Loops & Worms

Loops & Worms

We show $(A, u, v) \leftrightarrow (B, w, w)$ for any fixed $B \in \mathcal{F}(G)$ and $w \in V$

▶ If $u \neq v$ then P_n always lets us to do the following:

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - ▶ If $d_u(A) = 1$ add one of the missing *B*-edges at *u*

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - ▶ If $d_u(A) = 1$ add one of the missing *B*-edges at *u*

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - ▶ If $d_u(A) = 1$ add one of the missing *B*-edges at *u*
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - ▶ If $d_u(A) = 1$ add one of the missing *B*-edges at *u*
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge
- We can prove that $(A, v, v) \leftrightarrow (A, v', v')$

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge
- We can prove that $(A, v, v) \leftrightarrow (A, v', v')$
- \triangleright We can move defect to a v' adjacent to a vacant B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - If $d_u(A) = 1$ add one of the missing B-edges at u
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge
- We can prove that $(A, v, v) \leftrightarrow (A, v', v')$
- \triangleright We can move defect to a v' adjacent to a vacant B-edge

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - ▶ If $d_u(A) = 1$ add one of the missing *B*-edges at *u*
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge
- We can prove that $(A, v, v) \leftrightarrow (A, v', v')$
- \triangleright We can move defect to a v' adjacent to a vacant B-edge
- Add vacant B-edge and start again

Loops & Worms

- ▶ If $u \neq v$ then P_n always lets us to do the following:
 - ▶ If $d_u(A) = 1$ add one of the missing *B*-edges at *u*
 - ▶ If $d_{u'}(A) = d_v(A) = 3$ delete the occupied non-*B*-edge at u'
- ▶ New state has either one more B-edge or one less non-B-edge
- We can prove that $(A, v, v) \leftrightarrow (A, v', v')$
- \triangleright We can move defect to a v' adjacent to a vacant B-edge
- Add vacant B-edge and start again

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v \, v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v \, v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v\,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

▶ Can move first defect along $P_{v \ v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

▶ Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v \, v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

Loops & Worms

▶ Can move first defect along $P_{v \ v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

Loops & Worms

Worm & Potts

▶ Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v \, v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

▶ Can move first defect along $P_{v v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v\,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

▶ Can move first defect along $P_{v v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

Loops & Worms

▶ Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

Loops & Worms

Worm & Potts

- Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$
- ▶ Then move second defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A'', v', v')$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

Loops & Worms

Worm & Potts

- Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$
- ▶ Then move second defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A'', v', v')$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

- Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$
- ▶ Then move second defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A'', v', v')$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v\,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

- ▶ Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$
- ▶ Then move second defect along $P_{v v'}$ so $(A, v, v) \leftrightarrow (A'', v', v')$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

- Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$
- ▶ Then move second defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A'', v', v')$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

- Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$
- ▶ Then move second defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A'', v', v')$

We show that $(A, v, v) \leftrightarrow (A, v', v')$ for each $v' \sim v$

▶ Lemma: There always exists an odd path $P_{v,v'}$ from v to $v' \sim v$ which alternates vacant, occupied,..., vacant

- ▶ Can move first defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A', v', v)$
- ▶ Then move second defect along $P_{v,v'}$ so $(A, v, v) \leftrightarrow (A'', v', v')$
- ▶ But each edge is traversed (flipped) exactly twice so A'' = A

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

Proof.

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

Proof.

Independently colour each cycle, alternating red, blue

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

Proof.

Independently colour each cycle, alternating red, blue

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

Proof.

- Independently colour each cycle, alternating red, blue
- Colour vacant edges green

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

- Independently colour each cycle, alternating red, blue
- Colour vacant edges green

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

- Independently colour each cycle, alternating red, blue
- Colour vacant edges green
- $ightharpoonup A_{\text{red}} \cup A_{\text{green}} \in \mathcal{F}(G)$

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

- Independently colour each cycle, alternating red, blue
- Colour vacant edges green
- $ightharpoonup A_{\text{red}} \cup A_{\text{oreen}} \in \mathcal{F}(G)$
- \triangleright u, v, w all connected in $A_{\text{red}} \cup A_{\text{green}}$

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

- Independently colour each cycle, alternating red, blue
- Colour vacant edges green
- $ightharpoonup A_{\text{red}} \cup A_{\text{oreen}} \in \mathcal{F}(G)$
- \triangleright u, v, w all connected in $A_{\text{red}} \cup A_{\text{green}}$
- So u, v, w all in same cycle $v u \dots t w v \in A_{\text{red}} \cup A_{\text{oreen}}$

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

- Independently colour each cycle, alternating red, blue
- Colour vacant edges green
- $ightharpoonup A_{\text{red}} \cup A_{\text{oreen}} \in \mathcal{F}(G)$
- \triangleright u, v, w all connected in $A_{\text{red}} \cup A_{\text{green}}$
- So u, v, w all in same cycle $v u \dots t w v \in A_{\text{red}} \cup A_{\text{green}}$
- Cycle must be even
 - alternates green, red, ..., green, red

Lemma

Loops & Worms

Let G be a finite bicubic graph. For every $A \in \mathcal{F}(G)$ and every $v \in V$, there is a path to each neighbor such that the edges alternate vacant, occupied, ..., vacant

- Independently colour each cycle, alternating red, blue
- Colour vacant edges green
- $ightharpoonup A_{\text{red}} \cup A_{\text{oreen}} \in \mathcal{F}(G)$
- \triangleright u, v, w all connected in $A_{\text{red}} \cup A_{\text{green}}$
- So u, v, w all in same cycle $v u \dots t w v \in A_{\text{red}} \cup A_{\text{green}}$
- Cycle must be even
 - alternates green, red, ..., green, red
- v u . . . t w is the desired path

- q-state Potts model on graph G = (V, E)
 - ▶ Spin configurations $\sigma \in \{1, 2, ..., q\}^V$ with $q \in \{2, 3, ...\}$
 - $H(\sigma) = -\beta \sum_{uv \in E} \delta(\sigma_u, \sigma_v)$
 - $\mathbb{P}(\sigma) \propto e^{-H(\sigma)}$
 - ▶ $|\beta| = 1/T$

- q-state Potts model on graph G = (V, E)
 - ▶ Spin configurations $\sigma \in \{1, 2, ..., q\}^V$ with $q \in \{2, 3, ...\}$
 - $H(\sigma) = -\beta \sum_{uv \in F} \delta(\sigma_u, \sigma_v)$
 - $\mathbb{P}(\sigma) \propto e^{-H(\sigma)}$

- $|\beta| = 1/T$
- $\beta > 0$ is ferromagnetic, $\beta < 0$ is antiferromagnetic

- ▶ q-state Potts model on graph G = (V, E)
 - ▶ Spin configurations $\sigma \in \{1, 2, ..., q\}^V$ with $q \in \{2, 3, ...\}$
 - $H(\sigma) = -\beta \sum_{uv \in E} \delta(\sigma_u, \sigma_v)$
 - $\mathbb{P}(\sigma) \propto e^{-H(\sigma)}$
 - $|\beta| = 1/T$

- $\beta > 0$ is ferromagnetic, $\beta < 0$ is antiferromagnetic
- ▶ When $\beta = -\infty$ we uniformly sample *q*-vertex colourings

- q-state Potts model on graph G = (V, E)
 - ▶ Spin configurations $\sigma \in \{1, 2, ..., q\}^V$ with $q \in \{2, 3, ...\}$
 - $\blacktriangleright H(\sigma) = -\beta \sum_{uv \in F} \delta(\sigma_u, \sigma_v)$
 - ▶ $\mathbb{P}(\sigma) \propto e^{-H(\sigma)}$
 - ▶ $|\beta| = 1/T$

- $\beta > 0$ is ferromagnetic, $\beta < 0$ is antiferromagnetic
- When $\beta = -\infty$ we uniformly sample *q*-vertex colourings
- The Swendsen-Wang (SW) cluster algorithm (ferromagnetic):
 - ▶ Introduce auxiliary edge variables $\omega \in \{0,1\}^E$
 - ▶ Consider joint (Edwards-Sokal) model $\mathbb{P}(\sigma, \omega)$
 - Update spins using $\mathbb{P}(\sigma|\omega)$ then update bonds using $\mathbb{P}(\omega|\sigma)$

- q-state Potts model on graph G = (V, E)
 - ▶ Spin configurations $\sigma \in \{1, 2, ..., q\}^V$ with $q \in \{2, 3, ...\}$
 - $\blacktriangleright H(\sigma) = -\beta \sum_{uv \in F} \delta(\sigma_u, \sigma_v)$
 - ▶ $\mathbb{P}(\sigma) \propto e^{-H(\sigma)}$
 - ▶ $|\beta| = 1/T$

- ightharpoonup eta > 0 is ferromagnetic, eta < 0 is antiferromagnetic
- ▶ When $\beta = -\infty$ we uniformly sample *q*-vertex colourings
- The Swendsen-Wang (SW) cluster algorithm (ferromagnetic):
 - ▶ Introduce auxiliary edge variables $\omega \in \{0,1\}^E$
 - ▶ Consider joint (Edwards-Sokal) model $\mathbb{P}(\sigma, \omega)$
 - Update spins using $\mathbb{P}(\sigma|\omega)$ then update bonds using $\mathbb{P}(\omega|\sigma)$
- Wang-Swendsen-Kotecký (WSK)
 - Extension of SW to treat antiferromagnetic Potts

- ▶ q-state Potts model on graph G = (V, E)
 - ▶ Spin configurations $\sigma \in \{1, 2, ..., q\}^V$ with $q \in \{2, 3, ...\}$
 - $H(\sigma) = -\beta \sum_{uv \in E} \delta(\sigma_u, \sigma_v)$
 - $\mathbb{P}(\sigma) \propto e^{-H(\sigma)}$
 - $|\beta| = 1/T$
- $\beta > 0$ is ferromagnetic, $\beta < 0$ is antiferromagnetic
- ▶ When $\beta = -\infty$ we uniformly sample *q*-vertex colourings
- ► The Swendsen-Wang (SW) cluster algorithm (ferromagnetic):
 - ▶ Introduce auxiliary edge variables $\omega \in \{0,1\}^E$
 - ▶ Consider joint (Edwards-Sokal) model $\mathbb{P}(\sigma, \omega)$
 - ▶ Update spins using $\mathbb{P}(\sigma|\omega)$ then update bonds using $\mathbb{P}(\omega|\sigma)$
- Wang-Swendsen-Kotecký (WSK)
 - Extension of SW to treat antiferromagnetic Potts
- WSK at T = 0 equivalent to "Kempe changes"
 - ► Each cluster is a Kempe chain

Loops & Worms

▶ Uniformly at random, choose two of the *q* possible colors $\mu, \nu \in \{1, 2 \dots q\}$

Loops & Worms

Uniformly at random, choose two of the q possible colors $\mu, \nu \in \{1, 2 \dots q\}$

- ▶ Uniformly at random, choose two of the q possible colors $\mu, \nu \in \{1, 2 \dots q\}$
- ▶ Freeze all the $\sigma_{V} \notin \{\mu, \nu\}$

- Uniformly at random, choose two of the q possible colors $\mu, \nu \in \{1, 2 \dots q\}$
- ▶ Freeze all the $\sigma_v \notin \{\mu, \nu\}$

- Uniformly at random, choose two of the q possible colors $\mu, \nu \in \{1, 2 \dots q\}$
- ▶ Freeze all the $\sigma_{V} \notin \{\mu, \nu\}$
- ▶ For each edge *uv* with with $\sigma_u \neq \sigma_v$, $\sigma_u = \mu$ and $\sigma_v = \nu$
 - ▶ Draw a bond with probability $p = 1 e^{-1/T}$ and identify clusters

- Uniformly at random, choose two of the q possible colors $\mu, \nu \in \{1, 2 \dots q\}$
- ▶ Freeze all the $\sigma_{V} \notin \{\mu, \nu\}$
- ▶ For each edge *uv* with with $\sigma_u \neq \sigma_v$, $\sigma_u = \mu$ and $\sigma_v = \nu$
 - ▶ Draw a bond with probability $p = 1 e^{-1/T}$ and identify clusters

- Uniformly at random, choose two of the q possible colors $\mu, \nu \in \{1, 2 \dots q\}$
- ▶ Freeze all the $\sigma_{\nu} \notin \{\mu, \nu\}$
- ▶ For each edge *uv* with with $\sigma_u \neq \sigma_v$, $\sigma_u = \mu$ and $\sigma_v = \nu$
 - ▶ Draw a bond with probability $p = 1 e^{-1/T}$ and identify clusters
- ► For each cluster *C_i* flip the colouring with probability 1/2

- Uniformly at random, choose two of the q possible colors $\mu, \nu \in \{1, 2 \dots q\}$
- ▶ Freeze all the $\sigma_{\nu} \notin \{\mu, \nu\}$
- ▶ For each edge *uv* with with $\sigma_u \neq \sigma_v$, $\sigma_u = \mu$ and $\sigma_v = \nu$
 - ▶ Draw a bond with probability $p = 1 e^{-1/T}$ and identify clusters
- ► For each cluster *C_i* flip the colouring with probability 1/2

- ▶ Uniformly at random, choose two of the q possible colors $\mu, \nu \in \{1, 2 \dots q\}$
- ▶ Freeze all the $\sigma_{\mathsf{V}} \notin \{\mu, \nu\}$
- ▶ For each edge uv with with $\sigma_u \neq \sigma_v$, $\sigma_u = \mu$ and $\sigma_v = \nu$
 - ▶ Draw a bond with probability $p = 1 e^{-1/T}$ and identify clusters
- ► For each cluster *C_i* flip the colouring with probability 1/2

Loops & Worms

Rigorous results for WSK algorithm

- Irreducible on all graphs when T > 0
- ▶ Irreducible on all graphs G when T = 0 and $q \ge \Delta(G) + 1$
- Irreducible on all bipartite graphs when T=0
- Non-irreducible at T = 0:
 - ightharpoonup q = 4 on triangular lattice (on torus) (Mohar & Salas 2009)
 - ightharpoonup q = 3 on kagome lattice (on torus) (Mohar & Salas 2010)

Loops & Worms

Rigorous results for WSK algorithm

- Irreducible on all graphs when T > 0
- ▶ Irreducible on all graphs G when T = 0 and $q \ge \Delta(G) + 1$
- Irreducible on all bipartite graphs when T=0
- Non-irreducible at T = 0:
 - ightharpoonup q = 4 on triangular lattice (on torus) (Mohar & Salas 2009)
 - ightharpoonup q = 3 on kagome lattice (on torus) (Mohar & Salas 2010)
- Worm algorithm for honeycomb-lattice fully-packed loop model can be used to simulate both these models

Use n = 2 worm algorithm to simulate coloured loop configurations

Use n = 2 worm algorithm to simulate coloured loop configurations

Loops & Worms

Independently color each cycle, alternating red, blue, red, ...

Use n = 2 worm algorithm to simulate coloured loop configurations

Loops & Worms

Independently color each cycle, alternating red, blue, red, ...

Use n = 2 worm algorithm to simulate coloured loop configurations

- ► Independently color each cycle, alternating red, blue, red, ...
- Gives dynamics on coloured loop states

$$P_{color}[a
ightarrow a'] = rac{1}{2^{c(A')}} P_2^{worm}[A
ightarrow A']$$

Use n = 2 worm algorithm to simulate coloured loop configurations

Loops & Worms

- Independently color each cycle, alternating red, blue, red, ...
- Gives dynamics on coloured loop states

$$P_{color}[a \rightarrow a'] = \frac{1}{2^{c(A')}} P_2^{worm}[A \rightarrow A']$$

Uniformly sample 3-edge-colorings of honeycomb lattice

Use n = 2 worm algorithm to simulate coloured loop configurations

- ► Independently color each cycle, alternating red, blue, red, ...
- Gives dynamics on coloured loop states

$$P_{color}[a \rightarrow a'] = \frac{1}{2^{c(A')}} P_2^{worm}[A \rightarrow A']$$

- Uniformly sample 3-edge-colorings of honeycomb lattice
- Uniformly sample 3-vertex-colorings of kagome lattice

Use n = 2 worm algorithm to simulate coloured loop configurations

- Independently color each cycle. alternating red, blue, red, ...
- Gives dynamics on coloured loop states

$$P_{color}[a \rightarrow a'] = \frac{1}{2^{c(A')}} P_2^{worm}[A \rightarrow A']$$

- Uniformly sample 3-edge-colorings of honeycomb lattice
- Uniformly sample 3-vertex-colorings of kagome lattice
- Uniformly sample 4-vertex-colorings on triangular lattice (Baxter)

Use n = 2 worm algorithm to simulate coloured loop configurations

- Independently color each cycle. alternating red, blue, red, ...
- Gives dynamics on coloured loop states

$$P_{color}[a \rightarrow a'] = \frac{1}{2^{c(A')}} P_2^{worm}[A \rightarrow A']$$

- Uniformly sample 3-edge-colorings of honeycomb lattice
- Uniformly sample 3-vertex-colorings of kagome lattice
- Uniformly sample 4-vertex-colorings on triangular lattice (Baxter)

Use n = 2 worm algorithm to simulate coloured loop configurations

- Independently color each cycle. alternating red, blue, red, ...
- Gives dynamics on coloured loop states

$$P_{color}[a \rightarrow a'] = \frac{1}{2^{c(A')}} P_2^{worm}[A \rightarrow A']$$

- Uniformly sample 3-edge-colorings of honeycomb lattice
- Uniformly sample 3-vertex-colorings of kagome lattice
- Uniformly sample 4-vertex-colorings on triangular lattice (Baxter)
- Both models display critical phenomena

Use n = 2 worm algorithm to simulate coloured loop configurations

- Independently color each cycle, alternating red, blue, red, ...
- Gives dynamics on coloured loop states

$$P_{color}[a \rightarrow a'] = \frac{1}{2^{c(A')}} P_2^{worm}[A \rightarrow A']$$

- Uniformly sample 3-edge-colorings of honeycomb lattice
- Uniformly sample 3-vertex-colorings of kagome lattice
- Uniformly sample 4-vertex-colorings on triangular lattice (Baxter)
- Both models display critical phenomena
- Wang-Swendsen-Kotecký algorithm proved non-irreducible

Triangular-lattice Ising antiferromagnet

Loops form boundaries of Ising spin domains on dual lattice

Triangular-lattice Ising antiferromagnet

Loops form boundaries of Ising spin domains on dual lattice

Loops form boundaries of Ising spin domains on dual lattice

▶ Exact correspondence when n = 1 and $x = e^{-2\beta}$

Loops & Worms

Loops form boundaries of Ising spin domains on dual lattice

▶ Exact correspondence when n = 1 and $x = e^{-2\beta}$

Loops & Worms

$$\qquad \qquad \phi_{H,n,x}(A_{\sigma}) = 2\,\mu_{H^*,\beta}(\sigma)$$

Loops form boundaries of Ising spin domains on dual lattice

▶ Exact correspondence when n = 1 and $x = e^{-2\beta}$

Loops & Worms

$$\qquad \qquad \phi_{H,n,x}(A_{\sigma}) = 2\,\mu_{H^*,\beta}(\sigma)$$

x > 1 implies antiferromagnetic β

Loops form boundaries of Ising spin domains on dual lattice

▶ Exact correspondence when n = 1 and $x = e^{-2\beta}$

Loops & Worms

$$\qquad \qquad \phi_{H,n,x}(A_{\sigma}) = 2\,\mu_{H^*,\beta}(\sigma)$$

•
$$x > 1$$
 implies antiferromagnetic β

•
$$x = +\infty$$
 corresponds to $\beta = -\infty$

Loops & Worms

Loops form boundaries of Ising spin domains on dual lattice

▶ Exact correspondence when n = 1 and $x = e^{-2\beta}$

$$\qquad \qquad \phi_{H,n,x}(A_{\sigma}) = 2\,\mu_{H^*,\beta}(\sigma)$$

•
$$x = +\infty$$
 corresponds to $\beta = -\infty$

Both models are critical in this limit

Loops form boundaries of Ising spin domains on dual lattice

▶ Exact correspondence when n = 1 and $x = e^{-2\beta}$

Loops & Worms

$$A_{\sigma} := \{ ij \in E : \sigma_{i^*} \neq \sigma_{j^*} \}$$

▶
$$x = +\infty$$
 corresponds to $\beta = -\infty$

Both models are critical in this limit

▶ Can use worm to simulate AF Ising on \triangle -lattice at T=0

Loops form boundaries of Ising spin domains on dual lattice

▶ Exact correspondence when n = 1 and $x = e^{-2\beta}$

Loops & Worms

$$A_{\sigma} := \{ ij \in E : \sigma_{i^*} \neq \sigma_{j^*} \}$$

- x > 1 implies antiferromagnetic β
- $x = +\infty$ corresponds to $\beta = -\infty$
- Both models are critical in this limit
- ▶ Can use worm to simulate AF Ising on \triangle -lattice at T=0
- Single-spin-flip algorithms non-irreducible at T = 0

Loops form boundaries of Ising spin domains on dual lattice

▶ Exact correspondence when n = 1 and $x = e^{-2\beta}$

Loops & Worms

$$\qquad \qquad \phi_{H,n,x}(A_{\sigma}) = 2\,\mu_{H^*,\beta}(\sigma)$$

$$A_{\sigma} := \{ ij \in E : \sigma_{i^*} \neq \sigma_{j^*} \}$$

- x > 1 implies antiferromagnetic β
- $x = +\infty$ corresponds to $\beta = -\infty$
- Both models are critical in this limit
- ▶ Can use worm to simulate AF Ising on \triangle -lattice at T=0
- Single-spin-flip algorithms non-irreducible at T = 0
- ▶ Tailor-made cluster algorithms non-irreducible at T=0

Summary

- Worm algorithms provide a simple way to simulate honeycomb-lattice loop models
 - ▶ Proven valid for all n, x > 0, including $x = +\infty$
- For n = 1,2 also provide provably irreducible algorithms for certain critical antiferromagnetic models
 - Cluster algorithms fail for these models

Structure of the defect cluster

Partition $\mathcal{R}(G)$ according to structure of defect cluster

$$\mathcal{R} = \mathcal{E} \cup \mathcal{T} \cup \mathcal{D} \cup \Theta$$

Details...

$$(A, u, v) \in \mathcal{T}$$

Tadpole

Theta graph

Worm algorithm for fully-packed loop model

Transition matrix:

$$\begin{split} P_n[(A,u,v) &\to (A \triangle uu',u',v)] = P_n[(A,v,u) \to (A \triangle uu',v,u')] \\ &= \begin{cases} 1/2 & (A,u,v) \in \mathcal{E}, \\ 1/2 & (A,u,v) \in \mathcal{T}, \\ 1/6 & (A,u,v) \in \Theta, \\ n/2(n+2) & (A,u,v) \in \mathcal{D} \text{ and } uu' \text{ is a bridge}, \\ 1/2(n+2) & (A,u,v) \in \mathcal{D} \text{ and } uu' \text{ is not a bridge}. \end{cases} \end{split}$$

Stationary distribution:

$$\pi_n(A, u, v) = \frac{n^{c(A)}}{Z_n} \begin{cases} 1/3 & (A, u, v) \in \mathcal{E}, \\ 1/3 & (A, u, v) \in \mathcal{T}, \\ (n+2)/3n & (A, u, v) \in \mathcal{D}, \\ 1/n & (A, u, v) \in \Theta. \end{cases}$$

$$\begin{split} P_{n,x}[(A,u,v) &\to (A \triangle uu',u',v)] = P_{n,x}[(A,v,u) \to (A \triangle uu',v,u')] \\ &= \frac{1}{2 \, d(u)} \begin{cases} F(x \, n) & uu' \not\in A \text{ and } u \leftrightarrow u' \text{ in } (V,A) \\ F(x) & uu' \not\in A \text{ and } u \not\leftrightarrow u' \text{ in } (V,A) \\ F(1/nx) & uu' \in A \text{ and } u \leftrightarrow u' \text{ in } (V,A \setminus uu') \\ F(1/x) & uu' \in A \text{ and } u \not\leftrightarrow u' \text{ in } (V,A \setminus uu') \end{cases} \end{split}$$

So far we have glossed over an important caveat:

$$\begin{split} P_{n,x}[(A,u,v) &\to (A \triangle uu',u',v)] = P_{n,x}[(A,v,u) \to (A \triangle uu',v,u')] \\ &= \frac{1}{2 \, d(u)} \begin{cases} F(x \, n) & uu' \not \in A \text{ and } u \leftrightarrow u' \text{ in } (V,A) \\ F(x) & uu' \not \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A) \\ F(1/n \, x) & uu' \in A \text{ and } u \leftrightarrow u' \text{ in } (V,A \setminus uu') \\ F(1/x) & uu' \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A \setminus uu') \end{cases} \end{split}$$

- So far we have glossed over an important caveat:
 - ▶ If $n \neq 1$ we need to compute $c(A \triangle uu') c(A)$ at each iteration

$$P_{n,x}[(A, u, v) \to (A \triangle uu', u', v)] = P_{n,x}[(A, v, u) \to (A \triangle uu', v, u')]$$

$$= \frac{1}{2 d(u)} \begin{cases} F(x n) & uu' \notin A \text{ and } u \leftrightarrow u' \text{ in } (V, A) \\ F(x) & uu' \notin A \text{ and } u \not \to u' \text{ in } (V, A) \\ F(1/nx) & uu' \in A \text{ and } u \leftrightarrow u' \text{ in } (V, A \setminus uu') \\ F(1/x) & uu' \in A \text{ and } u \not \to u' \text{ in } (V, A \setminus uu') \end{cases}$$

- So far we have glossed over an important caveat:
 - ▶ If $n \neq 1$ we need to compute $c(A \triangle uu') c(A)$ at each iteration
- ▶ But c(A) = |A| |V| + k(A)
 - \triangleright k(A) is the number of components in (V, A)

$$\begin{split} P_{n,x}[(A,u,v) &\to (A \triangle uu',u',v)] = P_{n,x}[(A,v,u) \to (A \triangle uu',v,u')] \\ &= \frac{1}{2 \, d(u)} \begin{cases} F(x \, n) & uu' \not \in A \text{ and } u \leftrightarrow u' \text{ in } (V,A) \\ F(x) & uu' \not \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A) \\ F(1/nx) & uu' \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A \setminus uu') \\ F(1/x) & uu' \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A \setminus uu') \end{cases} \end{split}$$

- So far we have glossed over an important caveat:
 - ▶ If $n \neq 1$ we need to compute $c(A \triangle uu') c(A)$ at each iteration
- ▶ But c(A) = |A| |V| + k(A)
 - \triangleright k(A) is the number of components in (V, A)
- Dynamic connectivity-checking algorithms are known
 - ▶ Log-time for queries and updates (Holm, de Lichtenberg & Thorup)

$$\begin{split} P_{n,x}[(A,u,v) &\to (A \triangle uu',u',v)] = P_{n,x}[(A,v,u) \to (A \triangle uu',v,u')] \\ &= \frac{1}{2 \, d(u)} \begin{cases} F(x \, n) & uu' \not \in A \text{ and } u \leftrightarrow u' \text{ in } (V,A) \\ F(x) & uu' \not \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A) \\ F(1/nx) & uu' \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A \setminus uu') \\ F(1/x) & uu' \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A \setminus uu') \end{cases} \end{split}$$

- So far we have glossed over an important caveat:
 - ▶ If $n \neq 1$ we need to compute $c(A \triangle uu') c(A)$ at each iteration
- ▶ But c(A) = |A| |V| + k(A)
 - \triangleright k(A) is the number of components in (V, A)
- Dynamic connectivity-checking algorithms are known
 - ► Log-time for queries and updates (Holm, de Lichtenberg & Thorup)
- Simultaneous Breadth-First-Search (BFS) much simpler
 - ▶ Polynomial-time with small (known) exponent (k-arm)

$$\begin{split} P_{n,x}[(A,u,v) &\to (A \triangle uu',u',v)] = P_{n,x}[(A,v,u) \to (A \triangle uu',v,u')] \\ &= \frac{1}{2 \, d(u)} \begin{cases} F(x \, n) & uu' \not \in A \text{ and } u \leftrightarrow u' \text{ in } (V,A) \\ F(x) & uu' \not \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A) \\ F(1/nx) & uu' \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A \setminus uu') \\ F(1/x) & uu' \in A \text{ and } u \not \leftrightarrow u' \text{ in } (V,A \setminus uu') \end{cases} \end{split}$$

So far we have glossed over an important caveat:

- ▶ If $n \neq 1$ we need to compute $c(A \triangle uu') c(A)$ at each iteration
- ▶ But c(A) = |A| |V| + k(A)
 - \triangleright k(A) is the number of components in (V, A)
- Dynamic connectivity-checking algorithms are known
 - Log-time for queries and updates (Holm, de Lichtenberg & Thorup)
- Simultaneous Breadth-First-Search (BFS) much simpler
 - Polynomial-time with small (known) exponent (k-arm)
- ▶ If n > 1 the "colouring method" avoids the issue entirely

- Consider a finite graph G = (V, E)
- Let K(A) denote the set of connected components of (V, A)
- Define a "generalized random-cluster model"

$$\mathbb{P}_W(A) \propto \prod_{C \in K(A)} W(C) \qquad A \subseteq E$$

Details...

▶ $W(\cdot) \ge 0$ assigns a weight to each connected subgraph of G

Details...

The colouring method

Consider a finite graph G = (V, E)

- Let K(A) denote the set of connected components of (V, A)
- Define a "generalized random-cluster model"

$$\mathbb{P}_W(A) \propto \prod_{C \in K(A)} W(C) \qquad A \subseteq E$$

- ▶ $W(\cdot) \ge 0$ assigns a weight to each connected subgraph of G
- If $W(C) = q v^{|E(C)|}$ this is just the Fortuin-Kasteleyn (FK) model

Consider a finite graph G = (V, E)

- Let K(A) denote the set of connected components of (V, A)
- Define a "generalized random-cluster model"

$$\mathbb{P}_W(A) \propto \prod_{C \in K(A)} W(C) \qquad A \subseteq E$$

- ▶ $W(\cdot) \ge 0$ assigns a weight to each connected subgraph of G
- ▶ If $W(C) = q v^{|E(C)|}$ this is just the Fortuin-Kasteleyn (FK) model
- Loop model corresponds to

$$W(C) = \begin{cases} nx^{|E(C)|} & C \text{ is a cycle or isolated vertex} \\ 0 & \text{otherwise} \end{cases}$$

Details...

The colouring method

Consider a finite graph G = (V, E)

- Let K(A) denote the set of connected components of (V, A)
- Define a "generalized random-cluster model"

$$\mathbb{P}_W(A) \propto \prod_{C \in K(A)} W(C) \qquad A \subseteq E$$

- ▶ $W(\cdot) \ge 0$ assigns a weight to each connected subgraph of G
- ▶ If $W(C) = q v^{|E(C)|}$ this is just the Fortuin-Kasteleyn (FK) model
- Loop model corresponds to

$$W(C) = \begin{cases} nx^{|E(C)|} & C \text{ is a cycle or isolated vertex} \\ 0 & \text{otherwise} \end{cases}$$

- Simulate \mathbb{P}_W by introducing auxiliary vertex variables (colours)
- Like SW, choose bonds conditioned on colours & vice versa

▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ... m\}^V$

- ▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ... m\}^V$
- For each colour α define a new weight function W_{α} so that

$$W(C) = \sum_{\alpha=1}^{m} W_{\alpha}(C)$$
 and $W_{\alpha}(C) \geq 0$

Details...

The colouring method (2)

- ▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ... m\}^V$
- For each colour α define a new weight function W_{α} so that

$$W(C) = \sum_{\alpha=1}^m W_{\alpha}(C)$$
 and $W_{\alpha}(C) \geq 0$

1. Given $A \subseteq E$ let C be coloured α with $\mathbb{P}(\sigma_C = \alpha) = W_{\alpha}(C)/W(C)$

- ▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ... m\}^V$
- ▶ For each colour α define a new weight function W_{α} so that

$$W(C) = \sum_{lpha=1}^m W_lpha(C)$$
 and $W_lpha(C) \geq 0$

- 1. Given $A \subseteq E$ let C be coloured α with $\mathbb{P}(\sigma_C = \alpha) = W_{\alpha}(C)/W(C)$
- 2. Choose a new bond configuration on G_{α} using any Markov chain for which W_{α} is stationary

- ▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ... m\}^V$
- For each colour α define a new weight function W_{α} so that

$$W(C) = \sum_{\alpha=1}^{m} W_{\alpha}(C)$$
 and $W_{\alpha}(C) \geq 0$

- 1. Given $A \subseteq E$ let C be coloured α with $\mathbb{P}(\sigma_C = \alpha) = W_{\alpha}(C)/W(C)$
- 2. Choose a new bond configuration on G_{α} using any Markov chain for which W_{α} is stationary
- lacktriangle Trick is to choose at least one W_{α} which is easy to simulate

- ▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ..., m\}^V$
- For each colour α define a new weight function W_{α} so that

$$W(C) = \sum_{\alpha=1}^{m} W_{\alpha}(C)$$
 and $W_{\alpha}(C) \geq 0$

- 1. Given $A \subseteq E$ let C be coloured α with $\mathbb{P}(\sigma_C = \alpha) = W_{\alpha}(C)/W(C)$
- 2. Choose a new bond configuration on G_{α} using any Markov chain for which W_{α} is stationary
- ightharpoonup Trick is to choose at least one W_{α} which is easy to simulate
- ▶ Can update other $W_{\alpha'}$ by "doing nothing" (identity matrix)

- ▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ..., m\}^V$
- ▶ For each colour α define a new weight function W_{α} so that

$$W(C) = \sum_{\alpha=1}^{m} W_{\alpha}(C)$$
 and $W_{\alpha}(C) \geq 0$

- 1. Given $A \subseteq E$ let C be coloured α with $\mathbb{P}(\sigma_C = \alpha) = W_{\alpha}(C)/W(C)$
- 2. Choose a new bond configuration on G_{α} using any Markov chain for which W_{α} is stationary
- ightharpoonup Trick is to choose at least one W_{α} which is easy to simulate
- ► Can update other $W_{\alpha'}$ by "doing nothing" (identity matrix)
- FK model: take $W_{\alpha} = 1$ (percolation is easy to simulate)

- ▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ... m\}^V$
- For each colour α define a new weight function W_{α} so that

$$W(C) = \sum_{\alpha=1}^{m} W_{\alpha}(C)$$
 and $W_{\alpha}(C) \geq 0$

- 1. Given $A \subseteq E$ let C be coloured α with $\mathbb{P}(\sigma_C = \alpha) = W_{\alpha}(C)/W(C)$
- 2. Choose a new bond configuration on G_{α} using any Markov chain for which W_{α} is stationary
- ▶ Trick is to choose at least one W_{α} which is easy to simulate
- ▶ Can update other $W_{\alpha'}$ by "doing nothing" (identity matrix)
- FK model: take $W_{\alpha} = 1$ (percolation is easy to simulate)
- ▶ Loop model: take $W_{\alpha} = 1$ (Ising is easy to simulate using worm)

- ▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ... m\}^V$
- ▶ For each colour α define a new weight function W_{α} so that

$$W(C) = \sum_{\alpha=1}^{m} W_{\alpha}(C)$$
 and $W_{\alpha}(C) \geq 0$

- 1. Given $A \subseteq E$ let C be coloured α with $\mathbb{P}(\sigma_C = \alpha) = W_{\alpha}(C)/W(C)$
- 2. Choose a new bond configuration on G_{α} using any Markov chain for which W_{α} is stationary
- ▶ Trick is to choose at least one W_{α} which is easy to simulate
- ▶ Can update other $W_{\alpha'}$ by "doing nothing" (identity matrix)
- FK model: take $W_{\alpha} = 1$ (percolation is easy to simulate)
- ▶ Loop model: take $W_{\alpha} = 1$ (Ising is easy to simulate using worm)
- Get algorithms for q > 1 FK and n > 1 loop models

- ▶ Introduce (vertex) *m*-colourings $\sigma \in \{1, 2, ... m\}^V$
- ▶ For each colour α define a new weight function W_{α} so that

$$W(C) = \sum_{\alpha=1}^{m} W_{\alpha}(C)$$
 and $W_{\alpha}(C) \geq 0$

- 1. Given $A \subseteq E$ let C be coloured α with $\mathbb{P}(\sigma_C = \alpha) = W_{\alpha}(C)/W(C)$
- 2. Choose a new bond configuration on G_{α} using any Markov chain for which W_{α} is stationary
- ▶ Trick is to choose at least one W_{α} which is easy to simulate
- ▶ Can update other $W_{\alpha'}$ by "doing nothing" (identity matrix)
- FK model: take $W_{\alpha} = 1$ (percolation is easy to simulate)
- ▶ Loop model: take $W_{\alpha} = 1$ (Ising is easy to simulate using worm)
- Get algorithms for q > 1 FK and n > 1 loop models
 - No connectivity-checking needed

Details...

SW for antiferromagnetic Ising

FPL transition matrix

SW for antiferromagnetic Ising model on finite graph G = (V, E)

$$\mathbb{P}(\sigma, n) \propto \prod_{i \in E} [(1 - \rho) \, \delta_{\omega_{ij}, 0} + \rho (1 - \delta_{\sigma_i, \sigma_j}) \delta_{\omega_{ij}, 1}]$$

Details...

Mapping 3-edge colorings to dual 4-vertex colorings

FPL transition matrix

Details...

▶ Randomly color the cycles ⇔ proper edge 3-coloring

▶ Randomly color the cycles ⇔ proper edge 3-coloring

- ▶ Randomly color the cycles ⇔ proper edge 3-coloring
- ▶ Use two independent Ising variables on each face, σ , τ

- ▶ Randomly color the cycles ⇔ proper edge 3-coloring
- ▶ Use two independent Ising variables on each face, σ , τ

Union of red and vacant edges
 spin domain for σ

- ▶ Randomly color the cycles ⇔ proper edge 3-coloring
- ▶ Use two independent Ising variables on each face, σ , τ

Union of red and vacant edges
 spin domain for σ

- Randomly color the cycles \iff proper edge 3-coloring
- ▶ Use two independent Ising variables on each face, σ , τ

- Union of red and vacant edges = spin domain for σ
 - Union of blue and vacant edges = spin domain for τ

- ▶ Randomly color the cycles ⇔ proper edge 3-coloring
- ▶ Use two independent Ising variables on each face, σ , τ

Union of red and vacant edges = spin domain for σ

- Union of blue and vacant edges
- = spin domain for au
- Combine the σ and τ configurations

- ▶ Randomly color the cycles ⇔ proper edge 3-coloring
- ▶ Use two independent Ising variables on each face, σ , τ

- Randomly color the cycles \iff proper edge 3-coloring
- Use two independent Ising variables on each face, σ , τ

- Union of red and vacant edges = spin domain for σ
 - Union of blue and vacant edges = spin domain for τ
- Combine the σ and τ configurations
 - --=1, -+=2, +-=3, ++=4

•000

- Markov chain
 - ▶ State space S, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π

- Markov chain
 - State space S, with $|S| < \infty$
 - ► Transition matrix *P*
 - Stationary distribution π
- Observables (random variables) X, Y, ...

- Markov chain
 - ▶ State space S, with $|S| < \infty$
 - ► Transition matrix P
 - Stationary distribution π
- Observables (random variables) X, Y, ...
- ▶ Simulate Markov chain $s_0 \xrightarrow{P} s_1 \xrightarrow{P} s_2 \xrightarrow{P} \ldots$ with $s_t \in S$

•000

- Markov chain
 - ▶ State space S, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π
- Observables (random variables) X, Y, ...
- ▶ Simulate Markov chain $s_0 \xrightarrow{P} s_1 \xrightarrow{P} s_2 \xrightarrow{P} \dots$ with $s_t \in S$
- ▶ Get time series $X_0, X_1, X_2, ...$ with $X_t = X(s_t)$

- Markov chain
 - ▶ State space S, with $|S| < \infty$
 - Transition matrix P
 - Stationary distribution π
- Observables (random variables) X, Y, ...
- ▶ Simulate Markov chain $s_0 \xrightarrow{P} s_1 \xrightarrow{P} s_2 \xrightarrow{P} \dots$ with $s_t \in S$
- ▶ Get time series $X_0, X_1, X_2, ...$ with $X_t = X(s_t)$
- Define the autocorrelation function

$$\rho_{X}(t) := \frac{\langle X_{s}X_{s+t}\rangle_{\pi} - \langle X\rangle_{\pi}^{2}}{\operatorname{var}_{\pi}(X)}$$

Markov-chain Monte Carlo

- Markov chain
 - ▶ State space S, with $|S| < \infty$
 - ► Transition matrix *P*
 - Stationary distribution π
- ▶ Observables (random variables) X, Y, ...
- ▶ Simulate Markov chain $s_0 \xrightarrow{P} s_1 \xrightarrow{P} s_2 \xrightarrow{P} \dots$ with $s_t \in S$
- ▶ Get time series $X_0, X_1, X_2, ...$ with $X_t = X(s_t)$
- Define the autocorrelation function

$$\rho_{X}(t) := \frac{\langle X_{s}X_{s+t}\rangle_{\pi} - \langle X\rangle_{\pi}^{2}}{\operatorname{var}_{\pi}(X)}$$

Stationary process – start "in equilibrium"

Details...

Integrated autocorrelation times

► The integrated autocorrelation time

$$au_{\mathsf{int},X} := \frac{1}{2} \sum_{t=-\infty}^{\infty} \rho_X(t)$$

Integrated autocorrelation times

► The integrated autocorrelation time

$$au_{\mathsf{int},X} := rac{1}{2} \sum_{t=-\infty}^{\infty}
ho_X(t)$$

▶ If \hat{X} is the sample mean of $\{X_t\}_{t=1}^T$ then we have

$$\operatorname{var}(\widehat{X}) \sim 2 \, \tau_{\operatorname{int},X} \frac{\operatorname{var}(X)}{T}, \qquad T \to \infty$$

Integrated autocorrelation times

► The integrated autocorrelation time

$$au_{\mathsf{int},\mathsf{X}} := rac{1}{2} \sum_{t=-\infty}^{\infty}
ho_{\mathsf{X}}(t)$$

▶ If \hat{X} is the sample mean of $\{X_t\}_{t=1}^T$ then we have

$$\operatorname{var}(\widehat{X}) \sim 2 \, \tau_{\operatorname{int},X} \frac{\operatorname{var}(X)}{T}, \qquad T \to \infty$$

▶ 1 "effectively independent" observation every 2 \(\tau_{\text{int},X}\) steps

- $\rho_X(t)$ typically decays exponentially as $t \to \infty$
- ► The exponential autocorrelation time

$$\tau_{\exp,X} := \limsup_{t \to \infty} \frac{t}{-\log |\rho_X(t)|} \quad \text{and} \quad \tau_{\exp} := \sup_X \tau_{\exp,X}$$

- $\rho_X(t)$ typically decays exponentially as $t \to \infty$
- The exponential autocorrelation time

$$\tau_{\exp,X} := \limsup_{t \to \infty} \frac{t}{-\log |\rho_X(t)|} \quad \text{and} \quad \tau_{\exp} := \sup_X \tau_{\exp,X}$$

▶ Typically $\tau_{\mathsf{exp},X} = \tau_{\mathsf{exp}} < \infty$ and $\tau_{\mathsf{int},X} \leq \tau_{\mathsf{exp}}$ for all X

- $\rho_X(t)$ typically decays exponentially as $t \to \infty$
- The exponential autocorrelation time

$$au_{\mathsf{exp},X} := \limsup_{t o \infty} rac{t}{-\log |
ho_X(t)|} \quad ext{and} \quad au_{\mathsf{exp}} := \sup_X au_{\mathsf{exp},X}$$

- ▶ Typically $\tau_{\text{exp},X} = \tau_{\text{exp}} < \infty$ and $\tau_{\text{int},X} \leq \tau_{\text{exp}}$ for all X
- ightharpoonup Start the chain with arbitrary distribution α
- ▶ Distribution at time t is αP^t

- $\rho_X(t)$ typically decays exponentially as $t \to \infty$
- The exponential autocorrelation time

$$au_{\mathsf{exp},X} := \limsup_{t o \infty} rac{t}{-\log |
ho_X(t)|} \quad ext{and} \quad au_{\mathsf{exp}} := \sup_X au_{\mathsf{exp},X}$$

- ▶ Typically $\tau_{\text{exp},X} = \tau_{\text{exp}} < \infty$ and $\tau_{\text{int},X} \leq \tau_{\text{exp}}$ for all X
- Start the chain with arbitrary distribution α
- Distribution at time t is αP^t

Lemma

 αP^t tends to π with rate bounded by $e^{-t/\tau_{exp}}$

Critical slowing-down

▶ Near a critical point the autocorrelation times typically diverge like

$$au \sim \xi^{z}$$

Critical slowing-down

▶ Near a critical point the autocorrelation times typically diverge like

$$au \sim \xi^{\mathbf{z}}$$

▶ More precisely, we have a family of exponents: z_{exp}, and z_{int,X} for each observable X.

Critical slowing-down

▶ Near a critical point the autocorrelation times typically diverge like

$$au \sim \xi^{\mathbf{z}}$$

- ▶ More precisely, we have a family of exponents: z_{exp}, and z_{int,X} for each observable X.
- Different algorithms for the same model can have very different z
- ightharpoonup E.g. d=2 Ising model
 - ▶ Glauber (Metropolis) algorithm $z \approx 2$
 - ▶ Swendsen-Wang algorithm $z \approx 0.2$