
Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Markov-chain Monte Carlo algorithms for
studying cycle spaces, with some

applications to graph colouring

Tim Garoni

Department of Mathematics and Statistics
University of Melbourne (?)

April 20, 2011
Monash Discrete Maths Seminar

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Collaborators/References

1. Qingquan Liu, Youjin Deng, TG
Loop models in three dimensions,
in preparation.

2. Qingquan Liu, Youjin Deng, TG, and Jesús Salas
Irreducible Markov-chain Monte Carlo algorithm for zero-temperature Potts
antiferromagnets,
in preparation.

3. Qingquan Liu, Youjin Deng, and TG,
Worm Monte Carlo study of the honeycomb-lattice loop model,
Nucl. Phys. B 846, 283-315 (2011).

4. Wei Zhang, TG, and Youjin Deng,
A worm algorithm for the fully-packed loop model,
Nucl. Phys. B 814, 461-484 (2009).

5. Youjin Deng, TG, and Alan D. Sokal,
Dynamic Critical Behavior of the Worm Algorithm for the Ising Model,
Phys. Rev. Lett. 99, 110601 (2007).

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Outline

◮ Loops & Worms

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Outline

◮ Loops & Worms
◮ O(n)-loop models

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Outline

◮ Loops & Worms
◮ O(n)-loop models
◮ Basics of the Markov-chain Monte Carlo method

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Outline

◮ Loops & Worms
◮ O(n)-loop models
◮ Basics of the Markov-chain Monte Carlo method
◮ Worm algorithm for O(n)-loop models

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Outline

◮ Loops & Worms
◮ O(n)-loop models
◮ Basics of the Markov-chain Monte Carlo method
◮ Worm algorithm for O(n)-loop models
◮ Proof of irreducibility in fully-packed limit

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Outline

◮ Loops & Worms
◮ O(n)-loop models
◮ Basics of the Markov-chain Monte Carlo method
◮ Worm algorithm for O(n)-loop models
◮ Proof of irreducibility in fully-packed limit

◮ Antiferromagnetic Potts models at zero temperature

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Outline

◮ Loops & Worms
◮ O(n)-loop models
◮ Basics of the Markov-chain Monte Carlo method
◮ Worm algorithm for O(n)-loop models
◮ Proof of irreducibility in fully-packed limit

◮ Antiferromagnetic Potts models at zero temperature
◮ Review of Wang-Swendsen-Kotecký (WSK) algorithm

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Outline

◮ Loops & Worms
◮ O(n)-loop models
◮ Basics of the Markov-chain Monte Carlo method
◮ Worm algorithm for O(n)-loop models
◮ Proof of irreducibility in fully-packed limit

◮ Antiferromagnetic Potts models at zero temperature
◮ Review of Wang-Swendsen-Kotecký (WSK) algorithm
◮ (Non)-irreducibility of WSK algorithm at zero temperature

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Outline

◮ Loops & Worms
◮ O(n)-loop models
◮ Basics of the Markov-chain Monte Carlo method
◮ Worm algorithm for O(n)-loop models
◮ Proof of irreducibility in fully-packed limit

◮ Antiferromagnetic Potts models at zero temperature
◮ Review of Wang-Swendsen-Kotecký (WSK) algorithm
◮ (Non)-irreducibility of WSK algorithm at zero temperature
◮ Using worm algorithm instead

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Loop models
◮ Consider a finite graph G

◮ Physicists love the honeycomb lattice
◮ (Regular map of type {6, 3} on the torus)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Loop models
◮ Consider a finite graph G

◮ Physicists love the honeycomb lattice
◮ (Regular map of type {6, 3} on the torus)

◮ Take state space to be C(G)
◮ Cycle space of G
◮ {A ⊂ E : (V ,A) has no odd vertices}
◮ = all disjoint unions of loops on G when

∆(G) ≤ 3

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Loop models
◮ Consider a finite graph G

◮ Physicists love the honeycomb lattice
◮ (Regular map of type {6, 3} on the torus)

◮ Take state space to be C(G)
◮ Cycle space of G
◮ {A ⊂ E : (V ,A) has no odd vertices}
◮ = all disjoint unions of loops on G when

∆(G) ≤ 3
◮ Assign probabilities via

φG,n,x(A) =
nc(A) x |A|

ZG,n,x
, A ∈ C(G)

◮ c(A) is cyclomatic number, |A| the number of bonds

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Loop models
◮ Consider a finite graph G

◮ Physicists love the honeycomb lattice
◮ (Regular map of type {6, 3} on the torus)

◮ Take state space to be C(G)
◮ Cycle space of G
◮ {A ⊂ E : (V ,A) has no odd vertices}
◮ = all disjoint unions of loops on G when

∆(G) ≤ 3
◮ Assign probabilities via

φG,n,x(A) =
nc(A) x |A|

ZG,n,x
, A ∈ C(G)

◮ c(A) is cyclomatic number, |A| the number of bonds
◮ Mathematical physics want to compute expectations wrt φG,n,x(·)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Loop models
◮ Consider a finite graph G

◮ Physicists love the honeycomb lattice
◮ (Regular map of type {6, 3} on the torus)

◮ Take state space to be C(G)
◮ Cycle space of G
◮ {A ⊂ E : (V ,A) has no odd vertices}
◮ = all disjoint unions of loops on G when

∆(G) ≤ 3
◮ Assign probabilities via

φG,n,x(A) =
nc(A) x |A|

ZG,n,x
, A ∈ C(G)

◮ c(A) is cyclomatic number, |A| the number of bonds
◮ Mathematical physics want to compute expectations wrt φG,n,x(·)

◮ As |V | → ∞ such models display critical phenomena: correlations
on all scales, fractals,. . .

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Loop models
◮ Consider a finite graph G

◮ Physicists love the honeycomb lattice
◮ (Regular map of type {6, 3} on the torus)

◮ Take state space to be C(G)
◮ Cycle space of G
◮ {A ⊂ E : (V ,A) has no odd vertices}
◮ = all disjoint unions of loops on G when

∆(G) ≤ 3
◮ Assign probabilities via

φG,n,x(A) =
nc(A) x |A|

ZG,n,x
, A ∈ C(G)

◮ c(A) is cyclomatic number, |A| the number of bonds
◮ Mathematical physics want to compute expectations wrt φG,n,x(·)

◮ As |V | → ∞ such models display critical phenomena: correlations
on all scales, fractals,. . .

◮ If G is large its infeasible to calculate ZG,n,x =
∑

A∈C(G) nc(A) x |A|

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Loop models
◮ Consider a finite graph G

◮ Physicists love the honeycomb lattice
◮ (Regular map of type {6, 3} on the torus)

◮ Take state space to be C(G)
◮ Cycle space of G
◮ {A ⊂ E : (V ,A) has no odd vertices}
◮ = all disjoint unions of loops on G when

∆(G) ≤ 3
◮ Assign probabilities via

φG,n,x(A) =
nc(A) x |A|

ZG,n,x
, A ∈ C(G)

◮ c(A) is cyclomatic number, |A| the number of bonds
◮ Mathematical physics want to compute expectations wrt φG,n,x(·)

◮ As |V | → ∞ such models display critical phenomena: correlations
on all scales, fractals,. . .

◮ If G is large its infeasible to calculate ZG,n,x =
∑

A∈C(G) nc(A) x |A|

◮ So how can we sample from φG,n,x(·)?

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Elementary theory of finite Markov chains
◮ Consider:

◮ A finite set S (state space)
◮ A stochastic matrix P : S × S → [0, 1] (transition matrix)
◮ A probability vector α : S → [0, 1] (initial distribution)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Elementary theory of finite Markov chains
◮ Consider:

◮ A finite set S (state space)
◮ A stochastic matrix P : S × S → [0, 1] (transition matrix)
◮ A probability vector α : S → [0, 1] (initial distribution)

◮ Defines a Markov chain X1,X2, . . . on S
◮ P(X0 = s) = α(s)
◮ P(Xn+1 = s′|Xn = s) = P(s → s′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Elementary theory of finite Markov chains
◮ Consider:

◮ A finite set S (state space)
◮ A stochastic matrix P : S × S → [0, 1] (transition matrix)
◮ A probability vector α : S → [0, 1] (initial distribution)

◮ Defines a Markov chain X1,X2, . . . on S
◮ P(X0 = s) = α(s)
◮ P(Xn+1 = s′|Xn = s) = P(s → s′)

◮ Probability vector π is a stationary distribution if π P = π

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Elementary theory of finite Markov chains
◮ Consider:

◮ A finite set S (state space)
◮ A stochastic matrix P : S × S → [0, 1] (transition matrix)
◮ A probability vector α : S → [0, 1] (initial distribution)

◮ Defines a Markov chain X1,X2, . . . on S
◮ P(X0 = s) = α(s)
◮ P(Xn+1 = s′|Xn = s) = P(s → s′)

◮ Probability vector π is a stationary distribution if π P = π
◮ Don’t need to know Z to prove stationarity

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Elementary theory of finite Markov chains
◮ Consider:

◮ A finite set S (state space)
◮ A stochastic matrix P : S × S → [0, 1] (transition matrix)
◮ A probability vector α : S → [0, 1] (initial distribution)

◮ Defines a Markov chain X1,X2, . . . on S
◮ P(X0 = s) = α(s)
◮ P(Xn+1 = s′|Xn = s) = P(s → s′)

◮ Probability vector π is a stationary distribution if π P = π
◮ Don’t need to know Z to prove stationarity

◮ Detailed balance (πsPss′ = πs′Ps′s) implies stationarity

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Elementary theory of finite Markov chains
◮ Consider:

◮ A finite set S (state space)
◮ A stochastic matrix P : S × S → [0, 1] (transition matrix)
◮ A probability vector α : S → [0, 1] (initial distribution)

◮ Defines a Markov chain X1,X2, . . . on S
◮ P(X0 = s) = α(s)
◮ P(Xn+1 = s′|Xn = s) = P(s → s′)

◮ Probability vector π is a stationary distribution if π P = π
◮ Don’t need to know Z to prove stationarity

◮ Detailed balance (πsPss′ = πs′Ps′s) implies stationarity
◮ P is irreducible if s ↔ s′ for all s, s′ ∈ S

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Elementary theory of finite Markov chains
◮ Consider:

◮ A finite set S (state space)
◮ A stochastic matrix P : S × S → [0, 1] (transition matrix)
◮ A probability vector α : S → [0, 1] (initial distribution)

◮ Defines a Markov chain X1,X2, . . . on S
◮ P(X0 = s) = α(s)
◮ P(Xn+1 = s′|Xn = s) = P(s → s′)

◮ Probability vector π is a stationary distribution if π P = π
◮ Don’t need to know Z to prove stationarity

◮ Detailed balance (πsPss′ = πs′Ps′s) implies stationarity
◮ P is irreducible if s ↔ s′ for all s, s′ ∈ S
◮ If P is irreducible it has a unique stationary distribution π

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Elementary theory of finite Markov chains
◮ Consider:

◮ A finite set S (state space)
◮ A stochastic matrix P : S × S → [0, 1] (transition matrix)
◮ A probability vector α : S → [0, 1] (initial distribution)

◮ Defines a Markov chain X1,X2, . . . on S
◮ P(X0 = s) = α(s)
◮ P(Xn+1 = s′|Xn = s) = P(s → s′)

◮ Probability vector π is a stationary distribution if π P = π
◮ Don’t need to know Z to prove stationarity

◮ Detailed balance (πsPss′ = πs′Ps′s) implies stationarity
◮ P is irreducible if s ↔ s′ for all s, s′ ∈ S
◮ If P is irreducible it has a unique stationary distribution π

Theorem (Ergodic Theorem)
If P is irreducible with stationary distribution π then for any initial
distribution

1
N

N∑

n=1

f (Xn) −−−−→
N→∞

∑

s∈S

π(s) f (s) a.s.

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

◮ a(s → s′) = min(1, π(s′)/π(s)) is maximal solution

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

◮ a(s → s′) = min(1, π(s′)/π(s)) is maximal solution

◮ Irreducibility of P needs to be checked case-by-case

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

◮ a(s → s′) = min(1, π(s′)/π(s)) is maximal solution

◮ Irreducibility of P needs to be checked case-by-case
◮ E.g. Ising model on G = (V ,E)

◮ S = {−1, 1}V

◮ π(σ) ∝ e−H(σ)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

◮ a(s → s′) = min(1, π(s′)/π(s)) is maximal solution

◮ Irreducibility of P needs to be checked case-by-case
◮ E.g. Ising model on G = (V ,E)

◮ S = {−1, 1}V

◮ π(σ) ∝ e−H(σ)

◮ Simplest Ψ for Ising model is

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

◮ a(s → s′) = min(1, π(s′)/π(s)) is maximal solution

◮ Irreducibility of P needs to be checked case-by-case
◮ E.g. Ising model on G = (V ,E)

◮ S = {−1, 1}V

◮ π(σ) ∝ e−H(σ)

◮ Simplest Ψ for Ising model is
◮ Pick v ∈ V uniformly at random

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

◮ a(s → s′) = min(1, π(s′)/π(s)) is maximal solution

◮ Irreducibility of P needs to be checked case-by-case
◮ E.g. Ising model on G = (V ,E)

◮ S = {−1, 1}V

◮ π(σ) ∝ e−H(σ)

◮ Simplest Ψ for Ising model is
◮ Pick v ∈ V uniformly at random

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

◮ a(s → s′) = min(1, π(s′)/π(s)) is maximal solution

◮ Irreducibility of P needs to be checked case-by-case
◮ E.g. Ising model on G = (V ,E)

◮ S = {−1, 1}V

◮ π(σ) ∝ e−H(σ)

◮ Simplest Ψ for Ising model is
◮ Pick v ∈ V uniformly at random
◮ Propose σv → −σv

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

◮ a(s → s′) = min(1, π(s′)/π(s)) is maximal solution

◮ Irreducibility of P needs to be checked case-by-case
◮ E.g. Ising model on G = (V ,E)

◮ S = {−1, 1}V

◮ π(σ) ∝ e−H(σ)

◮ Simplest Ψ for Ising model is
◮ Pick v ∈ V uniformly at random
◮ Propose σv → −σv

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Metropolized Chains
◮ We want a transition matrix P in detailed balance with π
◮ Suppose we have a symmetric transition matrix Ψ

◮ Construct P from Ψ by introducing acceptance probabilities
◮ Accept proposed transitions Ψ(s → s′) with probability a(s → s′)
◮ P(s → s′) = a(s → s′)Ψ(s → s′)
◮ Demanding P be in detailed balance with π implies

π(s) a(s → s′)Ψ(s → s′) = π(s′) a(s′ → s)Ψ(s′ → s)

◮ a(s → s′) = min(1, π(s′)/π(s)) is maximal solution

◮ Irreducibility of P needs to be checked case-by-case
◮ E.g. Ising model on G = (V ,E)

◮ S = {−1, 1}V

◮ π(σ) ∝ e−H(σ)

◮ Simplest Ψ for Ising model is
◮ Pick v ∈ V uniformly at random
◮ Propose σv → −σv

◮ Local moves from S → S easy to construct

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

◮ When u = v we take ∂A = ∅

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

◮ When u = v we take ∂A = ∅

◮ Proposal matrix

Ψn,x [(A,u, v) → (A△uu′,u′, v)] =
1

2 d(u)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

◮ When u = v we take ∂A = ∅

◮ Proposal matrix

Ψn,x [(A,u, v) → (A△uu′,u′, v)] =
1

2 d(u)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

◮ When u = v we take ∂A = ∅

◮ Proposal matrix

Ψn,x [(A,u, v) → (A△uu′,u′, v)] =
1

2 d(u)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

◮ When u = v we take ∂A = ∅

◮ Proposal matrix

Ψn,x [(A,u, v) → (A△uu′,u′, v)] =
1

2 d(u)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

◮ When u = v we take ∂A = ∅

◮ Proposal matrix

Ψn,x [(A,u, v) → (A△uu′,u′, v)] =
1

2 d(u)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

◮ When u = v we take ∂A = ∅

◮ Proposal matrix

Ψn,x [(A,u, v) → (A△uu′,u′, v)] =
1

2 d(u)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

◮ When u = v we take ∂A = ∅

◮ Proposal matrix

Ψn,x [(A,u, v) → (A△uu′,u′, v)] =
1

2 d(u)

◮ Use Metropolis to construct Pn,x in detailed balance with

πn,x(A,u, v) ∝ nc(A) x |A|

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm transition matrix

Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





min(1, x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
min(1, x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
min(1,1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

min(1,1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm transition matrix

Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





min(1, x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
min(1, x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
min(1,1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

min(1,1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ Let πn,x = restriction of πn,x to {(A,u, v) ∈ S : u = v} = C(G)×V

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm transition matrix

Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





min(1, x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
min(1, x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
min(1,1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

min(1,1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ Let πn,x = restriction of πn,x to {(A,u, v) ∈ S : u = v} = C(G)×V
◮ πn,x(A, v , v) = φn,x(A)/V
◮ So 〈X 〉πn,x = 〈X 〉φn,x for all X : C(G) → R

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm transition matrix

Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





min(1, x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
min(1, x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
min(1,1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

min(1,1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ Let πn,x = restriction of πn,x to {(A,u, v) ∈ S : u = v} = C(G)×V
◮ πn,x(A, v , v) = φn,x(A)/V
◮ So 〈X 〉πn,x = 〈X 〉φn,x for all X : C(G) → R

◮ Only observe Pn,x chain when u = v

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm transition matrix

Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





min(1, x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
min(1, x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
min(1,1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

min(1,1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ Let πn,x = restriction of πn,x to {(A,u, v) ∈ S : u = v} = C(G)×V
◮ πn,x(A, v , v) = φn,x(A)/V
◮ So 〈X 〉πn,x = 〈X 〉φn,x for all X : C(G) → R

◮ Only observe Pn,x chain when u = v

◮ Get new chain, Pn,x , in detailed balance with πn,x

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Induced Markov chain on subspace

◮ Consider an irreducible P on a finite state space S

◮ In detailed balance with π

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Induced Markov chain on subspace

◮ Consider an irreducible P on a finite state space S

◮ In detailed balance with π

◮ Only observe the process when s ∈ Σ ⊆ S

S

Σ

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Induced Markov chain on subspace

◮ Consider an irreducible P on a finite state space S

◮ In detailed balance with π

◮ Only observe the process when s ∈ Σ ⊆ S

◮ New process is irreducible Markov chain on Σ

S

Σ

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Induced Markov chain on subspace

◮ Consider an irreducible P on a finite state space S

◮ In detailed balance with π

◮ Only observe the process when s ∈ Σ ⊆ S

◮ New process is irreducible Markov chain on Σ

◮ Transition matrix is

(P)ss′ := (P)ss′ +

∞∑

n=0

∑

s0,s1,...,sn∈Σ

(P)ss0

n∏

l=1

(P)sl−1sl (P)sns′

S

Σ

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Induced Markov chain on subspace

◮ Consider an irreducible P on a finite state space S

◮ In detailed balance with π

◮ Only observe the process when s ∈ Σ ⊆ S

◮ New process is irreducible Markov chain on Σ

◮ Transition matrix is

(P)ss′ := (P)ss′ +

∞∑

n=0

∑

s0,s1,...,sn∈Σ

(P)ss0

n∏

l=1

(P)sl−1sl (P)sns′

S

Σ

◮ P is in detailed balance with

πs =
πs∑

s′∈Σ πs′

, s ∈ Σ

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Rejection-free algorithm
◮ We don’t care about states in Σ := S \ Σ

S

Σ

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Rejection-free algorithm
◮ We don’t care about states in Σ := S \ Σ

◮ Therefore we can safely avoid rejections when (A,u, v) ∈ Σ

S

Σ

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Rejection-free algorithm
◮ We don’t care about states in Σ := S \ Σ

◮ Therefore we can safely avoid rejections when (A,u, v) ∈ Σ

S

Σ

◮ Use rejection-free chain instead

(P ′)ss′ :=





(P)ss′ s ∈ Σ
(P)ss′

1 − (P)ss
s ∈ Σ, s′ 6= s

0 s ∈ Σ, s′ = s

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Rejection-free algorithm
◮ We don’t care about states in Σ := S \ Σ

◮ Therefore we can safely avoid rejections when (A,u, v) ∈ Σ

S

Σ

◮ Use rejection-free chain instead

(P ′)ss′ :=





(P)ss′ s ∈ Σ
(P)ss′

1 − (P)ss
s ∈ Σ, s′ 6= s

0 s ∈ Σ, s′ = s

◮ P ′ is in detailed balance with

π′
s =

{
πs s ∈ Σ

(1 − (P)ss)πs s ∈ Σ

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Rejection-free algorithm
◮ We don’t care about states in Σ := S \ Σ

◮ Therefore we can safely avoid rejections when (A,u, v) ∈ Σ

S

Σ

◮ Use rejection-free chain instead

(P ′)ss′ :=





(P)ss′ s ∈ Σ
(P)ss′

1 − (P)ss
s ∈ Σ, s′ 6= s

0 s ∈ Σ, s′ = s

◮ P ′ is in detailed balance with

π′
s =

{
πs s ∈ Σ

(1 − (P)ss)πs s ∈ Σ

◮ P ′ is in detailed balance with π′
s = πs = πs∑

s′∈Σ πs′
, s ∈ Σ

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)
◮ A ∈ F(G) iff (V ,A) is a 2-factor iff E \ A is a perfect matching

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)
◮ A ∈ F(G) iff (V ,A) is a 2-factor iff E \ A is a perfect matching
◮ n = 0 corresponds to uniformly sampling Hamiltonian cycles

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)
◮ A ∈ F(G) iff (V ,A) is a 2-factor iff E \ A is a perfect matching
◮ n = 0 corresponds to uniformly sampling Hamiltonian cycles
◮ n = 1 corresponds to uniformly sampling dimer coverings

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)
◮ A ∈ F(G) iff (V ,A) is a 2-factor iff E \ A is a perfect matching
◮ n = 0 corresponds to uniformly sampling Hamiltonian cycles
◮ n = 1 corresponds to uniformly sampling dimer coverings
◮ n = 1 corresponds to dual Ising model

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)
◮ A ∈ F(G) iff (V ,A) is a 2-factor iff E \ A is a perfect matching
◮ n = 0 corresponds to uniformly sampling Hamiltonian cycles
◮ n = 1 corresponds to uniformly sampling dimer coverings
◮ n = 1 corresponds to dual Ising model
◮ n = 2 related to q > 2 Potts models (more later. . .)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)
◮ A ∈ F(G) iff (V ,A) is a 2-factor iff E \ A is a perfect matching
◮ n = 0 corresponds to uniformly sampling Hamiltonian cycles
◮ n = 1 corresponds to uniformly sampling dimer coverings
◮ n = 1 corresponds to dual Ising model
◮ n = 2 related to q > 2 Potts models (more later. . .)

◮ The simple worm algorithm is absorbing when x = +∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)
◮ A ∈ F(G) iff (V ,A) is a 2-factor iff E \ A is a perfect matching
◮ n = 0 corresponds to uniformly sampling Hamiltonian cycles
◮ n = 1 corresponds to uniformly sampling dimer coverings
◮ n = 1 corresponds to dual Ising model
◮ n = 2 related to q > 2 Potts models (more later. . .)

◮ The simple worm algorithm is absorbing when x = +∞
◮ Rejection-free algorithm remains valid

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)
◮ A ∈ F(G) iff (V ,A) is a 2-factor iff E \ A is a perfect matching
◮ n = 0 corresponds to uniformly sampling Hamiltonian cycles
◮ n = 1 corresponds to uniformly sampling dimer coverings
◮ n = 1 corresponds to dual Ising model
◮ n = 2 related to q > 2 Potts models (more later. . .)

◮ The simple worm algorithm is absorbing when x = +∞
◮ Rejection-free algorithm remains valid

◮ n = 1 similar to Jerrum & Sinclair’s perfect matching algorithm

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

◮ If (A, v , v) ∈ R(G) then A ∈ F(G)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

◮ If (A, v , v) ∈ R(G) then A ∈ F(G)
◮ Let Pn be the restriction of P′

n,∞ to R(G)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

◮ If (A, v , v) ∈ R(G) then A ∈ F(G)
◮ Let Pn be the restriction of P′

n,∞ to R(G)

◮ Pn is in detailed balance with φn(A) ∝ nc(A)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Worm algorithm for fully-packed loops

P ′
n,∞ allows the following transitions:

◮ If dA(u) = dA(v) = 2 then
◮ Move one of the defects across uu′ 6∈ A

◮ If dA(u) = dA(v) = 3 then
◮ Delete one of the occupied edges at u or v

◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞

◮ If (A, v , v) ∈ R(G) then A ∈ F(G)
◮ Let Pn be the restriction of P′

n,∞ to R(G)

◮ Pn is in detailed balance with φn(A) ∝ nc(A)

◮ Pn is irreducible

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

u w

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

u w

◮ If u 6= v then Pn always lets us to do the following:

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

u w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

u′ w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

u′ w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

u′′

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

u′′

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge
◮ We can prove that (A, v , v) ↔ (A, v ′, v ′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge
◮ We can prove that (A, v , v) ↔ (A, v ′, v ′)
◮ We can move defect to a v ′ adjacent to a vacant B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v ′

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge
◮ We can prove that (A, v , v) ↔ (A, v ′, v ′)
◮ We can move defect to a v ′ adjacent to a vacant B-edge

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v ′

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge
◮ We can prove that (A, v , v) ↔ (A, v ′, v ′)
◮ We can move defect to a v ′ adjacent to a vacant B-edge
◮ Add vacant B-edge and start again

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Pn is irreducible
We show (A,u, v) ↔ (B,w ,w) for any fixed B ∈ F(G) and w ∈ V

v ′

w

◮ If u 6= v then Pn always lets us to do the following:
◮ If du(A) = 1 add one of the missing B-edges at u
◮ If du′(A) = dv (A) = 3 delete the occupied non-B-edge at u′

◮ New state has either one more B-edge or one less non-B-edge
◮ We can prove that (A, v , v) ↔ (A, v ′, v ′)
◮ We can move defect to a v ′ adjacent to a vacant B-edge
◮ Add vacant B-edge and start again

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

v v ′

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)
◮ Then move second defect along Pv v ′ so (A, v , v) ↔ (A′′, v ′, v ′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)
◮ Then move second defect along Pv v ′ so (A, v , v) ↔ (A′′, v ′, v ′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)
◮ Then move second defect along Pv v ′ so (A, v , v) ↔ (A′′, v ′, v ′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)
◮ Then move second defect along Pv v ′ so (A, v , v) ↔ (A′′, v ′, v ′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)
◮ Then move second defect along Pv v ′ so (A, v , v) ↔ (A′′, v ′, v ′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)
◮ Then move second defect along Pv v ′ so (A, v , v) ↔ (A′′, v ′, v ′)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Lemma: (A, u, u) ↔ (A, v , v) for all A ∈ F(G) and u, v ∈ V
We show that (A, v , v) ↔ (A, v ′, v ′) for each v ′ ∼ v

◮ Lemma: There always exists an odd path Pv v ′ from v to v ′ ∼ v
which alternates vacant, occupied,. . . , vacant

v v ′ v
v ′

◮ Can move first defect along Pv v ′ so (A, v , v) ↔ (A′, v ′, v)
◮ Then move second defect along Pv v ′ so (A, v , v) ↔ (A′′, v ′, v ′)

◮ But each edge is traversed (flipped) exactly twice so A′′ = A

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

◮ Independently colour each cycle,
alternating red, blue

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

◮ Independently colour each cycle,
alternating red, blue

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

◮ Independently colour each cycle,
alternating red, blue

◮ Colour vacant edges green

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

v

u

w x

◮ Independently colour each cycle,
alternating red, blue

◮ Colour vacant edges green

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

v

u

w x

◮ Independently colour each cycle,
alternating red, blue

◮ Colour vacant edges green
◮ Ared ∪ Agreen ∈ F(G)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

v

u

w x

◮ Independently colour each cycle,
alternating red, blue

◮ Colour vacant edges green
◮ Ared ∪ Agreen ∈ F(G)

◮ u, v , w all connected in Ared ∪ Agreen

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

v

u

w

t

x

◮ Independently colour each cycle,
alternating red, blue

◮ Colour vacant edges green
◮ Ared ∪ Agreen ∈ F(G)

◮ u, v , w all connected in Ared ∪ Agreen

◮ So u, v , w all in same cycle
v u . . . t w v ∈ Ared ∪ Agreen

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

v

u

w

t

x

◮ Independently colour each cycle,
alternating red, blue

◮ Colour vacant edges green
◮ Ared ∪ Agreen ∈ F(G)

◮ u, v , w all connected in Ared ∪ Agreen

◮ So u, v , w all in same cycle
v u . . . t w v ∈ Ared ∪ Agreen

◮ Cycle must be even
◮ alternates green, red, . . . , green, red

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

v

u

w

t

x

◮ Independently colour each cycle,
alternating red, blue

◮ Colour vacant edges green
◮ Ared ∪ Agreen ∈ F(G)

◮ u, v , w all connected in Ared ∪ Agreen

◮ So u, v , w all in same cycle
v u . . . t w v ∈ Ared ∪ Agreen

◮ Cycle must be even
◮ alternates green, red, . . . , green, red

◮ v u . . . t w is the desired path

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Potts models and Wang-Swendsen-Kotecký algorithm
◮ q-state Potts model on graph G = (V ,E)

◮ Spin configurations σ ∈ {1, 2, . . . , q}V with q ∈ {2, 3, . . .}
◮ H(σ) = −β

∑
uv∈E δ(σu , σv)

◮ P(σ) ∝ e−H(σ)

◮ |β| = 1/T

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Potts models and Wang-Swendsen-Kotecký algorithm
◮ q-state Potts model on graph G = (V ,E)

◮ Spin configurations σ ∈ {1, 2, . . . , q}V with q ∈ {2, 3, . . .}
◮ H(σ) = −β

∑
uv∈E δ(σu , σv)

◮ P(σ) ∝ e−H(σ)

◮ |β| = 1/T

◮ β > 0 is ferromagnetic, β < 0 is antiferromagnetic

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Potts models and Wang-Swendsen-Kotecký algorithm
◮ q-state Potts model on graph G = (V ,E)

◮ Spin configurations σ ∈ {1, 2, . . . , q}V with q ∈ {2, 3, . . .}
◮ H(σ) = −β

∑
uv∈E δ(σu , σv)

◮ P(σ) ∝ e−H(σ)

◮ |β| = 1/T

◮ β > 0 is ferromagnetic, β < 0 is antiferromagnetic
◮ When β = −∞ we uniformly sample q-vertex colourings

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Potts models and Wang-Swendsen-Kotecký algorithm
◮ q-state Potts model on graph G = (V ,E)

◮ Spin configurations σ ∈ {1, 2, . . . , q}V with q ∈ {2, 3, . . .}
◮ H(σ) = −β

∑
uv∈E δ(σu , σv)

◮ P(σ) ∝ e−H(σ)

◮ |β| = 1/T

◮ β > 0 is ferromagnetic, β < 0 is antiferromagnetic
◮ When β = −∞ we uniformly sample q-vertex colourings
◮ The Swendsen-Wang (SW) cluster algorithm (ferromagnetic):

◮ Introduce auxiliary edge variables ω ∈ {0, 1}E

◮ Consider joint (Edwards-Sokal) model P(σ, ω)
◮ Update spins using P(σ|ω) then update bonds using P(ω|σ)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Potts models and Wang-Swendsen-Kotecký algorithm
◮ q-state Potts model on graph G = (V ,E)

◮ Spin configurations σ ∈ {1, 2, . . . , q}V with q ∈ {2, 3, . . .}
◮ H(σ) = −β

∑
uv∈E δ(σu , σv)

◮ P(σ) ∝ e−H(σ)

◮ |β| = 1/T

◮ β > 0 is ferromagnetic, β < 0 is antiferromagnetic
◮ When β = −∞ we uniformly sample q-vertex colourings
◮ The Swendsen-Wang (SW) cluster algorithm (ferromagnetic):

◮ Introduce auxiliary edge variables ω ∈ {0, 1}E

◮ Consider joint (Edwards-Sokal) model P(σ, ω)
◮ Update spins using P(σ|ω) then update bonds using P(ω|σ)

◮ Wang-Swendsen-Kotecký (WSK)
◮ Extension of SW to treat antiferromagnetic Potts

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Potts models and Wang-Swendsen-Kotecký algorithm
◮ q-state Potts model on graph G = (V ,E)

◮ Spin configurations σ ∈ {1, 2, . . . , q}V with q ∈ {2, 3, . . .}
◮ H(σ) = −β

∑
uv∈E δ(σu , σv)

◮ P(σ) ∝ e−H(σ)

◮ |β| = 1/T

◮ β > 0 is ferromagnetic, β < 0 is antiferromagnetic
◮ When β = −∞ we uniformly sample q-vertex colourings
◮ The Swendsen-Wang (SW) cluster algorithm (ferromagnetic):

◮ Introduce auxiliary edge variables ω ∈ {0, 1}E

◮ Consider joint (Edwards-Sokal) model P(σ, ω)
◮ Update spins using P(σ|ω) then update bonds using P(ω|σ)

◮ Wang-Swendsen-Kotecký (WSK)
◮ Extension of SW to treat antiferromagnetic Potts

◮ WSK at T = 0 equivalent to “Kempe changes”
◮ Each cluster is a Kempe chain

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm

◮ Uniformly at random, choose two of the q possible colors
µ, ν ∈ {1,2 . . . q}

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm
µ = ν =

◮ Uniformly at random, choose two of the q possible colors
µ, ν ∈ {1,2 . . . q}

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm
µ = ν =

◮ Uniformly at random, choose two of the q possible colors
µ, ν ∈ {1,2 . . . q}

◮ Freeze all the σv 6∈ {µ, ν}

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm

◮ Uniformly at random, choose two of the q possible colors
µ, ν ∈ {1,2 . . . q}

◮ Freeze all the σv 6∈ {µ, ν}

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm

◮ Uniformly at random, choose two of the q possible colors
µ, ν ∈ {1,2 . . . q}

◮ Freeze all the σv 6∈ {µ, ν}
◮ For each edge uv with with σu 6= σv , σu = µ and σv = ν

◮ Draw a bond with probability p = 1 − e−1/T and identify clusters

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm C1 C2

◮ Uniformly at random, choose two of the q possible colors
µ, ν ∈ {1,2 . . . q}

◮ Freeze all the σv 6∈ {µ, ν}
◮ For each edge uv with with σu 6= σv , σu = µ and σv = ν

◮ Draw a bond with probability p = 1 − e−1/T and identify clusters

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm C1 C2

◮ Uniformly at random, choose two of the q possible colors
µ, ν ∈ {1,2 . . . q}

◮ Freeze all the σv 6∈ {µ, ν}
◮ For each edge uv with with σu 6= σv , σu = µ and σv = ν

◮ Draw a bond with probability p = 1 − e−1/T and identify clusters

◮ For each cluster Ci flip the colouring with probability 1/2

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm C1 C2

◮ Uniformly at random, choose two of the q possible colors
µ, ν ∈ {1,2 . . . q}

◮ Freeze all the σv 6∈ {µ, ν}
◮ For each edge uv with with σu 6= σv , σu = µ and σv = ν

◮ Draw a bond with probability p = 1 − e−1/T and identify clusters

◮ For each cluster Ci flip the colouring with probability 1/2

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

WSK algorithm

◮ Uniformly at random, choose two of the q possible colors
µ, ν ∈ {1,2 . . . q}

◮ Freeze all the σv 6∈ {µ, ν}
◮ For each edge uv with with σu 6= σv , σu = µ and σv = ν

◮ Draw a bond with probability p = 1 − e−1/T and identify clusters

◮ For each cluster Ci flip the colouring with probability 1/2

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Rigorous results for WSK algorithm

◮ Irreducible on all graphs when T > 0
◮ Irreducible on all graphs G when T = 0 and q ≥ ∆(G) + 1
◮ Irreducible on all bipartite graphs when T = 0
◮ Non-irreducible at T = 0:

◮ q = 4 on triangular lattice (on torus) (Mohar & Salas 2009)
◮ q = 3 on kagome lattice (on torus) (Mohar & Salas 2010)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Rigorous results for WSK algorithm

◮ Irreducible on all graphs when T > 0
◮ Irreducible on all graphs G when T = 0 and q ≥ ∆(G) + 1
◮ Irreducible on all bipartite graphs when T = 0
◮ Non-irreducible at T = 0:

◮ q = 4 on triangular lattice (on torus) (Mohar & Salas 2009)
◮ q = 3 on kagome lattice (on torus) (Mohar & Salas 2010)

◮ Worm algorithm for honeycomb-lattice fully-packed loop model
can be used to simulate both these models

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

◮ Gives dynamics on coloured loop states

Pcolor [a → a′] =
1

2c(A′)
Pworm

2 [A → A′]

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

◮ Gives dynamics on coloured loop states

Pcolor [a → a′] =
1

2c(A′)
Pworm

2 [A → A′]

◮ Uniformly sample 3-edge-colorings of honeycomb lattice

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

◮ Gives dynamics on coloured loop states

Pcolor [a → a′] =
1

2c(A′)
Pworm

2 [A → A′]

◮ Uniformly sample 3-edge-colorings of honeycomb lattice
◮ Uniformly sample 3-vertex-colorings of kagome lattice

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

◮ Gives dynamics on coloured loop states

Pcolor [a → a′] =
1

2c(A′)
Pworm

2 [A → A′]

◮ Uniformly sample 3-edge-colorings of honeycomb lattice
◮ Uniformly sample 3-vertex-colorings of kagome lattice
◮ Uniformly sample 4-vertex-colorings on triangular lattice (Baxter)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

◮ Gives dynamics on coloured loop states

Pcolor [a → a′] =
1

2c(A′)
Pworm

2 [A → A′]

◮ Uniformly sample 3-edge-colorings of honeycomb lattice
◮ Uniformly sample 3-vertex-colorings of kagome lattice
◮ Uniformly sample 4-vertex-colorings on triangular lattice (Baxter)

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

◮ Gives dynamics on coloured loop states

Pcolor [a → a′] =
1

2c(A′)
Pworm

2 [A → A′]

◮ Uniformly sample 3-edge-colorings of honeycomb lattice
◮ Uniformly sample 3-vertex-colorings of kagome lattice
◮ Uniformly sample 4-vertex-colorings on triangular lattice (Baxter)
◮ Both models display critical phenomena

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

◮ Gives dynamics on coloured loop states

Pcolor [a → a′] =
1

2c(A′)
Pworm

2 [A → A′]

◮ Uniformly sample 3-edge-colorings of honeycomb lattice
◮ Uniformly sample 3-vertex-colorings of kagome lattice
◮ Uniformly sample 4-vertex-colorings on triangular lattice (Baxter)
◮ Both models display critical phenomena
◮ Wang-Swendsen-Kotecký algorithm proved non-irreducible

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

◮ Exact correspondence when n = 1 and x = e−2β

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

◮ Exact correspondence when n = 1 and x = e−2β

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +
◮ φH,n,x(Aσ) = 2µH∗,β(σ)

◮ Aσ := {ij ∈ E : σi∗ 6= σj∗}

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

◮ Exact correspondence when n = 1 and x = e−2β

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +
◮ φH,n,x(Aσ) = 2µH∗,β(σ)

◮ Aσ := {ij ∈ E : σi∗ 6= σj∗}

◮ x > 1 implies antiferromagnetic β

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

◮ Exact correspondence when n = 1 and x = e−2β

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +
◮ φH,n,x(Aσ) = 2µH∗,β(σ)

◮ Aσ := {ij ∈ E : σi∗ 6= σj∗}

◮ x > 1 implies antiferromagnetic β

◮ x = +∞ corresponds to β = −∞

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

◮ Exact correspondence when n = 1 and x = e−2β

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +
◮ φH,n,x(Aσ) = 2µH∗,β(σ)

◮ Aσ := {ij ∈ E : σi∗ 6= σj∗}

◮ x > 1 implies antiferromagnetic β

◮ x = +∞ corresponds to β = −∞

◮ Both models are critical in this limit

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

◮ Exact correspondence when n = 1 and x = e−2β

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +
◮ φH,n,x(Aσ) = 2µH∗,β(σ)

◮ Aσ := {ij ∈ E : σi∗ 6= σj∗}

◮ x > 1 implies antiferromagnetic β

◮ x = +∞ corresponds to β = −∞

◮ Both models are critical in this limit

◮ Can use worm to simulate AF Ising on △-lattice at T = 0

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

◮ Exact correspondence when n = 1 and x = e−2β

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +
◮ φH,n,x(Aσ) = 2µH∗,β(σ)

◮ Aσ := {ij ∈ E : σi∗ 6= σj∗}

◮ x > 1 implies antiferromagnetic β

◮ x = +∞ corresponds to β = −∞

◮ Both models are critical in this limit

◮ Can use worm to simulate AF Ising on △-lattice at T = 0
◮ Single-spin-flip algorithms non-irreducible at T = 0

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

◮ Exact correspondence when n = 1 and x = e−2β

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +
◮ φH,n,x(Aσ) = 2µH∗,β(σ)

◮ Aσ := {ij ∈ E : σi∗ 6= σj∗}

◮ x > 1 implies antiferromagnetic β

◮ x = +∞ corresponds to β = −∞

◮ Both models are critical in this limit

◮ Can use worm to simulate AF Ising on △-lattice at T = 0
◮ Single-spin-flip algorithms non-irreducible at T = 0
◮ Tailor-made cluster algorithms non-irreducible at T = 0

Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Summary

◮ Worm algorithms provide a simple way to simulate
honeycomb-lattice loop models

◮ Proven valid for all n, x > 0, including x = +∞

◮ For n = 1,2 also provide provably irreducible algorithms for
certain critical antiferromagnetic models

◮ Cluster algorithms fail for these models

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Structure of the defect cluster
Partition R(G) according to structure of defect cluster

R = E ∪ T ∪ D ∪Θ

b b

b

u,v

(A,u, v) ∈ E

Cycle

b b

b

b
b

u
v

(A,u, v) ∈ D

Dumbbell

b b

b

b
b

u
v

(A,u, v) ∈ T

Tadpole

b b

b

b

b

u

v

(A,u, v) ∈ Θ

Theta graph

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Worm algorithm for fully-packed loop model

◮ Transition matrix:

Pn[(A,u, v) → (A△uu′,u′, v)] = Pn[(A, v ,u) → (A△uu′, v ,u′)]

=





1/2 (A,u, v) ∈ E ,

1/2 (A,u, v) ∈ T ,

1/6 (A,u, v) ∈ Θ,

n/2(n + 2) (A,u, v) ∈ D and uu′ is a bridge,
1/2(n + 2) (A,u, v) ∈ D and uu′ is not a bridge.

◮ Stationary distribution:

πn(A,u, v) =
nc(A)

Zn





1/3 (A,u, v) ∈ E ,

1/3 (A,u, v) ∈ T ,

(n + 2)/3n (A,u, v) ∈ D,

1/n (A,u, v) ∈ Θ.

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Connectivity checking
Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





F (x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
F (x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
F (1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

F (1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ So far we have glossed over an important caveat:

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Connectivity checking
Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





F (x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
F (x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
F (1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

F (1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ So far we have glossed over an important caveat:
◮ If n 6= 1 we need to compute c(A△uu′)− c(A) at each iteration

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Connectivity checking
Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





F (x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
F (x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
F (1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

F (1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ So far we have glossed over an important caveat:
◮ If n 6= 1 we need to compute c(A△uu′)− c(A) at each iteration

◮ But c(A) = |A| − |V |+ k(A)
◮ k(A) is the number of components in (V ,A)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Connectivity checking
Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





F (x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
F (x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
F (1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

F (1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ So far we have glossed over an important caveat:
◮ If n 6= 1 we need to compute c(A△uu′)− c(A) at each iteration

◮ But c(A) = |A| − |V |+ k(A)
◮ k(A) is the number of components in (V ,A)

◮ Dynamic connectivity-checking algorithms are known
◮ Log-time for queries and updates (Holm, de Lichtenberg & Thorup)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Connectivity checking
Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





F (x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
F (x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
F (1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

F (1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ So far we have glossed over an important caveat:
◮ If n 6= 1 we need to compute c(A△uu′)− c(A) at each iteration

◮ But c(A) = |A| − |V |+ k(A)
◮ k(A) is the number of components in (V ,A)

◮ Dynamic connectivity-checking algorithms are known
◮ Log-time for queries and updates (Holm, de Lichtenberg & Thorup)

◮ Simultaneous Breadth-First-Search (BFS) much simpler
◮ Polynomial-time with small (known) exponent (k -arm)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Connectivity checking
Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





F (x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
F (x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
F (1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

F (1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ So far we have glossed over an important caveat:
◮ If n 6= 1 we need to compute c(A△uu′)− c(A) at each iteration

◮ But c(A) = |A| − |V |+ k(A)
◮ k(A) is the number of components in (V ,A)

◮ Dynamic connectivity-checking algorithms are known
◮ Log-time for queries and updates (Holm, de Lichtenberg & Thorup)

◮ Simultaneous Breadth-First-Search (BFS) much simpler
◮ Polynomial-time with small (known) exponent (k -arm)

◮ If n > 1 the “colouring method” avoids the issue entirely

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method
◮ Consider a finite graph G = (V ,E)

◮ Let K (A) denote the set of connected components of (V ,A)
◮ Define a “generalized random-cluster model”

PW (A) ∝
∏

C∈K (A)

W (C) A ⊆ E

◮ W (·) ≥ 0 assigns a weight to each connected subgraph of G

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method
◮ Consider a finite graph G = (V ,E)

◮ Let K (A) denote the set of connected components of (V ,A)
◮ Define a “generalized random-cluster model”

PW (A) ∝
∏

C∈K (A)

W (C) A ⊆ E

◮ W (·) ≥ 0 assigns a weight to each connected subgraph of G
◮ If W (C) = q v |E(C)| this is just the Fortuin-Kasteleyn (FK) model

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method
◮ Consider a finite graph G = (V ,E)

◮ Let K (A) denote the set of connected components of (V ,A)
◮ Define a “generalized random-cluster model”

PW (A) ∝
∏

C∈K (A)

W (C) A ⊆ E

◮ W (·) ≥ 0 assigns a weight to each connected subgraph of G
◮ If W (C) = q v |E(C)| this is just the Fortuin-Kasteleyn (FK) model
◮ Loop model corresponds to

W (C) =

{
n x |E(C)| C is a cycle or isolated vertex
0 otherwise

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method
◮ Consider a finite graph G = (V ,E)

◮ Let K (A) denote the set of connected components of (V ,A)
◮ Define a “generalized random-cluster model”

PW (A) ∝
∏

C∈K (A)

W (C) A ⊆ E

◮ W (·) ≥ 0 assigns a weight to each connected subgraph of G
◮ If W (C) = q v |E(C)| this is just the Fortuin-Kasteleyn (FK) model
◮ Loop model corresponds to

W (C) =

{
n x |E(C)| C is a cycle or isolated vertex
0 otherwise

◮ Simulate PW by introducing auxiliary vertex variables (colours)
◮ Like SW, choose bonds conditioned on colours & vice versa

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)

2. Choose a new bond configuration on Gα using any Markov chain
for which Wα is stationary

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)

2. Choose a new bond configuration on Gα using any Markov chain
for which Wα is stationary

◮ Trick is to choose at least one Wα which is easy to simulate

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)

2. Choose a new bond configuration on Gα using any Markov chain
for which Wα is stationary

◮ Trick is to choose at least one Wα which is easy to simulate
◮ Can update other Wα′ by “doing nothing” (identity matrix)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)

2. Choose a new bond configuration on Gα using any Markov chain
for which Wα is stationary

◮ Trick is to choose at least one Wα which is easy to simulate
◮ Can update other Wα′ by “doing nothing” (identity matrix)
◮ FK model: take Wα = 1 (percolation is easy to simulate)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)

2. Choose a new bond configuration on Gα using any Markov chain
for which Wα is stationary

◮ Trick is to choose at least one Wα which is easy to simulate
◮ Can update other Wα′ by “doing nothing” (identity matrix)
◮ FK model: take Wα = 1 (percolation is easy to simulate)
◮ Loop model: take Wα = 1 (Ising is easy to simulate using worm)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)

2. Choose a new bond configuration on Gα using any Markov chain
for which Wα is stationary

◮ Trick is to choose at least one Wα which is easy to simulate
◮ Can update other Wα′ by “doing nothing” (identity matrix)
◮ FK model: take Wα = 1 (percolation is easy to simulate)
◮ Loop model: take Wα = 1 (Ising is easy to simulate using worm)
◮ Get algorithms for q > 1 FK and n > 1 loop models

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)

2. Choose a new bond configuration on Gα using any Markov chain
for which Wα is stationary

◮ Trick is to choose at least one Wα which is easy to simulate
◮ Can update other Wα′ by “doing nothing” (identity matrix)
◮ FK model: take Wα = 1 (percolation is easy to simulate)
◮ Loop model: take Wα = 1 (Ising is easy to simulate using worm)
◮ Get algorithms for q > 1 FK and n > 1 loop models

◮ No connectivity-checking needed

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

SW for antiferromagnetic Ising

SW for antiferromagnetic Ising model on finite graph G = (V ,E)

P(σ,n) ∝
∏

ij∈E

[(1 − p) δωij ,0 + p(1 − δσi ,σj)δωij ,1]

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

◮ Union of red and vacant edges
= spin domain for σ

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

− − − −
− − − −

− − − −
− − − −

− − − −
− − − −

− − − −

+ + +
+ +

+ + +
+ +

+ + +
+ +

+ + +
◮ Union of red and vacant edges

= spin domain for σ

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +
◮ Union of red and vacant edges

= spin domain for σ
◮ Union of blue and vacant edges

= spin domain for τ

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−
◮ Union of red and vacant edges

= spin domain for σ
◮ Union of blue and vacant edges

= spin domain for τ
◮ Combine the σ and τ configurations

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−
◮ Union of red and vacant edges

= spin domain for σ
◮ Union of blue and vacant edges

= spin domain for τ
◮ Combine the σ and τ configurations
◮ −− = 1, −+ = 2, +− = 3, ++ = 4

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

3 2 1 3 2 1 3

1 3 2 1 3 2

3 2 1 3 2 1 3

1 3 2 1 3 2

3 2 1 3 2 1 3

1 3 2 1 3 2

3 2 1 3 2 1 3
◮ Union of red and vacant edges

= spin domain for σ
◮ Union of blue and vacant edges

= spin domain for τ
◮ Combine the σ and τ configurations
◮ −− = 1, −+ = 2, +− = 3, ++ = 4

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Markov-chain Monte Carlo

◮ Markov chain
◮ State space S, with |S| < ∞
◮ Transition matrix P
◮ Stationary distribution π

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Markov-chain Monte Carlo

◮ Markov chain
◮ State space S, with |S| < ∞
◮ Transition matrix P
◮ Stationary distribution π

◮ Observables (random variables) X , Y , . . .

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Markov-chain Monte Carlo

◮ Markov chain
◮ State space S, with |S| < ∞
◮ Transition matrix P
◮ Stationary distribution π

◮ Observables (random variables) X , Y , . . .

◮ Simulate Markov chain s0
P
−→ s1

P
−→ s2

P
−→ . . . with st ∈ S

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Markov-chain Monte Carlo

◮ Markov chain
◮ State space S, with |S| < ∞
◮ Transition matrix P
◮ Stationary distribution π

◮ Observables (random variables) X , Y , . . .

◮ Simulate Markov chain s0
P
−→ s1

P
−→ s2

P
−→ . . . with st ∈ S

◮ Get time series X0,X1,X2, . . . with Xt = X (st)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Markov-chain Monte Carlo

◮ Markov chain
◮ State space S, with |S| < ∞
◮ Transition matrix P
◮ Stationary distribution π

◮ Observables (random variables) X , Y , . . .

◮ Simulate Markov chain s0
P
−→ s1

P
−→ s2

P
−→ . . . with st ∈ S

◮ Get time series X0,X1,X2, . . . with Xt = X (st)

◮ Define the autocorrelation function

ρX (t) :=
〈XsXs+t〉π − 〈X 〉2

π

varπ(X)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Markov-chain Monte Carlo

◮ Markov chain
◮ State space S, with |S| < ∞
◮ Transition matrix P
◮ Stationary distribution π

◮ Observables (random variables) X , Y , . . .

◮ Simulate Markov chain s0
P
−→ s1

P
−→ s2

P
−→ . . . with st ∈ S

◮ Get time series X0,X1,X2, . . . with Xt = X (st)

◮ Define the autocorrelation function

ρX (t) :=
〈XsXs+t〉π − 〈X 〉2

π

varπ(X)
◮ Stationary process – start “in equilibrium”

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Integrated autocorrelation times

◮ The integrated autocorrelation time

τint,X :=
1
2

∞∑

t=−∞

ρX (t)

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Integrated autocorrelation times

◮ The integrated autocorrelation time

τint,X :=
1
2

∞∑

t=−∞

ρX (t)

◮ If X̂ is the sample mean of {Xt}
T
t=1 then we have

var(X̂) ∼ 2 τint,X
var(X)

T
, T → ∞

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Integrated autocorrelation times

◮ The integrated autocorrelation time

τint,X :=
1
2

∞∑

t=−∞

ρX (t)

◮ If X̂ is the sample mean of {Xt}
T
t=1 then we have

var(X̂) ∼ 2 τint,X
var(X)

T
, T → ∞

◮ 1 “effectively independent” observation every 2 τint,X steps

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Exponential autocorrelation times

◮ ρX (t) typically decays exponentially as t → ∞

◮ The exponential autocorrelation time

τexp,X := lim sup
t→∞

t
− log |ρX (t)|

and τexp := sup
X

τexp,X

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Exponential autocorrelation times

◮ ρX (t) typically decays exponentially as t → ∞

◮ The exponential autocorrelation time

τexp,X := lim sup
t→∞

t
− log |ρX (t)|

and τexp := sup
X

τexp,X

◮ Typically τexp,X = τexp < ∞ and τint,X ≤ τexp for all X

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Exponential autocorrelation times

◮ ρX (t) typically decays exponentially as t → ∞

◮ The exponential autocorrelation time

τexp,X := lim sup
t→∞

t
− log |ρX (t)|

and τexp := sup
X

τexp,X

◮ Typically τexp,X = τexp < ∞ and τint,X ≤ τexp for all X

◮ Start the chain with arbitrary distribution α

◮ Distribution at time t is αP t

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Exponential autocorrelation times

◮ ρX (t) typically decays exponentially as t → ∞

◮ The exponential autocorrelation time

τexp,X := lim sup
t→∞

t
− log |ρX (t)|

and τexp := sup
X

τexp,X

◮ Typically τexp,X = τexp < ∞ and τint,X ≤ τexp for all X

◮ Start the chain with arbitrary distribution α

◮ Distribution at time t is αP t

Lemma
αP t tends to π with rate bounded by e−t/τexp

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Critical slowing-down

◮ Near a critical point the autocorrelation times typically diverge like

τ ∼ ξz

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Critical slowing-down

◮ Near a critical point the autocorrelation times typically diverge like

τ ∼ ξz

◮ More precisely, we have a family of exponents:
zexp, and zint,X for each observable X .

FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

Critical slowing-down

◮ Near a critical point the autocorrelation times typically diverge like

τ ∼ ξz

◮ More precisely, we have a family of exponents:
zexp, and zint,X for each observable X .

◮ Different algorithms for the same model can have very different z
◮ E.g. d = 2 Ising model

◮ Glauber (Metropolis) algorithm z ≈ 2
◮ Swendsen-Wang algorithm z ≈ 0.2

	Appendix

