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◮ O(n)-loop models
◮ Basics of the Markov-chain Monte Carlo method
◮ Worm algorithm for O(n)-loop models
◮ Proof of irreducibility in fully-packed limit

◮ Antiferromagnetic Potts models at zero temperature
◮ Review of Wang-Swendsen-Kotecký (WSK) algorithm
◮ (Non)-irreducibility of WSK algorithm at zero temperature
◮ Using worm algorithm instead
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◮ Take state space to be C(G)
◮ Cycle space of G
◮ {A ⊂ E : (V ,A) has no odd vertices}
◮ = all disjoint unions of loops on G when

∆(G) ≤ 3
◮ Assign probabilities via
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nc(A) x |A|
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, A ∈ C(G)

◮ c(A) is cyclomatic number, |A| the number of bonds
◮ Mathematical physics want to compute expectations wrt φG,n,x(·)

◮ As |V | → ∞ such models display critical phenomena: correlations
on all scales, fractals,. . .

◮ If G is large its infeasible to calculate ZG,n,x =
∑

A∈C(G) nc(A) x |A|

◮ So how can we sample from φG,n,x(·)?
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◮ Detailed balance (πsPss′ = πs′Ps′s) implies stationarity
◮ P is irreducible if s ↔ s′ for all s, s′ ∈ S
◮ If P is irreducible it has a unique stationary distribution π

Theorem (Ergodic Theorem)
If P is irreducible with stationary distribution π then for any initial
distribution

1
N

N∑

n=1

f (Xn) −−−−→
N→∞

∑

s∈S

π(s) f (s) a.s.
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Worm chains
◮ Local moves on C(G) not so obvious
◮ Enlarge C(G) to include two defects (odd vertices)
◮ Move the defects via random walk

◮ Let ∂A be the set of all odd vertices in (V ,A)
◮ State space of worm algorithm is

S(G) = {(A,u, v) : ∂A = {u, v}}

◮ When u = v we take ∂A = ∅

◮ Proposal matrix

Ψn,x [(A,u, v) → (A△uu′,u′, v)] =
1

2 d(u)

◮ Use Metropolis to construct Pn,x in detailed balance with

πn,x(A,u, v) ∝ nc(A) x |A|
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Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)



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min(1,1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

min(1,1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)
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Induced Markov chain on subspace

◮ Consider an irreducible P on a finite state space S

◮ In detailed balance with π

◮ Only observe the process when s ∈ Σ ⊆ S

◮ New process is irreducible Markov chain on Σ

◮ Transition matrix is

(P)ss′ := (P)ss′ +

∞∑

n=0

∑

s0,s1,...,sn∈Σ

(P)ss0

n∏

l=1

(P)sl−1sl (P)sns′

S

Σ

◮ P is in detailed balance with

πs =
πs∑

s′∈Σ πs′

, s ∈ Σ
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1 − (P)ss
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


(P)ss′ s ∈ Σ
(P)ss′

1 − (P)ss
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π′
s =
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πs s ∈ Σ
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Rejection-free algorithm
◮ We don’t care about states in Σ := S \ Σ

◮ Therefore we can safely avoid rejections when (A,u, v) ∈ Σ

S

Σ

◮ Use rejection-free chain instead

(P ′)ss′ :=





(P)ss′ s ∈ Σ
(P)ss′

1 − (P)ss
s ∈ Σ, s′ 6= s

0 s ∈ Σ, s′ = s

◮ P ′ is in detailed balance with

π′
s =

{
πs s ∈ Σ

(1 − (P)ss)πs s ∈ Σ

◮ P ′ is in detailed balance with π′
s = πs = πs∑

s′∈Σ πs′
, s ∈ Σ
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Fully-packed loops
Let G be bicubic and take x → ∞

◮ State space is

F(G) := {A ∈ C(G) : |A| = |V |}

◮ Assign probabilities via

φG,n(A) ∝ nc(A), A ∈ F(G)

◮ c(A) is cyclomatic number

◮ F(G) is subset of cycle space with maximal |A| (= |V |)
◮ A ∈ F(G) iff (V ,A) is a 2-factor iff E \ A is a perfect matching
◮ n = 0 corresponds to uniformly sampling Hamiltonian cycles
◮ n = 1 corresponds to uniformly sampling dimer coverings
◮ n = 1 corresponds to dual Ising model
◮ n = 2 related to q > 2 Potts models (more later. . . )

◮ The simple worm algorithm is absorbing when x = +∞
◮ Rejection-free algorithm remains valid

◮ n = 1 similar to Jerrum & Sinclair’s perfect matching algorithm
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◮ If dA(u) = 1 and dA(v) = 3 then
◮ Add one of the two vacant edges at u

◮ R(G) = {(A,u, v) ∈ S(G) : |A| ≥ |V |} is closed under P ′
n,∞
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Proof.

v

u

w x

v

u

w x

◮ Independently colour each cycle,
alternating red, blue

◮ Colour vacant edges green
◮ Ared ∪ Agreen ∈ F(G)
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Colouring Lemma
Lemma
Let G be a finite bicubic graph. For every A ∈ F(G) and every v ∈ V,
there is a path to each neighbor such that the edges alternate vacant,
occupied, . . . , vacant

Proof.

v

u

w x

v

u
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t

x

◮ Independently colour each cycle,
alternating red, blue

◮ Colour vacant edges green
◮ Ared ∪ Agreen ∈ F(G)

◮ u, v , w all connected in Ared ∪ Agreen

◮ So u, v , w all in same cycle
v u . . . t w v ∈ Ared ∪ Agreen

◮ Cycle must be even
◮ alternates green, red, . . . , green, red

◮ v u . . . t w is the desired path
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Potts models and Wang-Swendsen-Kotecký algorithm
◮ q-state Potts model on graph G = (V ,E)

◮ Spin configurations σ ∈ {1, 2, . . . , q}V with q ∈ {2, 3, . . .}
◮ H(σ) = −β

∑
uv∈E δ(σu , σv )

◮ P(σ) ∝ e−H(σ)

◮ |β| = 1/T
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◮ Update spins using P(σ|ω) then update bonds using P(ω|σ)
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◮ q-state Potts model on graph G = (V ,E)

◮ Spin configurations σ ∈ {1, 2, . . . , q}V with q ∈ {2, 3, . . .}
◮ H(σ) = −β

∑
uv∈E δ(σu , σv )

◮ P(σ) ∝ e−H(σ)

◮ |β| = 1/T

◮ β > 0 is ferromagnetic, β < 0 is antiferromagnetic
◮ When β = −∞ we uniformly sample q-vertex colourings
◮ The Swendsen-Wang (SW) cluster algorithm (ferromagnetic):

◮ Introduce auxiliary edge variables ω ∈ {0, 1}E

◮ Consider joint (Edwards-Sokal) model P(σ, ω)
◮ Update spins using P(σ|ω) then update bonds using P(ω|σ)

◮ Wang-Swendsen-Kotecký (WSK)
◮ Extension of SW to treat antiferromagnetic Potts

◮ WSK at T = 0 equivalent to “Kempe changes”
◮ Each cluster is a Kempe chain
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◮ Freeze all the σv 6∈ {µ, ν}
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Rigorous results for WSK algorithm

◮ Irreducible on all graphs when T > 0
◮ Irreducible on all graphs G when T = 0 and q ≥ ∆(G) + 1
◮ Irreducible on all bipartite graphs when T = 0
◮ Non-irreducible at T = 0:

◮ q = 4 on triangular lattice (on torus) (Mohar & Salas 2009)
◮ q = 3 on kagome lattice (on torus) (Mohar & Salas 2010)
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Rigorous results for WSK algorithm

◮ Irreducible on all graphs when T > 0
◮ Irreducible on all graphs G when T = 0 and q ≥ ∆(G) + 1
◮ Irreducible on all bipartite graphs when T = 0
◮ Non-irreducible at T = 0:

◮ q = 4 on triangular lattice (on torus) (Mohar & Salas 2009)
◮ q = 3 on kagome lattice (on torus) (Mohar & Salas 2010)

◮ Worm algorithm for honeycomb-lattice fully-packed loop model
can be used to simulate both these models
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Zero-temperature Potts antiferromagnets

Use n = 2 worm algorithm to simulate coloured loop configurations

◮ Independently color each cycle,
alternating red, blue, red, . . .

◮ Gives dynamics on coloured loop states

Pcolor [a → a′] =
1

2c(A′)
Pworm

2 [A → A′]

◮ Uniformly sample 3-edge-colorings of honeycomb lattice
◮ Uniformly sample 3-vertex-colorings of kagome lattice
◮ Uniformly sample 4-vertex-colorings on triangular lattice (Baxter)
◮ Both models display critical phenomena
◮ Wang-Swendsen-Kotecký algorithm proved non-irreducible
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Triangular-lattice Ising antiferromagnet
Loops form boundaries of Ising spin domains on dual lattice

◮ Exact correspondence when n = 1 and x = e−2β
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◮ φH,n,x(Aσ) = 2µH∗,β(σ)

◮ Aσ := {ij ∈ E : σi∗ 6= σj∗}

◮ x > 1 implies antiferromagnetic β

◮ x = +∞ corresponds to β = −∞

◮ Both models are critical in this limit

◮ Can use worm to simulate AF Ising on △-lattice at T = 0
◮ Single-spin-flip algorithms non-irreducible at T = 0
◮ Tailor-made cluster algorithms non-irreducible at T = 0



Loops & Worms Fully-packed Loops & Worms WSK Worm & Potts Summary

Summary

◮ Worm algorithms provide a simple way to simulate
honeycomb-lattice loop models

◮ Proven valid for all n, x > 0, including x = +∞

◮ For n = 1,2 also provide provably irreducible algorithms for
certain critical antiferromagnetic models

◮ Cluster algorithms fail for these models
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Structure of the defect cluster
Partition R(G) according to structure of defect cluster

R = E ∪ T ∪ D ∪Θ
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Worm algorithm for fully-packed loop model

◮ Transition matrix:

Pn[(A,u, v) → (A△uu′,u′, v)] = Pn[(A, v ,u) → (A△uu′, v ,u′)]

=





1/2 (A,u, v) ∈ E ,

1/2 (A,u, v) ∈ T ,

1/6 (A,u, v) ∈ Θ,

n/2(n + 2) (A,u, v) ∈ D and uu′ is a bridge,
1/2(n + 2) (A,u, v) ∈ D and uu′ is not a bridge.

◮ Stationary distribution:

πn(A,u, v) =
nc(A)

Zn





1/3 (A,u, v) ∈ E ,

1/3 (A,u, v) ∈ T ,

(n + 2)/3n (A,u, v) ∈ D,

1/n (A,u, v) ∈ Θ.
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Connectivity checking
Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)





F (x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
F (x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
F (1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

F (1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ So far we have glossed over an important caveat:
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◮ Dynamic connectivity-checking algorithms are known
◮ Log-time for queries and updates (Holm, de Lichtenberg & Thorup)
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◮ Simultaneous Breadth-First-Search (BFS) much simpler
◮ Polynomial-time with small (known) exponent (k -arm)
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Connectivity checking
Pn,x [(A,u, v) → (A△uu′,u′, v)] = Pn,x [(A, v ,u) → (A△uu′, v ,u′)]

=
1

2 d(u)



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F (x n) uu′ 6∈ A and u ↔ u′ in (V ,A)
F (x) uu′ 6∈ A and u 6↔ u′ in (V ,A)
F (1/n x) uu′ ∈ A and u ↔ u′ in (V ,A \ uu′)

F (1/x) uu′ ∈ A and u 6↔ u′ in (V ,A \ uu′)

◮ So far we have glossed over an important caveat:
◮ If n 6= 1 we need to compute c(A△uu′)− c(A) at each iteration

◮ But c(A) = |A| − |V |+ k(A)
◮ k(A) is the number of components in (V ,A)

◮ Dynamic connectivity-checking algorithms are known
◮ Log-time for queries and updates (Holm, de Lichtenberg & Thorup)

◮ Simultaneous Breadth-First-Search (BFS) much simpler
◮ Polynomial-time with small (known) exponent (k -arm)

◮ If n > 1 the “colouring method” avoids the issue entirely
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The colouring method
◮ Consider a finite graph G = (V ,E)

◮ Let K (A) denote the set of connected components of (V ,A)
◮ Define a “generalized random-cluster model”

PW (A) ∝
∏

C∈K (A)

W (C) A ⊆ E

◮ W (·) ≥ 0 assigns a weight to each connected subgraph of G



FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method
◮ Consider a finite graph G = (V ,E)

◮ Let K (A) denote the set of connected components of (V ,A)
◮ Define a “generalized random-cluster model”

PW (A) ∝
∏

C∈K (A)

W (C) A ⊆ E

◮ W (·) ≥ 0 assigns a weight to each connected subgraph of G
◮ If W (C) = q v |E(C)| this is just the Fortuin-Kasteleyn (FK) model



FPL transition matrix Colouring vs connectivity-checking Details. . . Autocorrelations, critical slowing down . . .

The colouring method
◮ Consider a finite graph G = (V ,E)

◮ Let K (A) denote the set of connected components of (V ,A)
◮ Define a “generalized random-cluster model”

PW (A) ∝
∏

C∈K (A)

W (C) A ⊆ E

◮ W (·) ≥ 0 assigns a weight to each connected subgraph of G
◮ If W (C) = q v |E(C)| this is just the Fortuin-Kasteleyn (FK) model
◮ Loop model corresponds to

W (C) =

{
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The colouring method
◮ Consider a finite graph G = (V ,E)

◮ Let K (A) denote the set of connected components of (V ,A)
◮ Define a “generalized random-cluster model”

PW (A) ∝
∏

C∈K (A)

W (C) A ⊆ E

◮ W (·) ≥ 0 assigns a weight to each connected subgraph of G
◮ If W (C) = q v |E(C)| this is just the Fortuin-Kasteleyn (FK) model
◮ Loop model corresponds to

W (C) =

{
n x |E(C)| C is a cycle or isolated vertex
0 otherwise

◮ Simulate PW by introducing auxiliary vertex variables (colours)
◮ Like SW, choose bonds conditioned on colours & vice versa
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The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V
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Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)
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for which Wα is stationary
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The colouring method (2)
◮ Introduce (vertex) m-colourings σ ∈ {1,2, . . .m}V

◮ For each colour α define a new weight function Wα so that

W (C) =

m∑

α=1

Wα(C) and Wα(C) ≥ 0

1. Given A ⊆ E let C be coloured α with P(σC = α) = Wα(C)/W (C)

2. Choose a new bond configuration on Gα using any Markov chain
for which Wα is stationary

◮ Trick is to choose at least one Wα which is easy to simulate
◮ Can update other Wα′ by “doing nothing” (identity matrix)
◮ FK model: take Wα = 1 (percolation is easy to simulate)
◮ Loop model: take Wα = 1 (Ising is easy to simulate using worm)
◮ Get algorithms for q > 1 FK and n > 1 loop models

◮ No connectivity-checking needed
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SW for antiferromagnetic Ising

SW for antiferromagnetic Ising model on finite graph G = (V ,E)

P(σ,n) ∝
∏

ij∈E

[(1 − p) δωij ,0 + p(1 − δσi ,σj )δωij ,1]
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= spin domain for σ
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Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

− − − −
− − − −

− − − −
− − − −

− − − −
− − − −

− − − −

+ + +
+ +

+ + +
+ +

+ + +
+ +

+ + +
◮ Union of red and vacant edges

= spin domain for σ
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Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

− − − − −
− − − −

− − − − −
− − − −

− − − − −
− − − −

− − − − −

+ +
+ +

+ +
+ +

+ +
+ +

+ +
◮ Union of red and vacant edges

= spin domain for σ
◮ Union of blue and vacant edges

= spin domain for τ
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Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−
◮ Union of red and vacant edges

= spin domain for σ
◮ Union of blue and vacant edges

= spin domain for τ
◮ Combine the σ and τ configurations
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Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−

−− +− −+ −− +− −+

+− −+ −− +− −+ −− +−
◮ Union of red and vacant edges

= spin domain for σ
◮ Union of blue and vacant edges

= spin domain for τ
◮ Combine the σ and τ configurations
◮ −− = 1, −+ = 2, +− = 3, ++ = 4
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Mapping 3-edge colorings to dual 4-vertex colorings

◮ Randomly color the cycles ⇐⇒ proper edge 3-coloring
◮ Use two independent Ising variables on each face, σ, τ

3 2 1 3 2 1 3

1 3 2 1 3 2

3 2 1 3 2 1 3

1 3 2 1 3 2

3 2 1 3 2 1 3

1 3 2 1 3 2

3 2 1 3 2 1 3
◮ Union of red and vacant edges

= spin domain for σ
◮ Union of blue and vacant edges

= spin domain for τ
◮ Combine the σ and τ configurations
◮ −− = 1, −+ = 2, +− = 3, ++ = 4
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Markov-chain Monte Carlo

◮ Markov chain
◮ State space S, with |S| < ∞
◮ Transition matrix P
◮ Stationary distribution π

◮ Observables (random variables) X , Y , . . .

◮ Simulate Markov chain s0
P
−→ s1

P
−→ s2

P
−→ . . . with st ∈ S

◮ Get time series X0,X1,X2, . . . with Xt = X (st)

◮ Define the autocorrelation function

ρX (t) :=
〈XsXs+t〉π − 〈X 〉2

π

varπ(X )
◮ Stationary process – start “in equilibrium”
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Integrated autocorrelation times

◮ The integrated autocorrelation time

τint,X :=
1
2

∞∑

t=−∞

ρX (t)
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◮ The integrated autocorrelation time

τint,X :=
1
2

∞∑

t=−∞

ρX (t)

◮ If X̂ is the sample mean of {Xt}
T
t=1 then we have

var(X̂ ) ∼ 2 τint,X
var(X )

T
, T → ∞
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Integrated autocorrelation times

◮ The integrated autocorrelation time

τint,X :=
1
2

∞∑

t=−∞

ρX (t)

◮ If X̂ is the sample mean of {Xt}
T
t=1 then we have

var(X̂ ) ∼ 2 τint,X
var(X )

T
, T → ∞

◮ 1 “effectively independent” observation every 2 τint,X steps
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Exponential autocorrelation times

◮ ρX (t) typically decays exponentially as t → ∞

◮ The exponential autocorrelation time

τexp,X := lim sup
t→∞

t
− log |ρX (t)|

and τexp := sup
X

τexp,X
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Exponential autocorrelation times

◮ ρX (t) typically decays exponentially as t → ∞

◮ The exponential autocorrelation time

τexp,X := lim sup
t→∞

t
− log |ρX (t)|

and τexp := sup
X

τexp,X

◮ Typically τexp,X = τexp < ∞ and τint,X ≤ τexp for all X

◮ Start the chain with arbitrary distribution α

◮ Distribution at time t is αP t

Lemma
αP t tends to π with rate bounded by e−t/τexp
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Critical slowing-down

◮ Near a critical point the autocorrelation times typically diverge like

τ ∼ ξz
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Critical slowing-down

◮ Near a critical point the autocorrelation times typically diverge like

τ ∼ ξz

◮ More precisely, we have a family of exponents:
zexp, and zint,X for each observable X .

◮ Different algorithms for the same model can have very different z
◮ E.g. d = 2 Ising model

◮ Glauber (Metropolis) algorithm z ≈ 2
◮ Swendsen-Wang algorithm z ≈ 0.2
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