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A vertex colouring of a graph G = (V,E) is a map c : V → [q]

such that adjacent vertices must not have the same colour.

Here q ≥ 2 is an integer and [q] = {1,2, . . . , q} is a set of

colours.

We often wish to sample such a colouring of G uniformly at

random.



Instead we can allow all maps c : V → [q], but encourage

adjacent vertices to have distinct colours by giving each

colouring σ a weight

w(σ) = λ# mono edges in σ,

where λ < 1.

λ

This leads to the antiferromagnetic Potts model. (If λ = 0

then we recover vertex colourings.)



If instead λ > 1 then monochromatic edges are encouraged.

This leads to the ferromagnetic Potts model, which arose

in statistical physics as a model of magnetism.



Let Ω = [q]V and fix the “fugacity” λ > 1.

The Gibbs distribution on Ω is the probability distribution

which gives σ ∈ Ω probability which is proportional to

λµ(σ),

where µ(σ) is the number of monochromatic edges of G in

the colouring σ.

Then σ has probability λµ(σ)/Z, where

Z =
∑

σ∈Ω

λµ(σ)

is the partition function of the model.



Aim: to sample from Ω according to the Gibbs distribution.

However, this is computationally equivalent to computing

the partition function Z exactly.

FACT: Evaluation of Z for a general graph is #P-hard.

This follows from Vertigan & Welsh (1992), since (up to an

easy multiplicative constant), Z is an evaluation of the Tutte

polynomial T(G; x, y) along the hyperbola (x−1)(y−1) = q.



Hence the best we can hope for in polynomial time is

approximate sampling. Try a Markov chain: the simplest is

called the Glauber dynamics.

From current colouring σ ∈ Ω do:

• choose a vertex v ∈ V uniformly at random,

• choose a colour c ∈ [q] with probability proportional to

λnumber of neighbours of v coloured c,

• recolour v with colour c to give the new colouring σ′ ∈ Ω.



Choose a vertex v uniformly at random...



Choose a vertex v uniformly at random, and choose a colour

c ∈ [q] with probability proportional to λnr nbs of v coloured c.



Choose a vertex v uniformly at random, and choose a colour

c ∈ [q] with probability proportional to λnr nbs of v coloured c.

Recolour v with colour c.



The stationary distribution of the Glauber dynamics is the

Gibbs distribution π. (Some other nice properties guarantee

this.)

Start the Glauber dynamics at initial colouring σ0 ∈ Ω and

run it for t steps, visiting colourings

σ0, σ1, · · · , σt.

The distance from stationarity after t steps can be measured

using total variation distance:

dTV(Pr(σt = ·), π) =
1

2

∑

σ∈Ω

|Pr(σt = σ)− π(σ)|.

How big must t be before this distance is at most ε, for any

choice of starting colouring σ0?



The mixing time of the Glauber dynamics is

τ(ε) = max
σ0∈Ω

min {T : dTV(Pr(σT = ·), π) < ε}.

We consider λ and q as fixed constants.

If τ(ε) ≤ poly(n, log(ε−1)) then we say that the dynamics is

rapidly mixing.

If τ(1/2e) ≥ exp(poly(n)) then we say that the dynamics is

torpidly mixing.



Our results:

Theorem 1. Let ∆, q ≥ 2 be integers and fix λ > 1 such that

q ≥ ∆λ∆ +1.

Then the Glauber dynamics of the q-state Potts model at

fugacity λ mixes rapidly for graphs with maximum degree

∆.

Mixing time:

τ(ε) ≤ (∆+ 1)n log(nε−1)

(pretty fast).

Proof: Path coupling (Bubley & Dyer, 1997), which builds

on Doeblin (1933), Aldous (1983).



(We now write “(q, λ)-Potts” instead of “q-state Potts model

at fugacity λ”.)

We will define a coupling (Xt, Yt) for the Glauber dynamics:

• choose a random vertex v;

• Xt and Yt both recolour v with colour cX, cY respectively,

such that cX and cY both have the correct distribution

but Pr(cX = cY ) is as large as possible.

Both (Xt) and (Yt) are faithful copies of the Glauber

dynamics.



Example: suppose that λ = 2 and X and Y are as shown:

Then an optimal joint distribution of (cX , cY ) is given by

solving an assignment problem:
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Example: suppose that λ = 2 and X and Y are as shown:

Then an optimal joint distribution of (cX , cY ) is given by

solving an assignment problem:

blue green red
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Path coupling allows us to restrict our attention to pairs

(X, Y ) which differ at just one vertex: that is, H(X, Y ) = 1

where H denotes the Hamming distance.

If (X, Y ) 7→ (X ′, Y ′) under the coupling and

E(H(X ′, Y ′)|(X, Y )) ≤ β

for some β < 1, then (Bubley & Dyer, 1997)

τ(ε) ≤
log(nε−1)

1− β
.



uu

vv

If the disagree vertex v is chosen then H(X ′, Y ′) = 0. If a
neighbour u of v is chosen then

E(H(X ′, Y ′)|(X, Y ), v) ≤ 1+ p

where p is the maximum probability that u receives distinct
colours in X, Y .

We prove that p ≤ λ∆/(λ∆ + q − 1). Then

E(H(X ′, Y ′)|(X, Y )) ≤ 1−
1

n
+

∆ p

n
≤ 1−

1

(∆+ 1)n

using the assumption q ≥ ∆λ∆ +1.



Theorem 2. Let ∆, q ≥ 2 be integers and fix λ > 1. For any

η > 0 there is a function f(∆, η) such that if

q > f(∆, η)λ∆−1+η

then the Glauber dynamics for (q, λ)-Potts mixes rapidly for

graphs with maximum degree ∆.

This is proved by analysing a Markov chain called the block

dynamics which updates more than one vertex per step.



For example, consider the set S of all 2× 2 subgrids of the
n × n toroidal grid. Choose a block S ∈ S uniformly at
random and recolour ALL vertices in S at one step. The
distribution on the recolouring is chosen to ensure that the
stationary distribution has the Gibbs distribution.



For example, consider the set S of all 2× 2 subgrids of the
n × n toroidal grid. Choose a block S ∈ S uniformly at
random and recolour ALL vertices in S at one step. The
distribution on the recolouring is chosen to ensure that the
stationary distribution has the Gibbs distribution.



Let v be a fixed vertex and let ψv be the probability that

v ∈ S, where S is chosen from S according to some specified

distribution. We prove that when q ≥ b(S)λd(S) (for some

constants b(S), d(S) which we state explicitly), the mixing

time of the block dynamics is at most 2ψ−1 log(nε−1), where

ψ = min
v∈V

ψv.

Then we apply a comparison theorem of Dyer, Goldberg,

Jerrum & Martin (2006) to obtain an upper bound on the

mixing time of the Glauber dynamics.

The mixing time we get is horrendous, but it is polynomial.



Comparison via multicommodity flows: for each transition

X → Y of the block dynamics, we define a path

γXY : Z0, Z1, . . . , Zk

from X = Z0 to Y = Zk, such that Zj → Zj+1 is a transition

of the Glauber dynamics for j = 0,1, . . . , k − 1.

If no transition Z → Z ′ of the Glauber dynamics is too over-

loaded by {γXY } then the congestion A of the set of paths

is small. The comparison theorem essentially says that

τGlauber(ε) ≤ Aτblock(ε).



Our paths are defined by recolouring all vertices recoloured

by the block transition X → Y , one at a time in increasing

vertex order.



Our paths are defined by recolouring all vertices recoloured

by the block transition X → Y , one at a time in increasing

vertex order.

It turns out that the congestion A of these paths satisfies

A ≤ sqs+1 λ∆(s+1)

where s is the maximum block size.



Theorem 3. Let ∆, q ≥ 2 be integers and fix λ > 1. For any

η > 0 there is a function g(∆, η) such that if

q < g(∆, η)λ
∆−1− 1

∆−1−η

then the Glauber dynamics for (q, λ)-Potts mixes torpidly for

almost all ∆-regular graphs.

Proof: The proof uses the concept of conductance to show

that there are bottlenecks in the state space.



Let σ0 be the “all red” colouring. Define Br to be the set

of colourings which differ from σ in at most r vertices, and

let Sr be those that differ in exactly r vertices (for some

convenient r).

We show that for a random ∆-regular graph on n vertices,

if

q < g(∆, η)λ
∆−1− 1

∆−1−η

then

Pr (π(Sr)/π(Br) is exponentially small) → 1 as n→ ∞.

Hence it takes exponentially many steps for the chain to

escape from Br, for almost all ∆-regular graphs.



Firstly, note that

π(Br) ≥ π(σ0) =
λm

Z
.

Next we bound π(Sr). There are
(

n
r

)

ways to choose the set

U of r vertices not coloured red. Then for a fixed U , the

contribution to π(Sr) is

λ|E(U)|Z(G[U ], λ, q − 1).

To bound |E(U)| we perform some calculations in the

configuration model, showing that with probability tending

to 1 no r-set of vertices induces a subgraph with “too many”

edges.



To bound Z(G[U ], λ, q − 1) we proved the following:

Proposition. Let G be a graph with n vertices, m edges and

maximum degree ∆. Write m = a∆ + b where a = ⌊m/∆⌋

and 0 ≤ b <∆. For any given λ ≥ 1 we have

Z(G,λ, q) ≤ λb (1 + q−1(λ∆ − 1))a qn.

Our proof involved the following probabilistic rearrangement

inequality.

Lemma. Let (X1, . . . , Xd) be a random, bounded, N
d-valued

vector. Suppose that there exists a random variable X such

that Xj ∼ X for j = 1, . . . , d. Then for all λ ≥ 0 we have

E(λX1+···+Xd) ≤ E(λdX).



The case of ∆ = 4 is of particular physical interest:

Proposition Let q ≥ 2 be an integer and fix λ > 1. For any

η > 0 there are functions f(η) and g(η) such that:

(i) if q > f(η)λ3+η then the Glauber dynamics for (q, λ)-

Potts mixes rapidly for graphs with maximum degree 4,

(ii) if q > f(η)λ2+η then the Glauber dynamics for (q, λ)-

Potts mixes rapidly for the toroidal grid, and

(iii) if q < g(η)λ
8
3−η then the Glauber dynamics of (q, λ)-

Potts mixes torpidly for almost all 4-regular graphs.



The proof of (ii) uses block dynamics where the blocks are

square subgrids of the toroidal grid.

Note: The phase transition for (q, λ)-Potts model on the 2-

dimensional grid occurs at q = (λ− 1)2, so we expect rapid

mixing on the grid for q > (λ − 1)2. From (ii) we have

q > f(η)λ2+η, nearly the right power of λ.

Corollary: For sufficiently large λ, there is some number q

of colours such that the Glauber dynamics for (q, λ)-Potts

mixes rapidly for the toroidal grid, but mixes torpidly for

almost all 4-regular graphs.


