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eBugs — colourful robots

@ Wireless robot network research platform
» ‘Swarm’ of up to 20 robots

o Mobile
» Precision controlled stepper motors

@ 16 multicolour LEDs (red, green and blue)

» Can display a sequence of colours around
its perimeter

@ Expandable

» Vision capabilities can be provided with a
camera

Problem

Can a sequence of colours be assigned to the LEDs of each eBug such that
any observer (camera) can identify the eBug and its orientation?
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Example (4 eBugs, 8 LEDs, 2 colours)
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Preliminary bounds

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one
of g colours, and that a camera can reliably detect ¢ adjacent LEDs. An
assignment of colours to the LEDs of all eBugs is valid if the camera can
distinguish each eBug in each of the k orientations.
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distinguish each eBug in each of the k orientations.
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» Each of the ¢¢ possible sequences cannot appear more than once
» Each eBug will account for k of the sequences

0
e Upper bound: £(q, k,¢) < {QJ

L

@ Initial lower bound: Lovész local lemma gives £ > Siﬁ

@ Computation shows that upper bound is achieved in small cases
@ Main problem — when is the upper bound achievable?
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Definition
The ¢-th order g-ary de Bruijn graph dB(q, ¢) is the digraph (V, E), where
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v
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Easily implemented as a digital logic circuit

Example (¢ = 2, p(z) = 2" + 25 + 2 + x + 1)
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Galois LFSRs

Let ¢ be a prime power, and consider the Galois field GF(q)

Choose a degree ¢ primitive polynomial p(z) over GF(q)
» The quotient F' = GF(q)[z]/(p(x)) is generated by x

Repeatedly multiplying by x gives every non-zero element of F

Easily implemented as a digital logic circuit
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Fibonacci LFSRs

Example (¢ = 2, p(z) = 2" + 2° + 2> + 2 + 1) — Galois
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Fibonacci LFSRs

Example (g p(z) = 2" + 2° + 2% + ¥ + 1) — Fibonacci
s~ W - VY~ S - W
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Fibonacci LFSRs

Example (¢ = 2, p(z) = 27 + 2° + 2% + 2 + 1) — Fibonacci

@ Different logic configuration
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