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Introduction de Bruijn sequences Results Summary Motivation Demonstration de Bruijn graphs

eBugs — colourful robots

Wireless robot network research platform

I ‘Swarm’ of up to 20 robots

Mobile

I Precision controlled stepper motors

16 multicolour LEDs (red, green and blue)

I Can display a sequence of colours around
its perimeter

Expandable

I Vision capabilities can be provided with a
camera

Problem

Can a sequence of colours be assigned to the LEDs of each eBug such that
any observer (camera) can identify the eBug and its orientation?
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Example (4 eBugs, 8 LEDs, 2 colours)
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Preliminary bounds

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one
of q colours, and that a camera can reliably detect ` adjacent LEDs. An
assignment of colours to the LEDs of all eBugs is valid if the camera can
distinguish each eBug in each of the k orientations.

The eBug number E(q, k, `) is the maximum number of eBugs for which
there exists a valid assignment of colours.

Upper bound: E(q, k, `) ≤
⌊
q`

k

⌋

I Each of the q` possible sequences cannot appear more than once
I Each eBug will account for k of the sequences

Initial lower bound: Lovász local lemma gives E ≥ q`

8`k
Computation shows that upper bound is achieved in small cases
Main problem — when is the upper bound achievable?
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Demonstration
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What is a de Bruijn graph?

Definition

The `-th order q-ary de Bruijn graph dB(q, `) is the digraph (V,E), where
V = Z`

q and E = {(a0a1 . . . a`−1, a1a2 . . . a`) | ai ∈ Zq}.

Vertices are words of length ` over an alphabet of size q

Edge from u to v if shifting u left and appending any letter gives v

Example (dB(2, 3))

010

100

000

001

111

110

101

011
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de Bruijn graphs and eBug numbers

Example (dB(2, 3))

010

100

000

001

111

110

101

011

Every vertex is a sequence of ` colours

I This represents the camera’s view

Rotating the eBug corresponds to following an edge

A cycle of length k represents the whole eBug

E(q, k, `) is the maximum number of disjoint k-cycles
in dB(q, `)
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Construction via line digraphs

Alternate construction

dB(q, 1) =
−→
Kq

Example (q = 2)
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Construction via line digraphs

Alternate construction

dB(q, 1) =
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Kq; dB(q, `+ 1) = L(dB(q, `))
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Construction via line digraphs

Alternate construction

dB(q, 1) =
−→
Kq; dB(q, `+ 1) = L(dB(q, `))

Example (q = 3)

1

0

2

Tony Grubman Cycles in de Bruijn graphs 9 / 24



Introduction de Bruijn sequences Results Summary Motivation Demonstration de Bruijn graphs

Construction via line digraphs
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de Bruijn graphs are Hamiltonian

Theorem

If a digraph G is Eulerian, then the line digraph L(G) is Hamiltonian.

An Eulerian circuit in G is equivalent to a Hamiltonian cycle in L(G)

Corollary

Every de Bruijn graph has a Hamiltonian cycle.

Proof

Can assume ` ≥ 2 as dB(q, 1) =
−→
Kq is Hamiltonian

Every vertex in dB(q, `− 1) has in-degree q and out-degree q

I dB(q, `− 1) is Eulerian
I dB(q, `) is Hamiltonian

Tony Grubman Cycles in de Bruijn graphs 10 / 24
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Definition

A q-ary de Bruijn sequence of order ` is a Hamiltonian cycle in dB(q, `).

Theorem

The number of Eulerian circuits in an Eulerian digraph G is

τ(G)
∏

v∈V (G)

(d+(v)− 1)!

d+(v) is the out-degree of vertex v

τ(G) is the number of spanning arborescences rooted at some vertex

I Does not depend on choice of root vertex

Corollary

There are exactly
(q!)q

`−1

q`
q-ary de Bruijn sequences of order `.
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Galois LFSRs

Let q be a prime power, and consider the Galois field GF(q)

Choose a degree ` primitive polynomial p(x) over GF(q)

I The quotient F = GF(q)[x]/〈p(x)〉 is generated by x

Repeatedly multiplying by x gives every non-zero element of F

Easily implemented as a digital logic circuit

Example (q = 2, p(x) = x7 + x5 + x2 + x+ 1)

1xx2x3x4x5x6
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Fibonacci LFSRs

Example (q = 2, p(x) = x7 + x5 + x2 + x+ 1) — Galois

1000000

1xx2x3x4x5x6
1110010

Different logic configuration

I Additive feedback is many-to-one, instead of one-to-many
I The shift direction is reversed

Same polynomial may be used

Also represents consecutive powers of x, but in a different basis

Produces an identical sequence in the last digit
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de Bruijn sequences from LFSRs

In the Fibonacci configuration, state transitions correspond to edges
in dB(q, `)

All non-zero states are traversed in a single cycle

I Gives a Hamiltonian cycle in dB(q, `) \ {00 . . . 0}

Can be extended to all of dB(q, `)

I Insert 00 . . . 0 before 00 . . . 1
I Previous edge c0 . . . 0→ 00 . . . 1 becomes two edges
c0 . . . 0→ 00 . . . 0→ 00 . . . 1

Every primitive polynomial gives a different de Bruijn sequence

I There are
ϕ(q` − 1)

`
q-ary de Bruijn sequences of order ` arising from

linear feedback shift registers
I Most are “non-linear” feedback shift registers
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Length k subsequences in de Bruijn sequences

Consider a de Bruijn sequence in dB(q, `) constructed from a LFSR

I This corresponds to an Eulerian circuit in dB(q, `− 1)
I State polynomial of LFSR represents an edge

Suppose we want to find a k-subcircuit in this Eulerian circuit

I After k iterations of the LFSR, we should be at the same vertex
I Equivalent to changing the constant term in state polynomial

This can be expressed as an equation in the quotient field:

I xkf(x) = f(x) + c for some c ∈ GF(q) \ {0}
I Unique solution for each c: f(x) = c

xk−1

We have found q − 1 k-cycles in dB(q, `)

I Requires (q − 1)k ≤ q` − 1 for cycles to be disjoint
I This is sufficient because cycles are evenly distributed

E(q, k, `) ≥ q − 1 for k ≤ q` − 1

q − 1
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Optimality for k = q`−1

Consider the case when k = q`−1

I q` − k states of the LFSR are covered by the q − 1 k-cycles

Take these cycles out of the LFSR sequence

I The remaining k − 1 states form a cycle C

Suppose one of the states in C is a constant polynomial

I The zero polynomial can be inserted into C
I dB(q, `) contains q disjoint k-cycles
I E(q, q`−1, `) = q

C contains a constant iff − logx(xk − 1) mod q`−1
q−1 ≤

k−1
q−1

I This may be true for some primitive polynomials and false for others
I For a given q and `, we only need one polynomial
I Depends on the distribution of the discrete logarithm
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Multiplying cycles

Theorem

Fix a value of ` and set E1 = E(q1, k1, `) and E2 = E(q2, k2, `). Then

E(q1q2, lcm(k1, k2), `) ≥ gcd(k1, k2) E1 E2.

Preserves optimality w.r.t. upper bound E ≤ q`

k

I If E1 and E2 are optimal, then so is E(q1q2, lcm(k1, k2), `)

When k1 and k2 are coprime, not much is gained

Largest increase in E when k1 = k2

I Easy to get large E when q is divisible by a high power
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Proof of correctness (sketch)

Consider any sequence of ` colour pairs in resulting eBugs

I This gives a red/blue sequence and a yellow/cyan sequence
I These had unique positions in original colourings

Sequence corresponds to a particular pair of eBugs in a particular
orientation

I Resulting eBugs can still be uniquely identified and oriented

Theorem easily extends to k1 6= k2 case
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Necklaces

Definition

A necklace is an equivalence class of words under cyclic rotation. The
length of a necklace is the length of any word in the class, while the size of
a necklace is the number of words in the class.

Example

001021 ≡ 010210 ≡ 102100 ≡ 021001 ≡ 210010 ≡ 100102

Every necklace gives a cycle in a de Bruijn graph

I The length of the cycle is the size of the necklace

Cycles can be concatenated in the previous de Bruijn graph

I Two necklaces of length ` are mergable if they share a subword of
length `− 1

Construct a graph N(q, `) of necklaces of length ` over q letters

I Edge between two necklaces if they are mergable
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Merging necklaces

Consider a connected subgraph of N(q, `)

I Edges can be contracted by merging the appropriate cycles
I The whole subgraph will produce one long cycle
I The length of the cycle is the sum of the necklace sizes

Consider a partition of N(q, `) into connected pieces of total size k

I Gives a partition of dB(q, `) into k-cycles
I Difficult to find because N(q, `) has necklaces of different sizes

N(q, `) contains necklaces of each size m that divides `

I Moreau’s necklace counting function: M(q,m) = 1
m

∑
d|m

µ(d)qm/d

If q and ` are coprime, M(q,m) is divisible by q for each m

I Potential to partition N(q, `) into q connected pieces
I For each size m, every piece has same number of size m necklaces
I Resulting cycles all have the same length
I Will give E(q, q`−1, `) = q
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Partitioning N(q, `)

Example (q = 2)

As ` must be odd, each necklace contains a majority of some letter (0 or
1). Let N0 (N1) be the set of necklaces with more 0s (1s).

Let n0 ∈ N0 be the all zeroes necklace

Pick a necklace n in N0 \ {n0}

I Change the first 1 in n to a 0, and call this necklace n̄
I There is an edge in N(q, `) between n and n̄
I Note that n̄ ∈ N0

By induction, there is a path in N0 from n to n0

I N0 is connected
I By symmetry, N1 is connected

Each component gives a cycle of length 2`−1 in dB(q, `)

Similar methods give a partition for general q whenever gcd(q, `) = 1

I E(q, q`−1, `) = q
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Introduction de Bruijn sequences Results Summary

Summary

Overall goal: investigate behaviour of eBug number E(q, k, `)

I Each eBug has k LEDs with q available colours
I Camera can see ` consecutive LEDs

Equivalent to finding k-cycles in the de Bruijn graph dB(q, `)

I E(q, k, `) maximised when dB(q, `) is partitioned into k-cycles

de Bruijn graphs are Hamiltonian, so E(q, q`, `) = 1

I Called de Bruijn sequences
I One big eBug is not very useful

In some cases, partition into q q`−1-cycles exists

I Guaranteed when q and ` are coprime
I Likely when q is a prime power
I Requires primitive polynomial with certain properties

Two eBug colourings can be multiplied to give many eBugs

I Must have the same ` value
I Resulting eBugs have q1q2 possible colours
I Resulting cycle length is lcm(k1, k2)
I Each pair of eBugs gives gcd(k1, k2) new eBugs
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Minimum k for which E(q, k, `) = q`

k
guaranteed

` q = 2 q = 3 q = 4 q = 6 q = 12

1 1 1 1 1 1
2 4 3 4 12 12
3 4 27 4 108 108
4 16 27 16 432 432
5 16 81 16 1296 1296
6 64 729 64 46656 46656
7 64 729 64 46656 46656

Tony Grubman Cycles in de Bruijn graphs 24 / 24


	Introduction
	Motivation
	Demonstration
	de Bruijn graphs

	de Bruijn sequences
	Existence
	Construction: Linear feedback shift registers

	Results
	Splitting linear feedback shift register sequences
	Product colouring
	Combining necklaces


