Cycle Decompositions of de Bruijn Graphs for Robot Identification and Tracking

Tony Grubman

Joint Supervisors: Y. Ahmet Şekercioğlu David R. Wood

Department of Electrical and Computer Systems Engineering
School of Mathematical Sciences

September 23, 2013

Outline

- Introduction
 - Motivation
 - Demonstration
 - de Bruijn graphs

Outline

- Introduction
 - Motivation
 - Demonstration
 - de Bruijn graphs
- 2 de Bruijn sequences
 - Existence
 - Construction: Linear feedback shift registers

Outline

- Introduction
 - Motivation
 - Demonstration
 - de Bruijn graphs
- 2 de Bruijn sequences
 - Existence
 - Construction: Linear feedback shift registers
- Results
 - Splitting linear feedback shift register sequences
 - Product colouring
 - Combining necklaces

• Wireless robot network research platform

- Wireless robot network research platform
 - 'Swarm' of up to 20 robots

- Wireless robot network research platform
 - 'Swarm' of up to 20 robots
- Mobile

- Wireless robot network research platform
 - 'Swarm' of up to 20 robots
- Mobile
 - Precision controlled stepper motors

- Wireless robot network research platform
 - 'Swarm' of up to 20 robots
- Mobile
 - ▶ Precision controlled stepper motors
- 16 multicolour LEDs (red, green and blue)

- Wireless robot network research platform
 - 'Swarm' of up to 20 robots
- Mobile
 - Precision controlled stepper motors
- 16 multicolour LEDs (red, green and blue)
 - Can display a sequence of colours around its perimeter

- Wireless robot network research platform
 - 'Swarm' of up to 20 robots
- Mobile
 - Precision controlled stepper motors
- 16 multicolour LEDs (red, green and blue)
 - Can display a sequence of colours around its perimeter
- Expandable

- Wireless robot network research platform
 - 'Swarm' of up to 20 robots
- Mobile
 - Precision controlled stepper motors
- 16 multicolour LEDs (red, green and blue)
 - Can display a sequence of colours around its perimeter
- Expandable
 - Vision capabilities can be provided with a camera

- Wireless robot network research platform
 - 'Swarm' of up to 20 robots
- Mobile
 - Precision controlled stepper motors
- 16 multicolour LEDs (red, green and blue)
 - Can display a sequence of colours around its perimeter
- Expandable
 - Vision capabilities can be provided with a camera

Problem

Can a sequence of colours be assigned to the LEDs of each eBug such that any observer (camera) can identify the eBug and its orientation?

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one of q colours, and that a camera can reliably detect ℓ adjacent LEDs. An assignment of colours to the LEDs of all eBugs is valid if the camera can distinguish each eBug in each of the k orientations.

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one of q colours, and that a camera can reliably detect ℓ adjacent LEDs. An assignment of colours to the LEDs of all eBugs is valid if the camera can distinguish each eBug in each of the k orientations.

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one of q colours, and that a camera can reliably detect ℓ adjacent LEDs. An assignment of colours to the LEDs of all eBugs is valid if the camera can distinguish each eBug in each of the k orientations.

The eBug number $\mathcal{E}(q,k,\ell)$ is the maximum number of eBugs for which there exists a valid assignment of colours.

• Upper bound: $\mathcal{E}(q,k,\ell) \leq \left| \frac{q^{\ell}}{k} \right|$

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one of q colours, and that a camera can reliably detect ℓ adjacent LEDs. An assignment of colours to the LEDs of all eBugs is valid if the camera can distinguish each eBug in each of the k orientations.

- Upper bound: $\mathcal{E}(q,k,\ell) \leq \left| \frac{q^{\ell}}{k} \right|$
 - lacktriangle Each of the q^ℓ possible sequences cannot appear more than once

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one of q colours, and that a camera can reliably detect ℓ adjacent LEDs. An assignment of colours to the LEDs of all eBugs is valid if the camera can distinguish each eBug in each of the k orientations.

- Upper bound: $\mathcal{E}(q,k,\ell) \leq \left| \frac{q^{\ell}}{k} \right|$
 - lacktriangle Each of the q^ℓ possible sequences cannot appear more than once
 - ightharpoonup Each eBug will account for k of the sequences

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one of q colours, and that a camera can reliably detect ℓ adjacent LEDs. An assignment of colours to the LEDs of all eBugs is valid if the camera can distinguish each eBug in each of the k orientations.

- Upper bound: $\mathcal{E}(q,k,\ell) \leq \left| \frac{q^{\ell}}{k} \right|$
 - Each of the q^{ℓ} possible sequences cannot appear more than once
 - ► Each eBug will account for k of the sequences
- ullet Initial lower bound: Lovász local lemma gives $\mathcal{E} \geq rac{q^\ell}{8\ell k}$

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one of q colours, and that a camera can reliably detect ℓ adjacent LEDs. An assignment of colours to the LEDs of all eBugs is valid if the camera can distinguish each eBug in each of the k orientations.

- Upper bound: $\mathcal{E}(q,k,\ell) \leq \left| \frac{q^{\ell}}{k} \right|$
 - lacktriangle Each of the q^ℓ possible sequences cannot appear more than once
 - ightharpoonup Each eBug will account for k of the sequences
- Initial lower bound: Lovász local lemma gives $\mathcal{E} \geq \frac{q^{\ell}}{8\ell k}$
- Computation shows that upper bound is achieved in small cases

Definition (eBug number)

Suppose every eBug has k LEDs, each of which can be illuminated in one of q colours, and that a camera can reliably detect ℓ adjacent LEDs. An assignment of colours to the LEDs of all eBugs is valid if the camera can distinguish each eBug in each of the k orientations.

- Upper bound: $\mathcal{E}(q,k,\ell) \leq \left| \frac{q^{\ell}}{k} \right|$
 - lacktriangle Each of the q^ℓ possible sequences cannot appear more than once
 - ightharpoonup Each eBug will account for k of the sequences
- ullet Initial lower bound: Lovász local lemma gives $\mathcal{E} \geq rac{q^\ell}{8\ell k}$
- Computation shows that upper bound is achieved in small cases
- Main problem when is the upper bound achievable?

Demonstration

Definition

The ℓ -th order q-ary de Bruijn graph $dB(q,\ell)$ is the digraph (V,E), where $V = \mathbb{Z}_q^{\ell}$ and $E = \{(a_0 a_1 \dots a_{\ell-1}, a_1 a_2 \dots a_{\ell}) \mid a_i \in \mathbb{Z}_q\}.$

Definition

The ℓ -th order q-ary de Bruijn graph $\mathrm{dB}(q,\ell)$ is the digraph (V,E), where $V=\mathbb{Z}_q^\ell$ and $E=\{(a_0a_1\dots a_{\ell-1},a_1a_2\dots a_\ell)\mid a_i\in\mathbb{Z}_q\}.$

• Vertices are words of length ℓ over an alphabet of size q

Definition

The ℓ -th order q-ary de Bruijn graph $\mathrm{dB}(q,\ell)$ is the digraph (V,E), where $V=\mathbb{Z}_q^\ell$ and $E=\{(a_0a_1\dots a_{\ell-1},a_1a_2\dots a_\ell)\mid a_i\in\mathbb{Z}_q\}.$

- ullet Vertices are words of length ℓ over an alphabet of size q
- ullet Edge from u to v if shifting u left and appending any letter gives v

Definition

The ℓ -th order q-ary de Bruijn graph $\mathrm{dB}(q,\ell)$ is the digraph (V,E), where $V=\mathbb{Z}_q^\ell$ and $E=\{(a_0a_1\dots a_{\ell-1},a_1a_2\dots a_\ell)\mid a_i\in\mathbb{Z}_q\}.$

- Vertices are words of length ℓ over an alphabet of size q
- ullet Edge from u to v if shifting u left and appending any letter gives v

Example (dB(2,3))

Example (dB(2,3)) $000 \qquad 010 \qquad 110 \qquad 111 \qquad 111$

ullet Every vertex is a sequence of ℓ colours

- Every vertex is a sequence of ℓ colours
 - ► This represents the camera's view

- ullet Every vertex is a sequence of ℓ colours
 - ► This represents the camera's view
- Rotating the eBug corresponds to following an edge

- Every vertex is a sequence of ℓ colours
 - ► This represents the camera's view
- Rotating the eBug corresponds to following an edge
- ullet A cycle of length k represents the whole eBug

Example (dB(2,3))

- Every vertex is a sequence of ℓ colours
 - ► This represents the camera's view
- Rotating the eBug corresponds to following an edge
- A cycle of length k represents the whole eBug
- $\mathcal{E}(q,k,\ell)$ is the maximum number of disjoint k-cycles in $\mathrm{dB}(q,\ell)$

Example (dB(2,3))

- Every vertex is a sequence of ℓ colours
 - ▶ This represents the camera's view
- Rotating the eBug corresponds to following an edge
- A cycle of length k represents the whole eBug
- $\mathcal{E}(q,k,\ell)$ is the maximum number of disjoint k-cycles in $\mathrm{dB}(q,\ell)$

Construction via line digraphs

Alternate construction

$$dB(q,1) = \overrightarrow{K_q}$$

Alternate construction

$$dB(q,1) = \overrightarrow{K_q}$$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Alternate construction

$$dB(q, 1) = \overrightarrow{K_q};$$
 $dB(q, \ell + 1) = L(dB(q, \ell))$

Theorem

If a digraph G is Eulerian, then the line digraph L(G) is Hamiltonian.

Theorem

If a digraph G is Eulerian, then the line digraph L(G) is Hamiltonian.

ullet An Eulerian circuit in G is equivalent to a Hamiltonian cycle in L(G)

Theorem

If a digraph G is Eulerian, then the line digraph L(G) is Hamiltonian.

ullet An Eulerian circuit in G is equivalent to a Hamiltonian cycle in L(G)

Corollary

Every de Bruijn graph has a Hamiltonian cycle.

Theorem

If a digraph G is Eulerian, then the line digraph L(G) is Hamiltonian.

ullet An Eulerian circuit in G is equivalent to a Hamiltonian cycle in L(G)

Corollary

Every de Bruijn graph has a Hamiltonian cycle.

Theorem

If a digraph G is Eulerian, then the line digraph L(G) is Hamiltonian.

ullet An Eulerian circuit in G is equivalent to a Hamiltonian cycle in L(G)

Corollary

Every de Bruijn graph has a Hamiltonian cycle.

Proof

ullet Can assume $\ell \geq 2$ as $\mathrm{dB}(q,1) = \overrightarrow{K_q}$ is Hamiltonian

Theorem

If a digraph G is Eulerian, then the line digraph L(G) is Hamiltonian.

ullet An Eulerian circuit in G is equivalent to a Hamiltonian cycle in L(G)

Corollary

Every de Bruijn graph has a Hamiltonian cycle.

- ullet Can assume $\ell \geq 2$ as $\mathrm{dB}(q,1) = \overrightarrow{K_q}$ is Hamiltonian
- ullet Every vertex in $\mathrm{dB}(q,\ell-1)$ has in-degree q and out-degree q

Theorem

If a digraph G is Eulerian, then the line digraph L(G) is Hamiltonian.

ullet An Eulerian circuit in G is equivalent to a Hamiltonian cycle in L(G)

Corollary

Every de Bruijn graph has a Hamiltonian cycle.

- ullet Can assume $\ell \geq 2$ as $\mathrm{dB}(q,1) = \overrightarrow{K_q}$ is Hamiltonian
- ullet Every vertex in $\mathrm{dB}(q,\ell-1)$ has in-degree q and out-degree q
 - $dB(q, \ell-1)$ is Eulerian

Theorem

If a digraph G is Eulerian, then the line digraph L(G) is Hamiltonian.

ullet An Eulerian circuit in G is equivalent to a Hamiltonian cycle in L(G)

Corollary

Every de Bruijn graph has a Hamiltonian cycle.

- ullet Can assume $\ell \geq 2$ as $\mathrm{dB}(q,1) = \overrightarrow{K_q}$ is Hamiltonian
- Every vertex in $dB(q, \ell 1)$ has in-degree q and out-degree q
 - $ightharpoonup \mathrm{dB}(q,\ell-1)$ is Eulerian
 - $\mathrm{dB}(q,\ell)$ is Hamiltonian

Introduction de Bruijn sequences Results Summary

Existence LFSRs

Definition

A q-ary de Bruijn sequence of order ℓ is a Hamiltonian cycle in $\mathrm{dB}(q,\ell)$.

Definition

A q-ary de Bruijn sequence of order ℓ is a Hamiltonian cycle in $dB(q, \ell)$.

Theorem

The number of Eulerian circuits in an Eulerian digraph G is

$$\tau(G) \prod_{v \in V(G)} (d^+(v) - 1)!$$

Definition

A q-ary de Bruijn sequence of order ℓ is a Hamiltonian cycle in $dB(q,\ell)$.

Theorem

The number of Eulerian circuits in an Eulerian digraph G is

$$\tau(G) \prod_{v \in V(G)} (d^+(v) - 1)!$$

• $d^+(v)$ is the out-degree of vertex v

A q-ary de Bruijn sequence of order ℓ is a Hamiltonian cycle in $dB(q, \ell)$.

Theorem

The number of Eulerian circuits in an Eulerian digraph G is

$$\tau(G) \prod_{v \in V(G)} (d^+(v) - 1)!$$

- $d^+(v)$ is the out-degree of vertex v
- \bullet $\tau(G)$ is the number of spanning arborescences rooted at some vertex

A q-ary de Bruijn sequence of order ℓ is a Hamiltonian cycle in $dB(q,\ell)$.

Theorem

The number of Eulerian circuits in an Eulerian digraph G is

$$\tau(G) \prod_{v \in V(G)} (d^+(v) - 1)!$$

- $d^+(v)$ is the out-degree of vertex v
- \bullet $\tau(G)$ is the number of spanning arborescences rooted at some vertex
 - Does not depend on choice of root vertex

Definition

A q-ary de Bruijn sequence of order ℓ is a Hamiltonian cycle in $dB(q,\ell)$.

Theorem

The number of Eulerian circuits in an Eulerian digraph G is

$$\tau(G) \prod_{v \in V(G)} (d^+(v) - 1)!$$

- $d^+(v)$ is the out-degree of vertex v
- ullet au(G) is the number of spanning arborescences rooted at some vertex
 - Does not depend on choice of root vertex

Corollary

There are exactly $\frac{(q!)^{q^{\ell-1}}}{q^{\ell}}$ q-ary de Bruijn sequences of order ℓ .

• Let q be a prime power, and consider the Galois field $\mathrm{GF}(q)$

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x)\rangle$ is generated by x

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over $\mathrm{GF}(q)$
 - ▶ The quotient $F = GF(q)[x]/\langle p(x)\rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over $\mathrm{GF}(q)$
 - ▶ The quotient $F = GF(q)[x]/\langle p(x)\rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

- Let q be a prime power, and consider the Galois field GF(q)
- Choose a degree ℓ primitive polynomial p(x) over GF(q)
 - ▶ The quotient $F = GF(q)[x]/\langle p(x) \rangle$ is generated by x
- ullet Repeatedly multiplying by x gives every non-zero element of F
- Easily implemented as a digital logic circuit

Example
$$(q=2, p(x)=x^7+x^5+x^2+x+1)$$
 — Galois
$$x^6 \overset{0}{\otimes} x^5 \overset{1}{\otimes} x^4 \overset{0}{\otimes} x^3 \overset{0}{\otimes} x^2 \overset{1}{\otimes} x \overset{1}{\otimes} 1 \overset{1}{$$

Tony Grubman

Tony Grubman

Tony Grubman

Tony Grubman

Different logic configuration

- Different logic configuration
 - ► Additive feedback is many-to-one, instead of one-to-many

Tony Grubman

- Different logic configuration
 - ► Additive feedback is many-to-one, instead of one-to-many
 - The shift direction is reversed

- Different logic configuration
 - ► Additive feedback is many-to-one, instead of one-to-many
 - The shift direction is reversed
- Same polynomial may be used

- Different logic configuration
 - ► Additive feedback is many-to-one, instead of one-to-many
 - ▶ The shift direction is reversed
- Same polynomial may be used
- Also represents consecutive powers of x, but in a different basis

- Different logic configuration
 - ► Additive feedback is many-to-one, instead of one-to-many
 - The shift direction is reversed
- Same polynomial may be used
- ullet Also represents consecutive powers of x, but in a different basis
- Produces an identical sequence in the last digit

Tony Grubman

• In the Fibonacci configuration, state transitions correspond to edges in $dB(q, \ell)$

- In the Fibonacci configuration, state transitions correspond to edges in $dB(q, \ell)$
- All non-zero states are traversed in a single cycle

- In the Fibonacci configuration, state transitions correspond to edges in ${\rm dB}(q,\ell)$
- All non-zero states are traversed in a single cycle
 - Gives a Hamiltonian cycle in $dB(q, \ell) \setminus \{00...0\}$

- In the Fibonacci configuration, state transitions correspond to edges in $dB(q,\ell)$
- All non-zero states are traversed in a single cycle
 - Gives a Hamiltonian cycle in $dB(q, \ell) \setminus \{00...0\}$
- Can be extended to all of $dB(q, \ell)$

- In the Fibonacci configuration, state transitions correspond to edges in $dB(q,\ell)$
- All non-zero states are traversed in a single cycle
 - Gives a Hamiltonian cycle in $dB(q, \ell) \setminus \{00...0\}$
- Can be extended to all of $dB(q, \ell)$
 - ▶ Insert 00...0 before 00...1

- In the Fibonacci configuration, state transitions correspond to edges in $dB(q,\ell)$
- All non-zero states are traversed in a single cycle
 - Gives a Hamiltonian cycle in $dB(q, \ell) \setminus \{00...0\}$
- Can be extended to all of $dB(q, \ell)$
 - ▶ Insert 00...0 before 00...1
 - ▶ Previous edge $c0...0 \rightarrow 00...1$ becomes two edges $c0 \dots 0 \rightarrow 00 \dots 0 \rightarrow 00 \dots 1$

- In the Fibonacci configuration, state transitions correspond to edges in $dB(q,\ell)$
- All non-zero states are traversed in a single cycle
 - Gives a Hamiltonian cycle in $dB(q, \ell) \setminus \{00...0\}$
- Can be extended to all of $dB(q, \ell)$
 - ▶ Insert 00...0 before 00...1
 - ▶ Previous edge $c0...0 \rightarrow 00...1$ becomes two edges $c0 \dots 0 \rightarrow 00 \dots 0 \rightarrow 00 \dots 1$
- Every primitive polynomial gives a different de Bruijn sequence

- In the Fibonacci configuration, state transitions correspond to edges in $dB(q,\ell)$
- All non-zero states are traversed in a single cycle
 - ▶ Gives a Hamiltonian cycle in $dB(q, \ell) \setminus \{00...0\}$
- Can be extended to all of $dB(q, \ell)$
 - ▶ Insert 00...0 before 00...1
 - Previous edge $c0...0 \rightarrow 00...1$ becomes two edges $c0...0 \rightarrow 00...1$
- Every primitive polynomial gives a different de Bruijn sequence
 - ▶ There are $\frac{\varphi(q^\ell-1)}{\ell}$ q-ary de Bruijn sequences of order ℓ arising from linear feedback shift registers

- In the Fibonacci configuration, state transitions correspond to edges in $dB(q,\ell)$
- All non-zero states are traversed in a single cycle
 - ▶ Gives a Hamiltonian cycle in $dB(q, \ell) \setminus \{00...0\}$
- Can be extended to all of $dB(q, \ell)$
 - ▶ Insert 00...0 before 00...1
 - Previous edge $c0...0 \rightarrow 00...1$ becomes two edges $c0...0 \rightarrow 00...1$
- Every primitive polynomial gives a different de Bruijn sequence
 - ▶ There are $\frac{\varphi(q^\ell-1)}{\ell}$ q-ary de Bruijn sequences of order ℓ arising from linear feedback shift registers
 - ▶ Most are "non-linear" feedback shift registers

Length *k* subsequences in de Bruijn sequences

ullet Consider a de Bruijn sequence in $\mathrm{dB}(q,\ell)$ constructed from a LFSR

- ullet Consider a de Bruijn sequence in $\mathrm{dB}(q,\ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$

- Consider a de Bruijn sequence in $dB(q, \ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge

Length k subsequences in de Bruijn sequences

- Consider a de Bruijn sequence in $dB(q, \ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit

Length k subsequences in de Bruijn sequences

- ullet Consider a de Bruijn sequence in $\mathrm{dB}(q,\ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit
 - ▶ After k iterations of the LFSR, we should be at the same vertex

- Consider a de Bruijn sequence in $dB(q, \ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit
 - ▶ After k iterations of the LFSR, we should be at the same vertex
 - Equivalent to changing the constant term in state polynomial

- Consider a de Bruijn sequence in $dB(q, \ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit
 - ▶ After k iterations of the LFSR, we should be at the same vertex
 - Equivalent to changing the constant term in state polynomial
- This can be expressed as an equation in the quotient field:

- ullet Consider a de Bruijn sequence in $\mathrm{dB}(q,\ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit
 - After k iterations of the LFSR, we should be at the same vertex
 - Equivalent to changing the constant term in state polynomial
- This can be expressed as an equation in the quotient field:
 - $\star x^k f(x) = f(x) + c$ for some $c \in GF(q) \setminus \{0\}$

- Consider a de Bruijn sequence in $dB(q, \ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit
 - ▶ After k iterations of the LFSR, we should be at the same vertex
 - Equivalent to changing the constant term in state polynomial
- This can be expressed as an equation in the quotient field:
 - \star $x^k f(x) = f(x) + c$ for some $c \in GF(q) \setminus \{0\}$
 - ▶ Unique solution for each c: $f(x) = \frac{c}{x^k-1}$

- Consider a de Bruijn sequence in $dB(q, \ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit
 - ▶ After k iterations of the LFSR, we should be at the same vertex
 - Equivalent to changing the constant term in state polynomial
- This can be expressed as an equation in the quotient field:
 - \star $x^k f(x) = f(x) + c$ for some $c \in GF(q) \setminus \{0\}$
 - ▶ Unique solution for each c: $f(x) = \frac{c}{x^k-1}$
- We have found q-1 k-cycles in $dB(q,\ell)$

- Consider a de Bruijn sequence in $dB(q, \ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit
 - ▶ After k iterations of the LFSR, we should be at the same vertex
 - Equivalent to changing the constant term in state polynomial
- This can be expressed as an equation in the quotient field:
 - \star $x^k f(x) = f(x) + c$ for some $c \in GF(q) \setminus \{0\}$
 - ▶ Unique solution for each c: $f(x) = \frac{c}{x^k-1}$
- We have found q-1 k-cycles in $dB(q,\ell)$
 - ▶ Requires $(q-1)k < q^{\ell} 1$ for cycles to be disjoint

- Consider a de Bruijn sequence in $dB(q, \ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit
 - ▶ After k iterations of the LFSR, we should be at the same vertex
 - Equivalent to changing the constant term in state polynomial
- This can be expressed as an equation in the quotient field:
 - $\star x^k f(x) = f(x) + c$ for some $c \in GF(q) \setminus \{0\}$
 - ▶ Unique solution for each c: $f(x) = \frac{c}{x^k 1}$
- We have found q-1 k-cycles in $dB(q,\ell)$
 - ▶ Requires $(q-1)k < q^{\ell} 1$ for cycles to be disjoint
 - This is sufficient because cycles are evenly distributed

- Consider a de Bruijn sequence in $dB(q, \ell)$ constructed from a LFSR
 - ▶ This corresponds to an Eulerian circuit in $dB(q, \ell 1)$
 - State polynomial of LFSR represents an edge
- Suppose we want to find a k-subcircuit in this Eulerian circuit
 - ▶ After k iterations of the LFSR, we should be at the same vertex
 - Equivalent to changing the constant term in state polynomial
- This can be expressed as an equation in the quotient field:
 - $\star x^k f(x) = f(x) + c$ for some $c \in GF(q) \setminus \{0\}$
 - ▶ Unique solution for each c: $f(x) = \frac{c}{x^k-1}$
- We have found q-1 k-cycles in $dB(q,\ell)$
 - Requires $(q-1)k < q^{\ell} 1$ for cycles to be disjoint
 - This is sufficient because cycles are evenly distributed
- $\mathcal{E}(q, k, \ell) \ge q 1$ for $k \le \frac{q^{\ell} 1}{q 1}$

• Consider the case when $k = q^{\ell-1}$

- Consider the case when $k = q^{\ell-1}$
 - $lackbox{ } q^\ell-k$ states of the LFSR are covered by the q-1 k-cycles

- Consider the case when $k = q^{\ell-1}$
 - $lackbox{ } q^\ell-k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence

- \bullet Consider the case when $k=q^{\ell-1}$
 - $q^{\ell}-k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence
 - ▶ The remaining k-1 states form a cycle C

- Consider the case when $k = q^{\ell-1}$
 - $q^{\ell}-k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence
 - ▶ The remaining k-1 states form a cycle C
- ullet Suppose one of the states in C is a constant polynomial

- Consider the case when $k = q^{\ell-1}$
 - $lackbox{ }q^\ell-k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence
 - ▶ The remaining k-1 states form a cycle C
- Suppose one of the states in C is a constant polynomial
 - ightharpoonup The zero polynomial can be inserted into C

- Consider the case when $k = q^{\ell-1}$
 - $q^{\ell} k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence
 - ▶ The remaining k-1 states form a cycle C
- Suppose one of the states in C is a constant polynomial
 - ▶ The zero polynomial can be inserted into C
 - $ightharpoonup dB(q, \ell)$ contains q disjoint k-cycles

- Consider the case when $k = q^{\ell-1}$
 - $q^{\ell} k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence
 - ▶ The remaining k-1 states form a cycle C
- ullet Suppose one of the states in C is a constant polynomial
 - ightharpoonup The zero polynomial can be inserted into C
 - ▶ $dB(q, \ell)$ contains q disjoint k-cycles
 - $\mathcal{E}(q, q^{\ell-1}, \ell) = q$

- ullet Consider the case when $k=q^{\ell-1}$
 - $q^{\ell}-k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence
 - ▶ The remaining k-1 states form a cycle C
- ullet Suppose one of the states in C is a constant polynomial
 - ightharpoonup The zero polynomial can be inserted into C
 - ▶ $dB(q, \ell)$ contains q disjoint k-cycles
 - $\mathcal{E}(q, q^{\ell-1}, \ell) = q$
- \bullet C contains a constant iff $-\log_x(x^k-1) \mod \frac{q^\ell-1}{q-1} \leq \frac{k-1}{q-1}$

- Consider the case when $k = q^{\ell-1}$
 - $q^{\ell} k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence
 - ▶ The remaining k-1 states form a cycle C
- ullet Suppose one of the states in C is a constant polynomial
 - ▶ The zero polynomial can be inserted into C
 - ▶ $dB(q, \ell)$ contains q disjoint k-cycles
 - $\mathcal{E}(q,q^{\ell-1},\ell)=q$
- C contains a constant iff $-\log_x(x^k-1) \mod \frac{q^\ell-1}{q-1} \leq \frac{k-1}{q-1}$
 - ▶ This may be true for some primitive polynomials and false for others

- Consider the case when $k = q^{\ell-1}$
 - $q^{\ell} k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence
 - ▶ The remaining k-1 states form a cycle C
- ullet Suppose one of the states in C is a constant polynomial
 - ightharpoonup The zero polynomial can be inserted into C
 - ▶ $dB(q, \ell)$ contains q disjoint k-cycles
 - $\mathcal{E}(q,q^{\ell-1},\ell)=q$
- \bullet C contains a constant iff $-\log_x(x^k-1) \mod \frac{q^\ell-1}{q-1} \leq \frac{k-1}{q-1}$
 - ▶ This may be true for some primitive polynomials and false for others
 - For a given q and ℓ , we only need one polynomial

- Consider the case when $k = q^{\ell-1}$
 - $q^{\ell} k$ states of the LFSR are covered by the q-1 k-cycles
- Take these cycles out of the LFSR sequence
 - ▶ The remaining k-1 states form a cycle C
- Suppose one of the states in C is a constant polynomial
 - ▶ The zero polynomial can be inserted into C
 - $ightharpoonup dB(q, \ell)$ contains q disjoint k-cycles
 - $\mathcal{E}(q,q^{\ell-1},\ell)=q$
- C contains a constant iff $-\log_x(x^k-1) \mod \frac{q^k-1}{q-1} \leq \frac{k-1}{q-1}$
 - ▶ This may be true for some primitive polynomials and false for others
 - For a given q and ℓ , we only need one polynomial
 - Depends on the distribution of the discrete logarithm

Theorem

$$\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell) \ge \gcd(k_1, k_2) \, \mathcal{E}_1 \, \mathcal{E}_2.$$

Theorem

Fix a value of ℓ and set $\mathcal{E}_1 = \mathcal{E}(q_1, k_1, \ell)$ and $\mathcal{E}_2 = \mathcal{E}(q_2, k_2, \ell)$. Then

$$\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell) \ge \gcd(k_1, k_2) \, \mathcal{E}_1 \, \mathcal{E}_2.$$

Preserves optimality w.r.t. upper bound $\mathcal{E} \leq \frac{q^{\ell}}{l}$

Theorem

$$\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell) \ge \gcd(k_1, k_2) \, \mathcal{E}_1 \, \mathcal{E}_2.$$

- Preserves optimality w.r.t. upper bound $\mathcal{E} \leq \frac{q^{\ell}}{k}$
 - ▶ If \mathcal{E}_1 and \mathcal{E}_2 are optimal, then so is $\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell)$

Theorem

$$\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell) \ge \gcd(k_1, k_2) \, \mathcal{E}_1 \, \mathcal{E}_2.$$

- Preserves optimality w.r.t. upper bound $\mathcal{E} \leq \frac{q^{\ell}}{k}$
 - ▶ If \mathcal{E}_1 and \mathcal{E}_2 are optimal, then so is $\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell)$
- When k_1 and k_2 are coprime, not much is gained

Theorem

$$\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell) \ge \gcd(k_1, k_2) \,\mathcal{E}_1 \,\mathcal{E}_2.$$

- Preserves optimality w.r.t. upper bound $\mathcal{E} \leq \frac{q^{\ell}}{k}$
 - ▶ If \mathcal{E}_1 and \mathcal{E}_2 are optimal, then so is $\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell)$
- When k_1 and k_2 are coprime, not much is gained
- Largest increase in \mathcal{E} when $k_1 = k_2$

Theorem

$$\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell) \ge \gcd(k_1, k_2) \,\mathcal{E}_1 \,\mathcal{E}_2.$$

- Preserves optimality w.r.t. upper bound $\mathcal{E} \leq \frac{q^{\ell}}{k}$
 - ▶ If \mathcal{E}_1 and \mathcal{E}_2 are optimal, then so is $\mathcal{E}(q_1q_2, \operatorname{lcm}(k_1, k_2), \ell)$
- When k_1 and k_2 are coprime, not much is gained
- Largest increase in \mathcal{E} when $k_1 = k_2$
 - lacktriangle Easy to get large ${\mathcal E}$ when q is divisible by a high power

Proof of correctness (sketch)

ullet Consider any sequence of ℓ colour pairs in resulting eBugs

- ullet Consider any sequence of ℓ colour pairs in resulting eBugs
 - ► This gives a red/blue sequence and a yellow/cyan sequence

- Consider any sequence of ℓ colour pairs in resulting eBugs
 - ► This gives a red/blue sequence and a yellow/cyan sequence
 - ► These had unique positions in original colourings

- Consider any sequence of ℓ colour pairs in resulting eBugs
 - ► This gives a red/blue sequence and a yellow/cyan sequence
 - ► These had unique positions in original colourings
- Sequence corresponds to a particular pair of eBugs in a particular orientation

- ullet Consider any sequence of ℓ colour pairs in resulting eBugs
 - ► This gives a red/blue sequence and a yellow/cyan sequence
 - ▶ These had unique positions in original colourings
- Sequence corresponds to a particular pair of eBugs in a particular orientation
 - Resulting eBugs can still be uniquely identified and oriented

- ullet Consider any sequence of ℓ colour pairs in resulting eBugs
 - ► This gives a red/blue sequence and a yellow/cyan sequence
 - ▶ These had unique positions in original colourings
- Sequence corresponds to a particular pair of eBugs in a particular orientation
 - Resulting eBugs can still be uniquely identified and oriented
- Theorem easily extends to $k_1 \neq k_2$ case

Introduction de Bruijn sequences Results Summary LFSR splits Product colouring Combining necklaces

Necklaces

Definition

A necklace is an equivalence class of words under cyclic rotation. The length of a necklace is the length of any word in the class, while the size of a necklace is the number of words in the class.

Definition

A necklace is an equivalence class of words under cyclic rotation. The length of a necklace is the length of any word in the class, while the size of a necklace is the number of words in the class.

Example

Definition

A necklace is an equivalence class of words under cyclic rotation. The length of a necklace is the length of any word in the class, while the size of a necklace is the number of words in the class.

Example

 $001021 \equiv 010210 \equiv 102100 \equiv 021001 \equiv 210010 \equiv 100102$

• Every necklace gives a cycle in a de Bruijn graph

Definition

A necklace is an equivalence class of words under cyclic rotation. The length of a necklace is the length of any word in the class, while the size of a necklace is the number of words in the class.

Example

- Every necklace gives a cycle in a de Bruijn graph
 - ▶ The length of the cycle is the size of the necklace

Definition

A necklace is an equivalence class of words under cyclic rotation. The length of a necklace is the length of any word in the class, while the size of a necklace is the number of words in the class.

Example

- Every necklace gives a cycle in a de Bruijn graph
 - ▶ The length of the cycle is the size of the necklace
- Cycles can be concatenated in the previous de Bruijn graph

Definition

A necklace is an equivalence class of words under cyclic rotation. The length of a necklace is the length of any word in the class, while the size of a necklace is the number of words in the class.

Example

- Every necklace gives a cycle in a de Bruijn graph
 - ▶ The length of the cycle is the size of the necklace
- Cycles can be concatenated in the previous de Bruijn graph
 - \blacktriangleright Two necklaces of length ℓ are mergable if they share a subword of length $\ell-1$

Definition

A necklace is an equivalence class of words under cyclic rotation. The length of a necklace is the length of any word in the class, while the size of a necklace is the number of words in the class.

Example

- Every necklace gives a cycle in a de Bruijn graph
 - ▶ The length of the cycle is the size of the necklace
- Cycles can be concatenated in the previous de Bruijn graph
 - \blacktriangleright Two necklaces of length ℓ are mergable if they share a subword of length $\ell-1$
- ullet Construct a graph $N(q,\ell)$ of necklaces of length ℓ over q letters

Definition

A necklace is an equivalence class of words under cyclic rotation. The length of a necklace is the length of any word in the class, while the size of a necklace is the number of words in the class.

Example

- Every necklace gives a cycle in a de Bruijn graph
 - ▶ The length of the cycle is the size of the necklace
- Cycles can be concatenated in the previous de Bruijn graph
 - ▶ Two necklaces of length ℓ are mergable if they share a subword of length $\ell-1$
- ullet Construct a graph $N(q,\ell)$ of necklaces of length ℓ over q letters
 - ▶ Edge between two necklaces if they are mergable

• Consider a connected subgraph of $N(q, \ell)$

- ullet Consider a connected subgraph of $N(q,\ell)$
 - ▶ Edges can be contracted by merging the appropriate cycles

- Consider a connected subgraph of $N(q, \ell)$
 - ▶ Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle

- Consider a connected subgraph of $N(q, \ell)$
 - ▶ Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ► The length of the cycle is the sum of the necklace sizes

- Consider a connected subgraph of $N(q, \ell)$
 - Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ► The length of the cycle is the sum of the necklace sizes
- Consider a partition of $N(q,\ell)$ into connected pieces of total size k

- Consider a connected subgraph of $N(q, \ell)$
 - Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ► The length of the cycle is the sum of the necklace sizes
- Consider a partition of $N(q,\ell)$ into connected pieces of total size k
 - Gives a partition of $dB(q, \ell)$ into k-cycles

- Consider a connected subgraph of $N(q, \ell)$
 - Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ► The length of the cycle is the sum of the necklace sizes
- Consider a partition of $N(q,\ell)$ into connected pieces of total size k
 - Gives a partition of $dB(q, \ell)$ into k-cycles
 - ▶ Difficult to find because $N(q, \ell)$ has necklaces of different sizes

- ullet Consider a connected subgraph of $N(q,\ell)$
 - Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ▶ The length of the cycle is the sum of the necklace sizes
- ullet Consider a partition of $N(q,\ell)$ into connected pieces of total size k
 - Gives a partition of $dB(q, \ell)$ into k-cycles
 - ▶ Difficult to find because $N(q, \ell)$ has necklaces of different sizes
- $N(q,\ell)$ contains necklaces of each size m that divides ℓ

- Consider a connected subgraph of $N(q, \ell)$
 - Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ► The length of the cycle is the sum of the necklace sizes
- Consider a partition of $N(q,\ell)$ into connected pieces of total size k
 - Gives a partition of $dB(q, \ell)$ into k-cycles
 - ▶ Difficult to find because $N(q, \ell)$ has necklaces of different sizes
- $N(q,\ell)$ contains necklaces of each size m that divides ℓ
 - ▶ Moreau's necklace counting function: $M(q,m) = \frac{1}{m} \sum \mu(d) q^{m/d}$

- ullet Consider a connected subgraph of $N(q,\ell)$
 - Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ▶ The length of the cycle is the sum of the necklace sizes
- ullet Consider a partition of $N(q,\ell)$ into connected pieces of total size k
 - Gives a partition of $dB(q, \ell)$ into k-cycles
 - ▶ Difficult to find because $N(q, \ell)$ has necklaces of different sizes
- ullet $N(q,\ell)$ contains necklaces of each size m that divides ℓ
 - \blacktriangleright Moreau's necklace counting function: $M(q,m)=\frac{1}{m}\sum_{d\mid m}\mu(d)q^{m/d}$
- ullet If q and ℓ are coprime, M(q,m) is divisible by q for each m

- Consider a connected subgraph of $N(q, \ell)$
 - ▶ Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ► The length of the cycle is the sum of the necklace sizes
- Consider a partition of $N(q,\ell)$ into connected pieces of total size k
 - Gives a partition of $dB(q, \ell)$ into k-cycles
 - ▶ Difficult to find because $N(q, \ell)$ has necklaces of different sizes
- $N(q,\ell)$ contains necklaces of each size m that divides ℓ
 - ▶ Moreau's necklace counting function: $M(q,m) = \frac{1}{m} \sum \mu(d) q^{m/d}$
- ullet If q and ℓ are coprime, M(q,m) is divisible by q for each m
 - ▶ Potential to partition $N(q, \ell)$ into q connected pieces

- ullet Consider a connected subgraph of $N(q,\ell)$
 - Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ▶ The length of the cycle is the sum of the necklace sizes
- ullet Consider a partition of $N(q,\ell)$ into connected pieces of total size k
 - Gives a partition of $dB(q, \ell)$ into k-cycles
 - ▶ Difficult to find because $N(q, \ell)$ has necklaces of different sizes
- ullet $N(q,\ell)$ contains necklaces of each size m that divides ℓ
 - \blacktriangleright Moreau's necklace counting function: $M(q,m)=\frac{1}{m}\sum_{d\mid m}\mu(d)q^{m/d}$
- \bullet If q and ℓ are coprime, M(q,m) is divisible by q for each m
 - ▶ Potential to partition $N(q, \ell)$ into q connected pieces
 - \blacktriangleright For each size m, every piece has same number of size m necklaces

- \bullet Consider a connected subgraph of $N(q,\ell)$
 - ▶ Edges can be contracted by merging the appropriate cycles
 - ► The whole subgraph will produce one long cycle
 - ▶ The length of the cycle is the sum of the necklace sizes
- ullet Consider a partition of $N(q,\ell)$ into connected pieces of total size k
 - Gives a partition of $dB(q, \ell)$ into k-cycles
 - ▶ Difficult to find because $N(q, \ell)$ has necklaces of different sizes
- ullet $N(q,\ell)$ contains necklaces of each size m that divides ℓ
 - \blacktriangleright Moreau's necklace counting function: $M(q,m)=\frac{1}{m}\sum_{d\mid m}\mu(d)q^{m/d}$
- ullet If q and ℓ are coprime, M(q,m) is divisible by q for each m
 - ▶ Potential to partition $N(q, \ell)$ into q connected pieces
 - ightharpoonup For each size m, every piece has same number of size m necklaces
 - Resulting cycles all have the same length

- Consider a connected subgraph of $N(q, \ell)$
 - ▶ Edges can be contracted by merging the appropriate cycles
 - ▶ The whole subgraph will produce one long cycle
 - ► The length of the cycle is the sum of the necklace sizes
- Consider a partition of $N(q,\ell)$ into connected pieces of total size k
 - Gives a partition of $dB(q, \ell)$ into k-cycles
 - ▶ Difficult to find because $N(q, \ell)$ has necklaces of different sizes
- $N(q,\ell)$ contains necklaces of each size m that divides ℓ
 - ▶ Moreau's necklace counting function: $M(q,m) = \frac{1}{m} \sum \mu(d) q^{m/d}$
- If q and ℓ are coprime, M(q,m) is divisible by q for each m
 - ▶ Potential to partition $N(q, \ell)$ into q connected pieces
 - \triangleright For each size m, every piece has same number of size m necklaces
 - Resulting cycles all have the same length
 - Will give $\mathcal{E}(q, q^{\ell-1}, \ell) = q$

Example (q=2)

Example (q=2)

As ℓ must be odd, each necklace contains a majority of some letter (0 or 1). Let N_0 (N_1) be the set of necklaces with more 0s (1s).

• Let $n_0 \in N_0$ be the all zeroes necklace

Example (q=2)

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$

Example (q=2)

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$
 - ▶ Change the first 1 in n to a 0, and call this necklace \bar{n}

Example (q=2)

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$
 - ▶ Change the first 1 in n to a 0, and call this necklace \bar{n}
 - ▶ There is an edge in $N(q, \ell)$ between n and \bar{n}

Example (q=2)

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$
 - ▶ Change the first 1 in n to a 0, and call this necklace \bar{n}
 - ▶ There is an edge in $N(q, \ell)$ between n and \bar{n}
 - ▶ Note that $\bar{n} \in N_0$

Example (q=2)

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$
 - ▶ Change the first 1 in n to a 0, and call this necklace \bar{n}
 - ▶ There is an edge in $N(q, \ell)$ between n and \bar{n}
 - ▶ Note that $\bar{n} \in N_0$
- By induction, there is a path in N_0 from n to n_0

Example (q=2)

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$
 - Change the first 1 in n to a 0, and call this necklace \bar{n}
 - ▶ There is an edge in $N(q, \ell)$ between n and \bar{n}
 - ▶ Note that $\bar{n} \in N_0$
- By induction, there is a path in N_0 from n to n_0
 - ▶ N₀ is connected

Example (q=2)

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$
 - Change the first 1 in n to a 0, and call this necklace \bar{n}
 - ▶ There is an edge in $N(q, \ell)$ between n and \bar{n}
 - ▶ Note that $\bar{n} \in N_0$
- By induction, there is a path in N_0 from n to n_0
 - ▶ N₀ is connected
 - By symmetry, N₁ is connected

Partitioning $N(q, \ell)$

Example (q=2)

As ℓ must be odd, each necklace contains a majority of some letter (0 or 1). Let N_0 (N_1) be the set of necklaces with more 0s (1s).

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$
 - ▶ Change the first 1 in n to a 0, and call this necklace \bar{n}
 - ▶ There is an edge in $N(q, \ell)$ between n and \bar{n}
 - ▶ Note that $\bar{n} \in N_0$
- By induction, there is a path in N_0 from n to n_0
 - ▶ N₀ is connected
 - ▶ By symmetry, N_1 is connected
- Each component gives a cycle of length $2^{\ell-1}$ in $dB(q,\ell)$

Partitioning $N(q, \ell)$

Example (q=2)

As ℓ must be odd, each necklace contains a majority of some letter (0 or 1). Let N_0 (N_1) be the set of necklaces with more 0s (1s).

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$
 - ▶ Change the first 1 in n to a 0, and call this necklace \bar{n}
 - ▶ There is an edge in $N(q, \ell)$ between n and \bar{n}
 - ▶ Note that $\bar{n} \in N_0$
- By induction, there is a path in N_0 from n to n_0
 - ▶ N₀ is connected
 - By symmetry, N₁ is connected
- Each component gives a cycle of length $2^{\ell-1}$ in $dB(q,\ell)$
- Similar methods give a partition for general q whenever $gcd(q, \ell) = 1$

Partitioning $N(q, \ell)$

Example (q=2)

As ℓ must be odd, each necklace contains a majority of some letter (0 or 1). Let N_0 (N_1) be the set of necklaces with more 0s (1s).

- Let $n_0 \in N_0$ be the all zeroes necklace
- Pick a necklace n in $N_0 \setminus \{n_0\}$
 - ▶ Change the first 1 in n to a 0, and call this necklace \bar{n}
 - ▶ There is an edge in $N(q, \ell)$ between n and \bar{n}
 - ▶ Note that $\bar{n} \in N_0$
- By induction, there is a path in N_0 from n to n_0
 - ▶ N₀ is connected
 - By symmetry, N₁ is connected
- Each component gives a cycle of length $2^{\ell-1}$ in $dB(q,\ell)$
- Similar methods give a partition for general q whenever $gcd(q, \ell) = 1$
 - $\mathcal{E}(q,q^{\ell-1},\ell)=q$

• Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ► Camera can see ℓ consecutive LEDs

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ► Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $ightharpoonup \mathcal{E}(q,k,\ell)$ maximised when $\mathrm{dB}(q,\ell)$ is partitioned into k-cycles

- Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $\mathcal{E}(q,k,\ell)$ maximised when $\mathrm{dB}(q,\ell)$ is partitioned into k-cycles
- ullet de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $\mathcal{E}(q, k, \ell)$ maximised when $dB(q, \ell)$ is partitioned into k-cycles
- ullet de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$
 - Called de Bruijn sequences

- Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $\mathcal{E}(q, k, \ell)$ maximised when $dB(q, \ell)$ is partitioned into k-cycles
- ullet de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - \triangleright $\mathcal{E}(q,k,\ell)$ maximised when $dB(q,\ell)$ is partitioned into k-cycles
- ullet de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful
- In some cases, partition into q $q^{\ell-1}$ -cycles exists

- Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - \triangleright $\mathcal{E}(q,k,\ell)$ maximised when $dB(q,\ell)$ is partitioned into k-cycles
- de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful
- In some cases, partition into q $q^{\ell-1}$ -cycles exists
 - ▶ Guaranteed when q and ℓ are coprime

- Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $\mathcal{E}(q,k,\ell)$ maximised when $\mathrm{dB}(q,\ell)$ is partitioned into k-cycles
- ullet de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful
- In some cases, partition into q $q^{\ell-1}$ -cycles exists
 - Guaranteed when q and ℓ are coprime
 - Likely when q is a prime power

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ► Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - \triangleright $\mathcal{E}(q,k,\ell)$ maximised when $dB(q,\ell)$ is partitioned into k-cycles
- ullet de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful
- In some cases, partition into q $q^{\ell-1}$ -cycles exists
 - Guaranteed when q and ℓ are coprime
 - ightharpoonup Likely when q is a prime power
 - Requires primitive polynomial with certain properties

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $\mathcal{E}(q,k,\ell)$ maximised when $\mathrm{dB}(q,\ell)$ is partitioned into k-cycles
- ullet de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful
- ullet In some cases, partition into $q\ q^{\ell-1}$ -cycles exists
 - Guaranteed when q and ℓ are coprime
 - \blacktriangleright Likely when q is a prime power
 - Requires primitive polynomial with certain properties
- Two eBug colourings can be multiplied to give many eBugs

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $\mathcal{E}(q, k, \ell)$ maximised when $\mathrm{dB}(q, \ell)$ is partitioned into k-cycles
- de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^{\ell},\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful
- ullet In some cases, partition into $q\ q^{\ell-1}$ -cycles exists
 - Guaranteed when q and ℓ are coprime
 - Likely when q is a prime power
 - Requires primitive polynomial with certain properties
- Two eBug colourings can be multiplied to give many eBugs
 - ► Must have the same ℓ value

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $ightharpoonup \mathcal{E}(q,k,\ell)$ maximised when $\mathrm{dB}(q,\ell)$ is partitioned into k-cycles
- ullet de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful
- ullet In some cases, partition into $q\ q^{\ell-1}$ -cycles exists
 - ▶ Guaranteed when q and ℓ are coprime
 - ightharpoonup Likely when q is a prime power
 - Requires primitive polynomial with certain properties
- Two eBug colourings can be multiplied to give many eBugs
 - ► Must have the same ℓ value
 - ▶ Resulting eBugs have q_1q_2 possible colours

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $\mathcal{E}(q,k,\ell)$ maximised when $\mathrm{dB}(q,\ell)$ is partitioned into k-cycles
- de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^{\ell},\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful
- In some cases, partition into q $q^{\ell-1}$ -cycles exists
 - ▶ Guaranteed when q and ℓ are coprime
 - ightharpoonup Likely when q is a prime power
 - Requires primitive polynomial with certain properties
- Two eBug colourings can be multiplied to give many eBugs
 - ► Must have the same ℓ value
 - Resulting eBugs have q_1q_2 possible colours
 - ▶ Resulting cycle length is $lcm(k_1, k_2)$

- ullet Overall goal: investigate behaviour of eBug number $\mathcal{E}(q,k,\ell)$
 - lacktriangle Each eBug has k LEDs with q available colours
 - ▶ Camera can see ℓ consecutive LEDs
- Equivalent to finding k-cycles in the de Bruijn graph $dB(q, \ell)$
 - $\mathcal{E}(q, k, \ell)$ maximised when $\mathrm{dB}(q, \ell)$ is partitioned into k-cycles
- ullet de Bruijn graphs are Hamiltonian, so $\mathcal{E}(q,q^\ell,\ell)=1$
 - Called de Bruijn sequences
 - One big eBug is not very useful
- In some cases, partition into q $q^{\ell-1}$ -cycles exists
 - Guaranteed when q and ℓ are coprime
 - ightharpoonup Likely when q is a prime power
 - Requires primitive polynomial with certain properties
- Two eBug colourings can be multiplied to give many eBugs
 - ► Must have the same ℓ value
 - ▶ Resulting eBugs have q_1q_2 possible colours
 - Resulting cycle length is $lcm(k_1, k_2)$
 - ▶ Each pair of eBugs gives $gcd(k_1, k_2)$ new eBugs

Minimum k for which $\mathcal{E}(q,k,\ell) = \frac{q^\ell}{k}$ guaranteed

ℓ	q = 2	q = 3	q=4	q = 6	q = 12
1	1	1	1	1	1
2	4	3	4	12	12
3	4	27	4	108	108
4	16	27	16	432	432
5	16	81	16	1296	1296
6	64	729	64	46656	46656
7	64	729	64	46656	46656