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Introduction

The model setting

I Let (ξn)n be a sequence of independent identically distributed
random variables such that

P(ξi = −1) = P(ξi = +1) =
1

2
.

I Let ηk =
∏k

j=1 ξj . Then (ηn)n≥0
d
= (ξn)n≥0.

I The σ-algebras generated by these two sequences are the
same, i.e.

σ(ξ1, · · · , ξn) = σ(η1, · · · , ηn).

I Let Xn =
∑n

k=1 ξk and Yn =
∑n

k=1 ηk , with X0 = 0, Y0 = 0.
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The two and three dimensional processes

Some basic observations
I (Xn)n and (Yn)n are strongly dependent, yet Wn = (Xn,Yn)

behaves like a 2-dimensional random walk. Let W ′
n = (Xn,Y

′
n)

with (Y ′n)n is an independent copy of (Xn)n.
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Figure : Two simulations of (Wn)n and (W ′n)n
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The two and three dimensional processes

Some basic observations

I Locally, (Wn)n’s behaviour is different to that of a
2-dimensional random walk (with independent components).
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The two and three dimensional processes

Some basic observations

I (Xn)n and (Yn)n are both simple symmetric random walks.
I If P(ξn = 1) = p 6= 1/2, then

I ηn
d

6= ξn:

P(ηn = 1) =
1

2
(1 + (2p − 1)n);

I η1, . . . , ηn are not independent:

P(ηn = εn|ηn = ε1, . . . , ηn−1 = εn−1)

= P(ηn = εn|ηn−1 = εn−1) =

(
p

1− p

)(1+εn−1εn)/2

.

I E[XnYn] =
n∑

k,l=1

E[ξkηl ] = 1 +
∑

(k,l)6=(1,1)

E[ξkηl ] = 1.
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The two and three dimensional processes

The Markov property

I Wn is a time-inhomogeneous Markov process:{
Xn+1 = Xn + ξn+1

Yn+1 = Yn + (−1)
n−Xn

2 ξn+1.

I But, with Kn = n mod 4, (Xn,Yn,Kn) is a
time-homogeneous Markov process:

Xn+1 = Xn + ξn+1

Yn+1 = Yn + (−1)
Kn−Xn

2 ξn+1

Kn+1 = Kn + 1 mod 4
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The two and three dimensional processes

The probability of return to (0, 0) and recurrence

Proposition

P (W4n = (0, 0)) =

(
2n − 1

n

)(
2n

n

)(
1

2

)4n

∼ 1

4πn
and

P (W4n+2 = (0, 0)) =

(
2n + 1

n + 1

)(
2n

n

)(
1

2

)4n+2

∼ 1

4πn
.

It follows that
∞∑
n=0

P (W4n = (0, 0)) = +∞.

Theorem

Wn = (Xn,Yn) is recurrent.
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The two and three dimensional processes

The transition probabilities

Proposition

If 1
2(n − k) is even,

P (Xn = k ,Yn = l) =

( n+l
2

n+k+2l
4

)( n−l−2
2

n+k−2l
4

)(
1

2

)n

If 1
2(n − k) is odd,

P (Xn = k ,Yn = l) =

( n+l
2

n+k+2l
4

)( n−l−2
2

n+k−2l
4

)(
1

2

)n
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The two and three dimensional processes

The three-dimensional process

I Consider the three-dimensional random walk (Xn,Yn,Zn), also
denoted Wn, where

Zn =
n∑

k=1

ζk , n ≥ 1 and Z0 = 0,

I ζk =
k∏

j=1

ηj =
k∏

j=1

j∏
i=1

ξi :

ζ1 = ξ1 ζ2 = ξ1ξ2 ζ3 = ξ1ξ2ξ3

ζ4 = ξ1ξ2ξ3ξ4 ζ5 = ξ1ξ2ξ3ξ4ξ5 ζ6 = ξ1ξ2ξ3ξ4ξ5ξ6
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The two and three dimensional processes

The probability of return to (0, 0, 0) and recurrence

Proposition

1. For any n ≥ 2,

P (W4n = 0) = 2−4n
n−2∑
k=0

(
n − 1

k

)(
n

k + 1

)(
n

k + 1

)(
n − 1

k + 1

)
and

P (W4n+2 = 0) = 2−(4n+2)
n∑

k=1

(
n + 1

k

)(
n − 1

k − 1

)(
n

k

)(
n + 1

k + 1

)
.

2. P(W2n = 0) = O(nα−2), for any α ∈ (1/2, 1).

3. (Wn)n is transient; it will visit the origin finitely often.
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The two and three dimensional processes

A functional central limit theorem

I Donsker: Xn(t) =
1√
n
X[nt] converges weakly to a Brownian

motion (t ∈ [0, 1]).

I The same is true for Yn(t) =
1√
n
Y[nt] and Zn(t) =

1√
n
Z[nt].

I The functional dependence between Xn(t), Yn(t) and Zn(t)
is complete lost at infinity.

Theorem

Wn(t) = (Xn(t),Yn(t),Zn(t)) converges weakly to a three-
dimensional Brownian motion.
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Higher Iterations

The model setting

I η0,n = ξn and η1,n = ηn =
∏n

k=1 ξk .

I η2,n =
∏n

k=1 η1,k =
∏n

k=1

(∏k
j=1 ξj

)
.

I η3,n =
∏n

k=1 η2,k =
∏n
`=1

(∏`
k=1

(∏k
j=1 ξj

))
.

κ = 0 κ = 1 κ = 2 κ = 3

ξ1
ξ2
ξ3
ξ4
ξ5
ξ6





ξ1
ξ1ξ2
ξ1ξ2ξ3
ξ1ξ2ξ3ξ4
ξ1ξ2ξ3ξ4ξ5
ξ1ξ2ξ3ξ4ξ5ξ6





ξ1
ξ2
ξ1ξ3
ξ2ξ4
ξ1ξ3ξ5
ξ2ξ4ξ6





ξ1
ξ1ξ2
ξ2ξ3
ξ3ξ4
ξ1ξ4ξ5
ξ1ξ2ξ5ξ6


ξ2n = (±1)2 = 1. Need to understand which ξ’s are “switched on”.
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Higher Iterations

The model setting

I η0,n = ξn and η1,n = ηn =
∏n
`=1 ξ`.

I ηκ+1,n =
∏n
`=1 ηκ,`.

I ηκ,n =
n∏
`=1

ξ
νκ,`
n−`+1, where νκ,` is a deterministic array and

I ν0,1 = 1 and ν0,n = 0 for n ≥ 2;
I νκ,1 = 1 for κ ≥ 0;
I νκ+1,n+1 = νκ+1,n + νκ,n+1 mod 2.

I For κ ≥ 1 and n ≥ 1,

νκ,n =

(
n + κ− 2

n − 1

)
mod 2.
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Higher Iterations

The binomial connection (Sierpinski triangle)
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Figure : A graphical representation of ηκ,n (left) and νκ,n (right)
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Higher Iterations

A multi-dimensional extension

I Y0,0 = X0 = 0 and Y0,n = Xn =
∑n

`=1 ξ`.

I Yκ,0 = 0 and Yκ,n =
∑n

`=1 ηκ,`.

I Yκ,n is a simple symmetric random walk.

I (Xn,Yκ,n) “behaves” like a two-dimensional random walk.

I In fact, Wκ,n = (Xn,Y1,n, . . . ,Yκ,n) “behaves” like a
(κ+ 1)-dimensional random walk.
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Higher Iterations

A multi-dimensional extension
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Figure : A graphical representation of Wκ,n (left) and a
multi-dimensional random walk (right)
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Higher Iterations

A second functional central limit theorem

Theorem (Lucas, 1878)

A binomial coefficient

(
n

m

)
is divisible by a prime p if and only if at

least one of the base p digits of m is greater than the corresponding
digit of n.

I

(
73

25

)
= 23214764053299962052 is even:

73 10010012
25 00110012

.

I For example, for κ = 2ω and 2 ≤ n ≤ 2ω, then νκ,n = 0.

Theorem

Wκ,n(t) = (Xn(t),Y1,n(t)), . . . ,Yκ,n(t)) converges weakly to a
(κ+ 1)-dimensional Brownian motion.
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An extension – any (prime) number of values

Three-value model

I Suppose (ξn)n i.i.d. uniform on U = {u, a, b}.

I In general, ab /∈ U . Therefore ξ1ξ2
d
6= ξ2.

I How do we recycle in this case?

I Repace × with ⊗:

⊗ u a b

u u a b

a a b u

b b u a

I Observe that u⊗3 = a⊗3 = b⊗3 = u.

I If ηn =
⊗n

`=1 ξ` then (ηn)n
d
= (ξn)n.

I This can be repeated and generalised.
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An extension – any (prime) number of values

General case

I (ξn)n i.i.d. uniform on U = {u0, u1, . . . , up−1}, where p is

prime and
∑p−1

i=0 ui = 0.

I Form an Abelian (cyclic) group (U ,⊗).

I Define ηκ,n: η1,n =
n⊗
`=1

ξ` and ηκ,n =
n⊗
`=1

ηκ−1,` =
n⊗
`=1

ξ
⊗νκ,`
n−`+1

with νκ,n =

(
n + κ− 2

n − 1

)
mod p.

I (ηκ,n)n has the same distribution as (ξn)n.

I Let Yκ,n =
n∑
`=1

ηκ,`, with Yκ,0 = 0.
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An extension – any (prime) number of values

General case

Proposition

The vector (η0,n+κ, . . . , ηκ,n+κ) is uniform over Uκ+1 and is inde-
pendent of Fn−1. In particular, η0,n+κ, . . . , ηκ,n+κ are independent.

Let σ2 = E[ξ2n] =
1

p
(u20 + · · ·+ u2p−1) and YK ,n(t) =

1

σ
√
n
YK ,bntc.

Theorem

Wκ,n(t) = (Xn(t),Y1,n(t)), . . . ,Yκ,n(t)) converges weakly to a
(κ+ 1)-dimensional Brownian motion.

I What happens when p is not prime?

I We add sufficiently many zeroes...
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Beyond the product (work in progress)

Representing (φn)n
I Let ηn = φn(ξ1, . . . , ξn). Look for (φn)n s.t. (ηn)n

d
= (ξn)n.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

x1

x2

x3

Figure : The tree representation of the functions φn.
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Beyond the product (work in progress)

Describing (φn)n

Theorem

Let ηn = φn(ξ1, . . . , ξn), then (ηn)n
d
= (ξn)n if and only if

φn(x1, . . . , xn) is of the following form:

φ1(x1) = (−1)α1x1

and for n ≥ 2, with K(n), the set of all non-empty subsets of
{1, . . . , n − 1},

φn(x1, . . . , xn) = (−1)αn

 ∏
K∈K(n)

x
βn,K
[K ]

 xn,

where x[K ] = maxk∈K xk and αn, βn,K ∈ {0, 1}.
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Beyond the product (work in progress)

An example

η1 = ξ1, η2 = ξ2ξ1 and ηn = max(ξn−2, ξn−1)ξn for n ≥ 3.

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure : The tree representation of the functions max(xn−2, xn−1)xn.

Theorem

(Xn(t),Yn(t))) converges weakly to a correlated Brownian motion.
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Beyond the product (work in progress)

An example
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Figure : (Wn)n for φn(x1, . . . , xn) = max(xn−k , . . . , xn−1)xn.
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An application, a connection and more

A possible application – a greedy random bits generator
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Figure : Simulate or compute?
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A possible application – a greedy random bits generator
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An application, a connection and more

A connection – cellular automata

I Model could be regarded as a long-range cellular automaton.

Figure : Elementary cellular automata
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A connection – cellular automata

I Model could be regarded as a long-range cellular automaton.

Figure : Elementary cellular automata
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An application, a connection and more

A connection – cellular automata

I Up to a “sliding” of the columns, it is also equivalent to CA60.
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An application, a connection and more

A related question – percolation (work in progress)
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A related question – percolation (work in progress)

1 10 20 30 40

1

10

20

30

40

1 10 20 30 40

1

10

20

30

40

Figure : p = 0.5



Bootstrap random walks

An application, a connection and more

A related question – percolation (work in progress)
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An application, a connection and more

A related question – percolation (work in progress)
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An application, a connection and more

A related question – percolation (work in progress)
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