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L Introduction

The model setting

v

Let (£n)n be a sequence of independent identically distributed
random variables such that

P& = —1) = P(¢ = +1) = %

v

d
Let nx = HJ/'(=1 gj- Then (nn)nZO = (gn)nZO-
The o-algebras generated by these two sequences are the
same, i.e.

v

0’(51, T 7§n) = 0(7717 tee 7””)'
Let X, =>7_1&kand Y, => "/ _;nk, with Xo =0, Yo =0.

v
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LThe two and three dimensional processes

Some basic observations

» (Xn)n and (Y,), are strongly dependent, yet W, = (X, Y»)
behaves like a 2-dimensional random walk. Let W), = (X,, Y})
with (Y}), is an independent copy of (X,),.
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Some basic observations
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Figure : (Xn)n detey (Ya)n &y (Wa)n



Bootstrap random walks

LThe two and three dimensional processes

Some basic observations

» Locally, (W,),'s behaviour is different to that of a
2-dimensional random walk (with independent components).

IPRPYR

-10 -5 0 5 10

Figure : Possible positions for Wy and Wi,



Bootstrap random walks

LThe two and three dimensional processes

Some basic observations

» (Xn)n and (Y})n are both simple symmetric random walks.
» If P({, =1) = p# 1/2, then
d
> o # En: 1
PO =1) = 5(1+(2p —1)");
> 11,...,7M, are not independent:

P(nn = €nltn = €1, .-, -1 = €n—1)

p
= IED(nn = 5n|"7n—1 = 5n—1) = (

(14+en—1€n)/2
1—p> .

> EX, Yol = Y Elén] =1+ Y Elémn] =1

k=1 (k,[)#(1,1)
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LThe two and three dimensional processes

The Markov property

» W, is a time-inhomogeneous Markov process:

Xn+1 = Xn + fn—i—l
n—Xn
Yotr1 = Yo+ (1) 72 &ntr.

» But, with K, =n mod 4, (X,, Yn, Kn) is a
time-homogeneous Markov process:

Xn—|—1 - Xn+§n+1
Kn—Xn

Yor1 = Yo+ (=1) 7 &
Knyi1 = Kp+1 mod4
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LThe two and three dimensional processes

The probability of return to (0,0) and recurrence

Proposition

P (Wi, = (0,0)) = (2nn—1) <2nn) (%)4 ) ﬂln
and
B (Wanso = (0,0)) = <2nn—|—-|—11) <2nn) (%)4n+2 ~ Eln

It follows that
o0

> P (Wan = (0,0)) = +oc.
n=0

W, = (Xn, Ya) is recurrent.
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The transition probabilities

If 3(n— k) is even,

nT—|—I n—£—2 1 n
4 4

If 3(n— k) is odd,

nT—|—I n—£—2 1 n
4 4
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The three-dimensional process

» Consider the three-dimensional random walk (X,, Yn, Z,), also
denoted W,,, where

n
Zy=> (o n>1land Zy =0,

k=1
k k J
> G=[Im=111]¢
=1 j=1i-1
=& Q= & =& &

= & & G=& & & = & & &
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LThe two and three dimensional processes

The probability of return to (0,0, 0) and recurrence

1. Forany n > 2,

P(W4n=0)=2_4"n2_2(n;1) (kL) (kil) (211)

k=0

and
_ ) — o—(4n+2) " /n+1\(n=1\[n\/n+1
F(Wani2 =0) =2 kz_:l( k )(k—l k)\k+1)

2. P(Wa, = 0) = O(n*2), for any a € (1/2,1).
3. (Wh), is transient; it will visit the origin finitely often.




Bootstrap random walks

LThe two and three dimensional processes

A functional central limit theorem

1
» Donsker: X,(t) = —nX[,,t] converges weakly to a Brownian
motion (t € [0, 1]).
1 1
» The same is true for ,(t) = WY[M] and 3,(t) = ﬁz[,,t].

» The functional dependence between X,(t), Dn(t) and 3,(t)
is complete lost at infinity.

Wn(t) = (Xn(t),Dn(t),3n(t)) converges weakly to a three-
dimensional Brownian motion.
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L Higher lterations

The model setting

No,n =Gn ANA Nip = Tn = | | =1 Sk-
> &n and | JES
k
> 2.0 = [Tics Mk = [Tkz1 (H_j:l fj)
¢ k
> 130 = i s = T (T (T2 65) )

k=0 k=1 k=2 k=3
&1 &1 &1 &
&2 §1&2 &2 §162
&3 §16283 §1&3 £&3
&a §1628364 264 384
&s §182838485 §18385 §18485
&6 §1£283848586 §28486 §1£28586

= (£1)2 = 1. Need to understand which &'s are “switched on".
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LHigher Iterations

The model setting

n
> To,n = §n and M,n ="MNn = ngl fg.
n
> Ne41,n = He:1 Nk,0-
n
> Ngn = H Zf’éﬂ, where v, ¢ is a deterministic array and
/=1
» 191 =1and vy, =0 for n>2;
» v,1=1fork >0;
> Vgtln+l = Vitln T Vi,nt1 mod 2.
» Fork >1and n>1,

-2
Vik,n = (n_FlL<v > mod 2.
n—1
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The binomial connection (Sierpinski triangle)

1 10 20 30 40 1 10 20 30
T T T T T T T T

i i s |

I I I I I
1 10 20 30 40 1 10 20 30 40

Figure : A graphical representation of 7, , (left) and v, , (right)
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LHigher Iterations

A multi-dimensional extension

v

YO,O = Xo =0 and Yoy,, = Xn = 22:1 fg.
Yeo=0and Yip=> /1Ny
> Yy nis a simple symmetric random walk.

v

v

(Xn, Yi,n) “behaves” like a two-dimensional random walk.

In fact, Wi, n = (Xp, Y1,n,-- ., Yi,n) “behaves” like a
(k + 1)-dimensional random walk.

v



Bootstrap random walks
|—Higher Iterations

A multi-dimensional extension

Figure : A graphical representation of W, , (left) and a
multi-dimensional random walk (right)
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LHigher Iterations

A second functional central limit theorem

Theorem (Lucas, 1878)

A binomial coefficient :1) is divisible by a prime p if and only if at

least one of the base p digits of m is greater than the corresponding
digit of n.

25 25 | 00110015 |
» For example, for K = 2% and 2 < n < 2%, then v, , = 0.

> (73) = 23214764053299962052 is even: 73 | 1001001,

Wi n(t) = (Xn(t), D1,n(t)),- - D,n(t)) converges weakly to a
(k + 1)-dimensional Brownian motion.
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L An extension — any (prime) number of values

Three-value model
» Suppose (&) i.i.d. uniform on U = {u, a, b}.

d
» In general, ab ¢ U. Therefore &1 # &.
» How do we recycle in this case?
» Repace x with ®:

(@ [[ulalb]
ullulalb

allalblu
bllblula

» Observe that u®3 = a®3 = p®3 =

n d
> If nn = @y_1 & then (17)n = (§n)n-
» This can be repeated and generalised.
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L An extension — any (prime) number of values

General case

> (&n)n i.id. uniform on U = {uo, u1,...,Up—1}, where p is
prime and Zf:_ol ui = 0.
» Form an Abelian (cyclic) group (U, ®).
n n n
. Qg
> Define 15,0 1,0 = ) & and 1n = @ ms-10 = Q) &, 04
=1 =1 =1
-2
with v, , = (n+ " > mod p.
n—1
> (7k,n)n has the same distribution as ().
n
> Let Yip =) e with Yo =0.

(=1
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L An extension — any (prime) number of values

General case

Proposition
The vector (10,n+x; - - - Mi,ntx) IS uniform over UL and is inde-
pendent of F,,_1. In particular, 19 nix, - - -,k ntr are independent.

1
Let 0 = E[¢]] = E(US + 4 u3_q) and Yk n(t) =

1
U—\/ﬁYK,LntJ-

Wi n(t) = (Xa(t),D1,n(t)), ..., YVs,n(t)) converges weakly to a
(x + 1)-dimensional Brownian motion.

» What happens when p is not prime?
» We add sufficiently many zeroes...
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Representing (¢n)n
> Let 11y = @n(C1, - -, En). Look for (én)n s:t. (1) < (€n)n-

2/51\3
VAVERVAN
8/ \9 10/ \11 f3 12/ \13 14/ \15

Figure : The tree representation of the functions ¢,.
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|—Beycmd the product (work in progress)

Representing (¢n)n
> Let 11y = Gn(C1, - -, En). Look for (én)n s:t. (1) < (€n)n-

2/51\3
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£\ /\
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~~
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Figure : The tree representation of the functions ¢,.
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Representing (¢n)n
> Let 11y = Gn(C1, - -, En). Look for (én)n s:t. (1) < (€n)n-
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Figure : The tree representation of the functions ¢,.
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|—Beycmd the product (work in progress)

Representing (¢n)n
> Let 11y = Gn(C1, - -, En). Look for (én)n s:t. (1) < (€n)n-

2/;\
\5

S VN
/N VAN VARN /N

Figure : The tree representation of the functions ¢,.
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LBeyond the product (work in progress)

Describing (¢n)n

Let n, = én(&1,---,&n), then (m5)n g (&n)n if and only if
®dn(X1,...,Xn) is of the following form:

p1(x1) = (—=1)"x

and for n > 2, with K(n), the set of all non-empty subsets of

{1,...,n—1},

an B
Onxas o) = (1 | T x| o

KeK(n)

where xjx] = maxkek Xk and ap, Bk € {0,1}.
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An example

m = &1, M2 = &261 and 1y = max(&p—2,&n—1)&n for n > 3.

2/‘/1 3
4// N o N

8 9 10 11 12 13 14 15

VAR VAN FARY VARY VARY VAR VAR VAR

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

7

Figure : The tree representation of the functions max(x,—2, Xp—1)Xn-

(X4(2),Dn(t))) converges weakly to a correlated Brownian motion.
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LBeyond the product (work in progress)

An example

Figure : (W,), for én(x1,...,xn) = max(Xn—k, - - - y Xn—1)Xn-
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A possible application — a greedy random bits generator

100 bits 200 bits
40 60 80 100 1 20 40 60

I I I I I I I L
1 20 40 60 80 100 1 20 40 60 80 100

Figure : Simulate or compute?
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A possible application — a greedy random bits generator

2 * 2 o= : : 2 >

I I L I I I I !
1 20 40 60 80 100 1 20 40 60 80 100

Figure : Simulate or compute?
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A connection — cellular automata

» Model could be regarded as a long-range cellular automaton.

rule 30 rule 126
el =izl s "t/ e bl ol His”alica
6000 1 1 1 1 0 01 1 1 1 1 1 0
rule 54 rule 150

e e e (R e

6001 1 0 1 1 0 1 00 1 0 1 1 0
rule 60 rule 158
S | W W O | O [8 [ T R o S

60 01 1 1 1 0 0 1 0 0 1 1 1 1 0
rule 62 rule 182

[ ] [

0 01 1 1 110 1 01 1 0 1 1 0

Figure : Elementary cellular automata
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A connection — cellular automata

» Model could be regarded as a long-range cellular automaton.

rule 30 rule 54 rule 60

rule 0

= g == 8

rule 102 rule 110 rule 122

Figure : Elementary cellular automata
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A connection — cellular automata

» Up to a “sliding” of the columns, it is also equivalent to CA60.

1 10 20 30 40 1 10 20 0 40
T T T T
s

T T T T T T
q1 1F 41

L I I I I I I
1 10 20 30 0 1 10

Figure : Cellular automaton 60
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A related question — percolation (work in progress)

1 10 20 30 40
T T T T T

10

I I I I I
1 10 20 30 40

Figure : p=0.5
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A related question — percolation (work in progress)

1 10 20 30 40
T T T T T

10

Figure : p=0.5
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A related question — percolation (work in progress)

1 10 20 30 40
T T T T T

Figure : p=0.5
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A related question — percolation (work in progress)

1 200 400 600 800

1

Figure : p=0.5
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A related question — percolation (work in progress)

1 200 400 600 800 1000

1

{1000
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