Bootstrap random walks

Kais Hamza

Monash University

Joint work with Andrea Collevecchio & Meng Shi

Bootstrap random walks

Introduction

The two and three dimensional processes

Higher Iterations

An extension – any (prime) number of values

Beyond the product (work in progress)

An application, a connection and more

Introduction

The two and three dimensional processes

Higher Iterations

An extension – any (prime) number of values

Beyond the product (work in progress)

An application, a connection and more

The model setting

Let $(\xi_n)_n$ be a sequence of independent identically distributed random variables such that

$$\mathbb{P}(\xi_i = -1) = \mathbb{P}(\xi_i = +1) = \frac{1}{2}.$$

- ▶ Let $\eta_k = \prod_{j=1}^k \xi_j$. Then $(\eta_n)_{n\geq 0} \stackrel{d}{=} (\xi_n)_{n\geq 0}$.
- ▶ The σ -algebras generated by these two sequences are the same, i.e.

$$\sigma(\xi_1,\cdots,\xi_n)=\sigma(\eta_1,\cdots,\eta_n).$$

▶ Let $X_n = \sum_{k=1}^n \xi_k$ and $Y_n = \sum_{k=1}^n \eta_k$, with $X_0 = 0$, $Y_0 = 0$.

Introduction

The two and three dimensional processes

Higher Iterations

An extension – any (prime) number of values

Beyond the product (work in progress)

An application, a connection and more

Some basic observations

▶ $(X_n)_n$ and $(Y_n)_n$ are strongly dependent, yet $W_n = (X_n, Y_n)$ behaves like a 2-dimensional random walk. Let $W'_n = (X_n, Y'_n)$ with $(Y'_n)_n$ is an independent copy of $(X_n)_n$.

Figure : Two simulations of $(W_n)_n$ and $(W'_n)_n$

Some basic observations

Figure : $(X_n)_n \stackrel{deter}{\longrightarrow} (Y_n)_n \stackrel{deter}{\longrightarrow} (W_n)_n$

Some basic observations

▶ Locally, $(W_n)_n$'s behaviour is different to that of a 2-dimensional random walk (with independent components).

Figure : Possible positions for W_1 and W_{12}

Some basic observations

- $(X_n)_n$ and $(Y_n)_n$ are both simple symmetric random walks.
- If $\mathbb{P}(\xi_n = 1) = p \neq 1/2$, then
 - $\eta_n \neq \xi_n :$

$$\mathbb{P}(\eta_n = 1) = \frac{1}{2}(1 + (2p - 1)^n);$$

 $\triangleright \eta_1, \ldots, \eta_n$ are not independent:

$$\mathbb{P}(\eta_n = \varepsilon_n | \eta_n = \varepsilon_1, \dots, \eta_{n-1} = \varepsilon_{n-1})$$

$$= \mathbb{P}(\eta_n = \varepsilon_n | \eta_{n-1} = \varepsilon_{n-1}) = \left(\frac{p}{1-p}\right)^{(1+\varepsilon_{n-1}\varepsilon_n)/2}.$$

$$\mathbb{E}[X_n Y_n] = \sum_{k,l=1} \mathbb{E}[\xi_k \eta_l] = 1 + \sum_{(k,l) \neq (1,1)} \mathbb{E}[\xi_k \eta_l] = 1.$$

The Markov property

 $ightharpoonup W_n$ is a time-inhomogeneous Markov process:

$$\begin{cases} X_{n+1} = X_n + \xi_{n+1} \\ Y_{n+1} = Y_n + (-1)^{\frac{n-X_n}{2}} \xi_{n+1}. \end{cases}$$

▶ But, with $K_n = n \mod 4$, (X_n, Y_n, K_n) is a time-homogeneous Markov process:

$$\begin{cases} X_{n+1} = X_n + \xi_{n+1} \\ Y_{n+1} = Y_n + (-1)^{\frac{K_n - X_n}{2}} \xi_{n+1} \\ K_{n+1} = K_n + 1 \mod 4 \end{cases}$$

The probability of return to (0,0) and recurrence

Proposition

$$\mathbb{P}(W_{4n} = (0,0)) = \binom{2n-1}{n} \binom{2n}{n} \left(\frac{1}{2}\right)^{4n} \sim \frac{1}{4\pi n}$$
 and

$$\mathbb{P}\left(W_{4n+2}=(0,0)\right)=\binom{2n+1}{n+1}\binom{2n}{n}\left(\frac{1}{2}\right)^{4n+2}\sim\frac{1}{4\pi n}.$$

It follows that

$$\sum_{n=0}^{\infty} \mathbb{P}\left(W_{4n} = (0,0)\right) = +\infty.$$

Theorem

 $W_n = (X_n, Y_n)$ is recurrent.

The transition probabilities

Proposition

If $\frac{1}{2}(n-k)$ is even,

$$\mathbb{P}\left(X_n=k,Y_n=l\right)=\binom{\frac{n+l}{2}}{\frac{n+k+2l}{4}}\binom{\frac{n-l-2}{2}}{\frac{n+k-2l}{4}}\binom{\frac{1}{2}}{n}^n$$

If $\frac{1}{2}(n-k)$ is odd,

$$\mathbb{P}(X_n = k, Y_n = l) = {\binom{\frac{n+l}{2}}{\frac{n+k+2l}{4}}} {\binom{\frac{n-l-2}{2}}{\frac{n+k-2l}{4}}} {\binom{\frac{1}{2}}{n}}^n$$

The three-dimensional process

► Consider the three-dimensional random walk (X_n, Y_n, Z_n) , also denoted W_n , where

$$Z_n = \sum_{k=1}^n \zeta_k, \ n \ge 1 \text{ and } Z_0 = 0,$$

$$\zeta_{k} = \prod_{j=1}^{k} \eta_{j} = \prod_{j=1}^{k} \prod_{i=1}^{j} \xi_{i}:$$

$$\zeta_{1} = \xi_{1} \qquad \zeta_{2} = \xi_{1} \xi_{2} \qquad \zeta_{3} = \xi_{1} \xi_{3}$$

$$\zeta_{4} = \xi_{1} \xi_{2} \xi_{3} \xi_{4} \qquad \zeta_{5} = \xi_{1} \xi_{3} \xi_{4} \xi_{5} \qquad \zeta_{6} = \xi_{1} \xi_{2} \xi_{3} \xi_{4} \xi_{5}$$

The probability of return to (0,0,0) and recurrence

Proposition

1. For any $n \ge 2$,

$$\mathbb{P}(W_{4n} = 0) = 2^{-4n} \sum_{k=0}^{n-2} \binom{n-1}{k} \binom{n}{k+1} \binom{n}{k+1} \binom{n-1}{k+1}$$

and

$$\mathbb{P}(W_{4n+2}=0)=2^{-(4n+2)}\sum_{k=1}^{n}\binom{n+1}{k}\binom{n-1}{k-1}\binom{n}{k}\binom{n+1}{k+1}.$$

- 2. $\mathbb{P}(W_{2n} = 0) = O(n^{\alpha-2})$, for any $\alpha \in (1/2, 1)$.
- 3. $(W_n)_n$ is transient; it will visit the origin finitely often.

A functional central limit theorem

- ▶ Donsker: $\mathfrak{X}_n(t) = \frac{1}{\sqrt{n}} X_{[nt]}$ converges weakly to a Brownian motion $(t \in [0,1])$.
- ▶ The same is true for $\mathfrak{Y}_n(t) = \frac{1}{\sqrt{n}} Y_{[nt]}$ and $\mathfrak{Z}_n(t) = \frac{1}{\sqrt{n}} Z_{[nt]}$.
- ▶ The functional dependence between $\mathfrak{X}_n(t)$, $\mathfrak{Y}_n(t)$ and $\mathfrak{Z}_n(t)$ is complete lost at infinity.

Theorem

 $\mathfrak{W}_n(t) = (\mathfrak{X}_n(t), \mathfrak{Y}_n(t), \mathfrak{Z}_n(t))$ converges weakly to a three-dimensional Brownian motion.

Bootstrap random walks

Higher Iterations

Introduction

The two and three dimensional processes

Higher Iterations

An extension – any (prime) number of values

Beyond the product (work in progress)

An application, a connection and more

The model setting

•
$$\eta_{0,n} = \xi_n$$
 and $\eta_{1,n} = \eta_n = \prod_{k=1}^n \xi_k$.

•
$$\eta_{3,n} = \prod_{k=1}^{n} \eta_{2,k} = \prod_{\ell=1}^{n} \left(\prod_{k=1}^{\ell} \left(\prod_{j=1}^{k} \xi_{j} \right) \right).$$

$$\kappa = 0 \qquad \kappa = 1 \qquad \kappa = 2 \qquad \kappa = 3$$

$$\begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_3 \\ \xi_4 \\ \xi_5 \\ \xi_6 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_1 \xi_2 \\ \xi_1 \xi_2 \xi_3 \\ \xi_1 \xi_2 \xi_3 \xi_4 \\ \xi_1 \xi_2 \xi_3 \xi_4 \xi_5 \\ \xi_1 \xi_2 \xi_3 \xi_4 \xi_5 \xi_6 \end{pmatrix} \begin{pmatrix} \xi_1 \\ \xi_2 \\ \xi_1 \xi_3 \\ \xi_2 \xi_4 \\ \xi_1 \xi_3 \xi_5 \\ \xi_1 \xi_2 \xi_3 \xi_4 \xi_5 \xi_6 \end{pmatrix}$$

 $\xi_n^2 = (\pm 1)^2 = 1$. Need to understand which ξ 's are "switched on".

The model setting

- $\eta_{0,n} = \xi_n$ and $\eta_{1,n} = \eta_n = \prod_{\ell=1}^n \xi_{\ell}$.
- u $\eta_{\kappa,n}=\prod_{\ell=1}^n \xi_{n-\ell+1}^{
 u_{\kappa,\ell}}$, where $u_{\kappa,\ell}$ is a deterministic array and
 - $\nu_{0,1} = 1$ and $\nu_{0,n} = 0$ for $n \ge 2$;
 - $\nu_{\kappa,1}=1$ for $\kappa\geq 0$;
 - $\nu_{\kappa+1,n+1} = \nu_{\kappa+1,n} + \nu_{\kappa,n+1} \mod 2.$
- ▶ For $\kappa \ge 1$ and $n \ge 1$,

$$u_{\kappa,n} = \binom{n+\kappa-2}{n-1} \mod 2.$$

The binomial connection (Sierpinski triangle)

Figure : A graphical representation of $\eta_{\kappa,n}$ (left) and $\nu_{\kappa,n}$ (right)

A multi-dimensional extension

- $Y_{0,0} = X_0 = 0$ and $Y_{0,n} = X_n = \sum_{\ell=1}^n \xi_\ell$.
- ► $Y_{\kappa,0} = 0$ and $Y_{\kappa,n} = \sum_{\ell=1}^{n} \eta_{\kappa,\ell}$. ► $Y_{\kappa,n}$ is a simple symmetric random walk.
- $r_{\kappa,n}$ is a simple symmetric random walk.
- ▶ $(X_n, Y_{\kappa,n})$ "behaves" like a two-dimensional random walk. ▶ In fact, $W_{\kappa,n} = (X_n, Y_{1,n}, \dots, Y_{\kappa,n})$ "behaves" like a
- In fact, $W_{\kappa,n}=(X_n,Y_{1,n},\ldots,Y_{\kappa,n})$ "behaves" like a $(\kappa+1)$ -dimensional random walk.

A multi-dimensional extension

Figure : A graphical representation of $W_{\kappa,n}$ (left) and a multi-dimensional random walk (right)

A second functional central limit theorem

Theorem (Lucas, 1878)

A binomial coefficient $\binom{n}{m}$ is divisible by a prime p if and only if at least one of the base p digits of m is greater than the corresponding digit of n.

▶ For example, for $\kappa = 2^{\omega}$ and $2 \le n \le 2^{\omega}$, then $\nu_{\kappa,n} = 0$.

Theorem

 $\mathfrak{W}_{\kappa,n}(t)=(\mathfrak{X}_n(t),\mathfrak{Y}_{1,n}(t)),\ldots,\mathfrak{Y}_{\kappa,n}(t))$ converges weakly to a $(\kappa+1)$ -dimensional Brownian motion.

Bootstrap random walks

An extension – any (prime) number of values

Introduction

The two and three dimensional processes

Higher Iterations

An extension – any (prime) number of values

Beyond the product (work in progress)

An application, a connection and more

An extension – any (prime) number of values

Three-value model

- ▶ Suppose $(\xi_n)_n$ i.i.d. uniform on $\mathcal{U} = \{u, a, b\}$.
- ▶ In general, $ab \notin \mathcal{U}$. Therefore $\xi_1 \xi_2 \overset{d}{\neq} \xi_2$.
- How do we recycle in this case?
- ▶ Repace \times with \otimes :

\otimes	и	а	b
и	и	а	b
а	а	b	и
Ь	b	и	а

- ▶ Observe that $u^{\otimes 3} = a^{\otimes 3} = b^{\otimes 3} = u$.
- ▶ If $\eta_n = \bigotimes_{\ell=1}^n \xi_\ell$ then $(\eta_n)_n \stackrel{d}{=} (\xi_n)_n$.
- This can be repeated and generalised.

An extension – any (prime) number of values

General case

- $(\xi_n)_n$ i.i.d. uniform on $\mathcal{U} = \{u_0, u_1, \dots, u_{p-1}\}$, where p is prime and $\sum_{i=0}^{p-1} u_i = 0$.
- ▶ Form an Abelian (cyclic) group (\mathcal{U}, \otimes) .
- $(\eta_{\kappa,n})_n$ has the same distribution as $(\xi_n)_n$.
- Let $Y_{\kappa,n} = \sum_{\ell=1}^n \eta_{\kappa,\ell}$, with $Y_{\kappa,0} = 0$.

An extension – any (prime) number of values

General case

Proposition

The vector $(\eta_{0,n+\kappa},\ldots,\eta_{\kappa,n+\kappa})$ is uniform over $\mathcal{U}^{\kappa+1}$ and is independent of \mathcal{F}_{n-1} . In particular, $\eta_{0,n+\kappa},\ldots,\eta_{\kappa,n+\kappa}$ are independent.

Let
$$\sigma^2 = \mathbb{E}[\xi_n^2] = \frac{1}{p}(u_0^2 + \dots + u_{p-1}^2)$$
 and $\mathfrak{Y}_{K,n}(t) = \frac{1}{\sigma\sqrt{n}}Y_{K,\lfloor nt\rfloor}$.

Theorem

 $\mathfrak{W}_{\kappa,n}(t)=(\mathfrak{X}_n(t),\mathfrak{Y}_{1,n}(t)),\ldots,\mathfrak{Y}_{\kappa,n}(t))$ converges weakly to a $(\kappa+1)$ -dimensional Brownian motion.

- ▶ What happens when p is not prime?
- ▶ We add sufficiently many zeroes...

Bootstrap random walks

Beyond the product (work in progress)

Introduction

The two and three dimensional processes

Higher Iterations

An extension – any (prime) number of values

Beyond the product (work in progress)

An application, a connection and more

Representing $(\phi_n)_n$

Figure : The tree representation of the functions ϕ_n .

Representing $(\phi_n)_n$

Figure : The tree representation of the functions ϕ_n .

Representing $(\phi_n)_n$

Figure : The tree representation of the functions ϕ_n .

Representing $(\phi_n)_n$

Figure : The tree representation of the functions ϕ_n .

Describing $(\phi_n)_n$

Theorem

Let $\eta_n = \phi_n(\xi_1, \dots, \xi_n)$, then $(\eta_n)_n \stackrel{d}{=} (\xi_n)_n$ if and only if $\phi_n(x_1, \dots, x_n)$ is of the following form:

$$\phi_1(x_1)=(-1)^{\alpha_1}x_1$$

and for $n \geq 2$, with $\mathbb{K}(n)$, the set of all non-empty subsets of $\{1,\ldots,n-1\}$,

$$\phi_n(x_1,\ldots,x_n)=(-1)^{\alpha_n}\left(\prod_{K\in\mathbb{K}(n)}x_{[K]}^{\beta_{n,K}}\right)x_n,$$

where $x_{[K]} = \max_{k \in K} x_k$ and $\alpha_n, \beta_{n,K} \in \{0, 1\}$.

An example

$$\eta_1 = \xi_1$$
, $\eta_2 = \xi_2 \xi_1$ and $\eta_n = \max(\xi_{n-2}, \xi_{n-1}) \xi_n$ for $n \ge 3$.

Figure : The tree representation of the functions $\max(x_{n-2}, x_{n-1})x_n$.

Theorem

 $(\mathfrak{X}_n(t),\mathfrak{Y}_n(t)))$ converges weakly to a correlated Brownian motion.

An example

Figure : $(W_n)_n$ for $\phi_n(x_1,\ldots,x_n)=\max(x_{n-k},\ldots,x_{n-1})x_n$.

Bootstrap random walks

An application, a connection and more

Introduction

The two and three dimensional processes

Higher Iterations

An extension – any (prime) number of values

Beyond the product (work in progress)

An application, a connection and more

An application, a connection and more

A possible application – a greedy random bits generator

Figure : Simulate or compute?

A possible application – a greedy random bits generator

Figure : Simulate or compute?

An application, a connection and more

A connection – cellular automata

Model could be regarded as a long-range cellular automaton.

Figure : Elementary cellular automata

A connection – cellular automata

▶ Model could be regarded as a long-range cellular automaton.

Figure: Elementary cellular automata

A connection – cellular automata

▶ Up to a "sliding" of the columns, it is also equivalent to CA60.

Figure: Cellular automaton 60

Figure : p = 0.5

Figure : p = 0.99

Bootstrap random walks

An application, a connection and more

References

► COLLEVECCHIO A., HAMZA K. & SHI M. (2015) Bootstrap Random Walks, arXiv.org, 1508.02840 21pp.