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Theorem (Bryant, Dean 2015)

There exist 2k-regular connected Cayley graphs on finite NON-abelian groups
that are NOT Hamilton-decomposable.
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Infinite Analogue of a Hamilton Cycle

two-way infinite Hamilton path: connected 2-regular spanning subgraph

An infinite graph is Hamilton-decomposable if it is decomposable into
two-way-infinite Hamilton paths.

Theorem (Nash-Williams 1959)

Every connected Cayley graph on a finitely-generated infinite abelian
group has a two-way infinite Hamilton path.

[Abelian groups, graphs and generalized knights]

Theorem (Zhang, Huang 1995)

Every connected infinite circulant graph has a (two-way infinite)
Hamilton path. Furthermore, Cay(Z,S) is connected <= gcd(S) = 1.
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Infinite Connection Sets

G is co-connected if G has no finite cut-set.
G has infinite edge-connectivity if G has no finite edge-cut.

Theorem (Witte 1990)

Let G be a countably infinite graph with infinite valency.

If G is vertex-transitive and has a Hamilton path then G is co-connected.
Also, G is Hamilton-decomposable if and only if G has a Hamilton path
and infinite edge-connectivity.

Theorem (Bryant, S.H., Maenhaut, Webb)

Every connected Cayley graph on finitely-generated infinite abelian group
of infinite valency is Hamilton-decomposable.
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Finite Connection Sets

Let G = Cay(Z, S) where |S| = k.
Suppose G has a Hamilton decomposition.
Let E = {{u,v}|u<0,v>1}
S ={1,2} S ={1,3)

seS
01 011
[} [}
Each of the kK Hamilton paths uses an odd number of edges of E.
Hence |E| and k have the same parity.

Necessary conditions for G to be Hamilton-decomposable:

(1) ged(S) =1 (2) ) s=1S| (mod?2)

seS
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Admissible Infinite Circulants

Ex: Cay(Zn,{1,2}) is Hamilton-decomposable ¥n > 5,
but Cay(Z,{1,2}) is NOT Hamilton-decomposable.

Cay(Z,S) is admissible if gcd(S) =1 and ) s =S| (mod 2).
seS

Cay(Z, S) admissible = for each positive even integer s € S,
Cay(Z,S U {s}) not admissible.

There are infinitely many connected infinite circulant graphs with finite
valency that are not Hamilton-decomposable.

Is every admissible infinite circulant graph Hamilton-decomposable?
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4-Regular Infinite Circulants

Theorem (Bryant, S.H., Maenhaut, Webb)

Cay(Z,{a, b}) is Hamilton-decomposable <= admissible
(a and b both odd and gcd(a, b) =1).

@ Find a “starter path” with 2b edges starting at 0 and ending at 2b
covering a vertex from each congruence class modulo 26

@ Take translates by 2b to get a Hamilton path H;
e Hh=H;+b

Ex: Cay(Z,{3,5})
(X J ... .-. ... ... ... 0000000000 ... ... .I. ... .‘. ... .-. ... ... ( X ]
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The length of an edge {u, v} in a graph with vertex set Z,, is the
distance from v to v in Cay(Z,, {1})
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General Construction Lemma

Lemma (Bryant, S.H., Maenhaut, Webb)

Let G = Cay(Z,{a1,...,ak—1,k}) be an admissible infinite circulant
graph where k is odd and each a; is not divisible by k.

If there exists a Hamilton path in K| with edge lengths given by the
multiset {£([0],[ai]) | i =1,2,...,k — 1},

then G is Hamilton-decomposable.

Buratti's Conjecture (2007)

If p is an odd prime and L is a multiset of p — 1 elements from
1,..., P=1Y " then there exists a Hamilton path in K, with edge lengths
2 P
given by L.
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Buratti's Conjecture has been verified in the following cases:
@ p < 23 [Meszka]
@ the edges are of at most two lengths [Horak, Rosa 2009]

@ some results for p not necessarily prime

Theorem (Bryant, S.H., Maenhaut, Webb)

If p is an odd prime, where p < 23, and a1, a2, ..., ap—1 are distinct
positive integers, not divisible by p, then Cay(Z,{a1, a2, ..., ap-1,p}) is
Hamilton-decomposable <= admissible.

No Hamilton path in Ky with the following multisets for edge lengths:

{1,3,3,3,3,3,33, ' {2,3,3,3,3,3,3,3}
{3,3,3,3,3,3,3,3}  {3,3,3,3,3,3,3,4}
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Theorem (Bryant, S.H., Maenhaut, Webb)

If k >3 isodd and ai,...,ax_1 are distinct positive integers such that
a; = i (mod k), then Cay(Z,{a1,...,ak-1,k}) is
Hamilton-decomposable <= admissible.

Cay(Z,{1,2,3...,k}) admissible: k =0,1 (mod 4)

Theorem (Bryant, S.H., Maenhaut, Webb)
Cay(Z,{1,2,...,k}) is Hamilton-decomposable <= admissible. J
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Theorem (Bryant, S.H., Maenhaut, Webb)

Cay(Z,{1,2,...,k — 1,k 4+ 1}) is Hamilton-decomposable <
admissible.

Theorem (Bryant, S.H., Maenhaut, Webb)
Cay(Z,{1,2,4,6,...,2t}) is Hamilton-decomposable <= admissible. }
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6-Regular Infinite Circulants

Corollary

If a and b are distinct positive integers, not divisible by 3, then
Cay(Z,{3, a, b}) is Hamilton-decomposable <= admissible.

Unknown: Cay(Z, {a,3t,3}), where a # 0 (mod 3)

Corollary

If a,b € Z" are odd and relatively prime then Cay(Z,{1, a, b}) is
Hamilton-decomposable.

Unknown: Cay(Z, {1, a, b}) when a, b are both even or when a, b are
both odd but not relatively prime.
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Theorem (Bryant, S.H., Maenhaut, Webb)
Cay(Z,{1,2, c}) is Hamilton-decomposable <= admissible.

Ex: Cay(Z,{1,2,10})
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Tentative Conjecture

Every admissible infinite circulant graph is Hamilton-decomposable.

Open Problem

Characterise the connected Cayley graphs on finitely-generated infinite
abelian groups of finite valency that are Hamilton-decomposable.

Ben Reiniger



Thanks!



