Hamilton Decompositions of Infinite Circulant Graphs

Sara Herke The University of Queensland

joint work with
Darryn Bryant, Barbara Maenhaut and Bridget Webb

January 2017

Infinite Circulant Graphs

Infinite Circulant Graphs

Group \mathcal{G} with identity e and $S \subseteq \mathcal{G} - \{e\}$, inverse-closed

The Cayley graph on the group \mathcal{G} with connection set S, denoted $\mathrm{Cay}(\mathcal{G},S)$, is the undirected simple graph where

- ullet the vertices are the elements of ${\cal G}$ and
- the edge set is $\{\{g,gs\} \mid g \in \mathcal{G}, s \in S\}$.

Infinite Circulant Graphs

Group \mathcal{G} with identity e and $S \subseteq \mathcal{G} - \{e\}$, inverse-closed

The Cayley graph on the group \mathcal{G} with connection set S, denoted $\operatorname{Cay}(\mathcal{G},S)$, is the undirected simple graph where

- ullet the vertices are the elements of ${\cal G}$ and
- the edge set is $\{\{g,gs\} \mid g \in \mathcal{G}, s \in S\}$.

Theorem (Chen, Quimpo 1981)

Every 2k-regular connected Cayley graph on a finite abelian group has a Hamilton cycle.

Theorem (Chen, Quimpo 1981)

Every 2k-regular connected Cayley graph on a finite abelian group has a Hamilton cycle.

Alspach's Conjecture (1984)

Every 2k-regular connected Cayley graph on a finite abelian group is Hamilton-decomposable.

Theorem (Chen, Quimpo 1981)

Every 2k-regular connected Cayley graph on a finite abelian group has a Hamilton cycle.

Alspach's Conjecture (1984)

Every 2k-regular connected Cayley graph on a finite abelian group is Hamilton-decomposable.

$$k = 1 \checkmark \qquad \qquad k = 2 \checkmark$$

 $k \geqslant 3$? (many partial results)

Theorem (Chen, Quimpo 1981)

Every 2k-regular connected Cayley graph on a finite abelian group has a Hamilton cycle.

Alspach's Conjecture (1984)

Every 2k-regular connected Cayley graph on a finite abelian group is Hamilton-decomposable.

$$k = 1 \checkmark \qquad \qquad k = 2 \checkmark$$

$$k=2$$
 \checkmark

 $k \geqslant 3$? (many partial results)

Theorem (Bryant, Dean 2015)

There exist 2k-regular connected Cayley graphs on finite NON-abelian groups that are NOT Hamilton-decomposable.

two-way infinite Hamilton path: connected 2-regular spanning subgraph

two-way infinite Hamilton path: connected 2-regular spanning subgraph An infinite graph is Hamilton-decomposable if it is decomposable into two-way-infinite Hamilton paths.

two-way infinite Hamilton path: connected 2-regular spanning subgraph

An infinite graph is Hamilton-decomposable if it is decomposable into two-way-infinite Hamilton paths.

Theorem (Nash-Williams 1959)

Every connected Cayley graph on a finitely-generated infinite abelian group has a two-way infinite Hamilton path.

two-way infinite Hamilton path: connected 2-regular spanning subgraph An infinite graph is Hamilton-decomposable if it is decomposable into two-way-infinite Hamilton paths.

Theorem (Nash-Williams 1959)

Every connected Cayley graph on a finitely-generated infinite abelian group has a two-way infinite Hamilton path.

[Abelian groups, graphs and generalized knights]

two-way infinite Hamilton path: connected 2-regular spanning subgraph

An infinite graph is Hamilton-decomposable if it is decomposable into two-way-infinite Hamilton paths.

Theorem (Nash-Williams 1959)

Every connected Cayley graph on a finitely-generated infinite abelian group has a two-way infinite Hamilton path.

[Abelian groups, graphs and generalized knights]

Theorem (Zhang, Huang 1995)

Every connected infinite circulant graph has a (two-way infinite) Hamilton path.

two-way infinite Hamilton path: connected 2-regular spanning subgraph

An infinite graph is Hamilton-decomposable if it is decomposable into two-way-infinite Hamilton paths.

Theorem (Nash-Williams 1959)

Every connected Cayley graph on a finitely-generated infinite abelian group has a two-way infinite Hamilton path.

[Abelian groups, graphs and generalized knights]

Theorem (Zhang, Huang 1995)

Every connected infinite circulant graph has a (two-way infinite) Hamilton path. Furthermore, $\operatorname{Cay}(\mathbb{Z},S)$ is connected $\iff \gcd(S)=1$.

Which Cayley graphs on finitely-generated infinite abelian groups

are Hamilton-decomposable?

Which Cayley graphs on finitely-generated infinite abelian groups

are Hamilton-decomposable?

Infinite Valency Finite Valency

G is ∞ -connected if *G* has no finite cut-set.

 ${\it G}$ has infinite edge-connectivity if ${\it G}$ has no finite edge-cut.

G is ∞ -connected if G has no finite cut-set.

G has infinite edge-connectivity if G has no finite edge-cut.

Theorem (Witte 1990)

Let G be a countably infinite graph with infinite valency. If G is vertex-transitive and has a Hamilton path then G is ∞ -connected. Also, G is Hamilton-decomposable if and only if G has a Hamilton path and infinite edge-connectivity.

G is ∞ -connected if G has no finite cut-set.

G has infinite edge-connectivity if G has no finite edge-cut.

Theorem (Witte 1990)

Let G be a countably infinite graph with infinite valency. If G is vertex-transitive and has a Hamilton path then G is ∞ -connected. Also, G is Hamilton-decomposable if and only if G has a Hamilton path and infinite edge-connectivity.

Theorem (Bryant, S.H., Maenhaut, Webb)

Every connected Cayley graph on finitely-generated infinite abelian group of infinite valency is Hamilton-decomposable.

Let $G = \operatorname{Cay}(\mathbb{Z}, S)$ where |S| = k.

Let $G = \operatorname{Cay}(\mathbb{Z}, S)$ where |S| = k.

Suppose G has a Hamilton decomposition.

Let $G = \operatorname{Cay}(\mathbb{Z}, S)$ where |S| = k.

Suppose G has a Hamilton decomposition.

Let $E = \{ \{u, v\} \mid u \leq 0, v \geq 1 \}.$

Let $G = \operatorname{Cay}(\mathbb{Z}, S)$ where |S| = k.

Suppose G has a Hamilton decomposition.

Let $E = \{ \{u, v\} \mid u \leq 0, v \geq 1 \}.$

Let $G = \operatorname{Cay}(\mathbb{Z}, S)$ where |S| = k.

Suppose G has a Hamilton decomposition.

Let
$$E = \{\{u, v\} \mid u \leqslant 0, v \geqslant 1\}.$$

$$|E| = \sum_{s \in S} s$$

 $S = \{1, 3\}$

Let $G = \operatorname{Cay}(\mathbb{Z}, S)$ where |S| = k.

Suppose G has a Hamilton decomposition.

Let
$$E = \{ \{u, v\} \mid u \leq 0, v \geqslant 1 \}.$$

$$|E| = \sum_{s \in S} s$$
 $S = \{1, 2\}$
 $S = \{1, 3\}$

Each of the k Hamilton paths uses an odd number of edges of E.

Let $G = \operatorname{Cay}(\mathbb{Z}, S)$ where |S| = k.

Suppose G has a Hamilton decomposition.

Let
$$E = \{ \{u, v\} \mid u \leq 0, v \geqslant 1 \}.$$

$$|E| = \sum_{s \in S} s$$
 $S = \{1, 2\}$
 $S = \{1, 3\}$
 0
 1

Each of the k Hamilton paths uses an odd number of edges of E. Hence |E| and k have the same parity.

Let $G = \operatorname{Cay}(\mathbb{Z}, S)$ where |S| = k.

Suppose G has a Hamilton decomposition.

Let
$$E = \{ \{u, v\} \mid u \leq 0, v \geq 1 \}.$$

$$|E| = \sum_{s \in S} s$$

Each of the k Hamilton paths uses an odd number of edges of E.

Hence |E| and k have the same parity.

Necessary conditions for G to be Hamilton-decomposable:

Let $G = \operatorname{Cay}(\mathbb{Z}, S)$ where |S| = k.

Suppose G has a Hamilton decomposition.

Let
$$E = \{\{u, v\} \mid u \leq 0, v \geq 1\}.$$

$$|E| = \sum_{s \in S} s$$

Each of the k Hamilton paths uses an odd number of edges of E.

Hence |E| and k have the same parity.

Necessary conditions for G to be Hamilton-decomposable:

(1)
$$gcd(S) = 1$$
 (2) $\sum_{s \in S} s \equiv |S| \pmod{2}$

Ex: $Cay(\mathbb{Z}_n, \{1, 2\})$ is Hamilton-decomposable $\forall n \geq 5$, but $Cay(\mathbb{Z}, \{1, 2\})$ is NOT Hamilton-decomposable.

Ex: $Cay(\mathbb{Z}_n, \{1, 2\})$ is Hamilton-decomposable $\forall n \geq 5$, but $Cay(\mathbb{Z}, \{1, 2\})$ is NOT Hamilton-decomposable.

 $\operatorname{Cay}(\mathbb{Z}, S)$ is admissible if $\operatorname{gcd}(S) = 1$ and $\sum_{s \in S} s \equiv |S| \pmod{2}$.

Ex: $Cay(\mathbb{Z}_n, \{1, 2\})$ is Hamilton-decomposable $\forall n \geq 5$, but $Cay(\mathbb{Z}, \{1, 2\})$ is NOT Hamilton-decomposable.

 $\operatorname{Cay}(\mathbb{Z}, S)$ is admissible if $\gcd(S) = 1$ and $\sum_{s \in S} s \equiv |S| \pmod{2}$.

 $\operatorname{Cay}(\mathbb{Z},S)$ admissible \Longrightarrow for each positive even integer $s \notin S$, $\operatorname{Cay}(\mathbb{Z},S \cup \{s\})$ not admissible.

Ex: $Cay(\mathbb{Z}_n, \{1, 2\})$ is Hamilton-decomposable $\forall n \geq 5$, but $Cay(\mathbb{Z}, \{1, 2\})$ is NOT Hamilton-decomposable.

$$\operatorname{Cay}(\mathbb{Z},S)$$
 is admissible if $\operatorname{gcd}(S)=1$ and $\sum_{s\in S}s\equiv |S|\pmod 2$.

$$\operatorname{Cay}(\mathbb{Z},S)$$
 admissible \Longrightarrow for each positive even integer $s \notin S$, $\operatorname{Cay}(\mathbb{Z},S \cup \{s\})$ not admissible.

There are infinitely many connected infinite circulant graphs with finite valency that are not Hamilton-decomposable.

Admissible Infinite Circulants

Ex: $Cay(\mathbb{Z}_n, \{1, 2\})$ is Hamilton-decomposable $\forall n \geq 5$, but $Cay(\mathbb{Z}, \{1, 2\})$ is NOT Hamilton-decomposable.

$$\operatorname{Cay}(\mathbb{Z},S)$$
 is admissible if $\operatorname{gcd}(S)=1$ and $\sum_{s\in S}s\equiv |S|\pmod 2$.

$$\operatorname{Cay}(\mathbb{Z},S)$$
 admissible \Longrightarrow for each positive even integer $s \notin S$, $\operatorname{Cay}(\mathbb{Z},S \cup \{s\})$ not admissible.

There are infinitely many connected infinite circulant graphs with finite valency that are not Hamilton-decomposable.

Is every admissible infinite circulant graph Hamilton-decomposable?

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z}, \{a, b\})$ is Hamilton-decomposable \iff admissible (a and b both odd and $\operatorname{gcd}(a, b) = 1$).

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z}, \{a, b\})$ is Hamilton-decomposable \iff admissible (a and b both odd and $\operatorname{gcd}(a, b) = 1$).

• Find a "starter path" with 2b edges starting at 0 and ending at 2b covering a vertex from each congruence class modulo 2b

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z}, \{a, b\})$ is Hamilton-decomposable \iff admissible (a and b both odd and $\gcd(a, b) = 1$).

• Find a "starter path" with 2b edges starting at 0 and ending at 2b covering a vertex from each congruence class modulo 2b

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z}, \{a, b\})$ is Hamilton-decomposable \iff admissible (a and b both odd and $\gcd(a, b) = 1$).

- Find a "starter path" with 2b edges starting at 0 and ending at 2b covering a vertex from each congruence class modulo 2b
- ullet Take translates by 2b to get a Hamilton path H_1

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z}, \{a, b\})$ is Hamilton-decomposable \iff admissible (a and b both odd and $\gcd(a, b) = 1$).

- Find a "starter path" with 2b edges starting at 0 and ending at 2b covering a vertex from each congruence class modulo 2b
- ullet Take translates by 2b to get a Hamilton path H_1

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z}, \{a, b\})$ is Hamilton-decomposable \iff admissible (a and b both odd and $\gcd(a, b) = 1$).

- Find a "starter path" with 2b edges starting at 0 and ending at 2b covering a vertex from each congruence class modulo 2b
- ullet Take translates by 2b to get a Hamilton path H_1
- $H_2 = H_1 + b$

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z}, \{a, b\})$ is Hamilton-decomposable \iff admissible (a and b both odd and $\operatorname{gcd}(a, b) = 1$).

- Find a "starter path" with 2b edges starting at 0 and ending at 2b covering a vertex from each congruence class modulo 2b
- ullet Take translates by 2b to get a Hamilton path H_1
- $H_2 = H_1 + b$

The length of an edge $\{u, v\}$ in a graph with vertex set \mathbb{Z}_n is the distance from u to v in $\mathrm{Cay}(\mathbb{Z}_n, \{1\})$

The length of an edge $\{u,v\}$ in a graph with vertex set \mathbb{Z}_n is the distance from u to v in $\mathrm{Cay}(\mathbb{Z}_n,\{1\})$

Ex: $G = Cay(\mathbb{Z}, \{1, 2, 8, 9, 5\})$

The length of an edge $\{u, v\}$ in a graph with vertex set \mathbb{Z}_n is the distance from u to v in $\mathrm{Cay}(\mathbb{Z}_n, \{1\})$

```
Ex: G = \operatorname{Cay}(\mathbb{Z}, \{1, 2, 8, 9, 5\})
In K_5 with vertex set \mathbb{Z}_5,
```

$$\ell([0], [1]) = 1$$

 $\ell([0], [2]) = 2$
 $\ell([0], [8]) = 2$
 $\ell([0], [9]) = 1$

The length of an edge $\{u, v\}$ in a graph with vertex set \mathbb{Z}_n is the distance from u to v in $\mathrm{Cay}(\mathbb{Z}_n, \{1\})$

Ex: $G = \operatorname{Cay}(\mathbb{Z}, \{1, 2, 8, 9, 5\})$ In K_5 with vertex set \mathbb{Z}_5 ,

$$\ell([0], [1]) = 1$$

 $\ell([0], [2]) = 2$
 $\ell([0], [8]) = 2$
 $\ell([0], [9]) = 1$

The length of an edge $\{u, v\}$ in a graph with vertex set \mathbb{Z}_n is the distance from u to v in $\mathrm{Cay}(\mathbb{Z}_n, \{1\})$

$$\ell([0], [1]) = 1$$
 $\ell([0], [2]) = 2$
 $\ell([0], [8]) = 2$
 $\ell([0], [9]) = 1$
 $\ell([0], [9]) = 1$

[0]

The length of an edge $\{u, v\}$ in a graph with vertex set \mathbb{Z}_n is the distance from u to v in $\mathrm{Cay}(\mathbb{Z}_n, \{1\})$

$$\ell([0], [1]) = 1$$
 $\ell([0], [2]) = 2$
 $\ell([0], [8]) = 2$
 $\ell([0], [9]) = 1$
[4]
[4]

The length of an edge $\{u, v\}$ in a graph with vertex set \mathbb{Z}_n is the distance from u to v in $\mathrm{Cay}(\mathbb{Z}_n, \{1\})$

$$\ell([0], [1]) = 1$$
 $\ell([0], [2]) = 2$
 $\ell([0], [8]) = 2$
 $\ell([0], [9]) = 1$

The length of an edge $\{u, v\}$ in a graph with vertex set \mathbb{Z}_n is the distance from u to v in $\mathrm{Cay}(\mathbb{Z}_n, \{1\})$

$$\ell([0], [1]) = 1$$

$$\ell([0], [2]) = 2$$

$$\ell([0], [8]) = 2$$

$$\ell([0], [9]) = 1$$

$$[0]$$

$$[4]$$

Lemma (Bryant, S.H., Maenhaut, Webb)

Let $G = \operatorname{Cay}(\mathbb{Z}, \{a_1, \dots, a_{k-1}, k\})$ be an admissible infinite circulant graph where k is odd and each a_i is not divisible by k.

Lemma (Bryant, S.H., Maenhaut, Webb)

Let $G = \operatorname{Cay}(\mathbb{Z}, \{a_1, \dots, a_{k-1}, k\})$ be an admissible infinite circulant graph where k is odd and each a_i is not divisible by k.

If there exists a Hamilton path in K_k with edge lengths given by the multiset $\{\ell([0], [a_i]) \mid i = 1, 2, ..., k-1\}$,

Lemma (Bryant, S.H., Maenhaut, Webb)

Let $G = \operatorname{Cay}(\mathbb{Z}, \{a_1, \dots, a_{k-1}, k\})$ be an admissible infinite circulant graph where k is odd and each a_i is not divisible by k.

If there exists a Hamilton path in K_k with edge lengths given by the multiset $\{\ell([0],[a_i]) \mid i=1,2,\ldots,k-1\}$,

then G is Hamilton-decomposable.

Lemma (Bryant, S.H., Maenhaut, Webb)

Let $G = \operatorname{Cay}(\mathbb{Z}, \{a_1, \dots, a_{k-1}, k\})$ be an admissible infinite circulant graph where k is odd and each a_i is not divisible by k.

If there exists a Hamilton path in K_k with edge lengths given by the multiset $\{\ell([0],[a_i]) \mid i=1,2,\ldots,k-1\}$,

then G is Hamilton-decomposable.

Buratti's Conjecture (2007)

If p is an odd prime and L is a multiset of p-1 elements from $\{1,\ldots,\frac{p-1}{2}\}$, then there exists a Hamilton path in K_p with edge lengths given by L.

Buratti's Conjecture has been verified in the following cases:

- p ≤ 23 [Meszka]
- the edges are of at most two lengths [Horak, Rosa 2009]
- some results for *p* not necessarily prime

Buratti's Conjecture has been verified in the following cases:

- p ≤ 23 [Meszka]
- the edges are of at most two lengths [Horak, Rosa 2009]
- some results for *p* not necessarily prime

Theorem (Bryant, S.H., Maenhaut, Webb)

If p is an odd prime, where $p \leq 23$, and $a_1, a_2, \ldots, a_{p-1}$ are distinct positive integers, not divisible by p, then $\operatorname{Cay}(\mathbb{Z}, \{a_1, a_2, \ldots, a_{p-1}, p\})$ is Hamilton-decomposable \iff admissible.

Buratti's Conjecture has been verified in the following cases:

- p ≤ 23 [Meszka]
- the edges are of at most two lengths [Horak, Rosa 2009]
- ullet some results for p not necessarily prime

Theorem (Bryant, S.H., Maenhaut, Webb)

If p is an odd prime, where $p \leq 23$, and $a_1, a_2, \ldots, a_{p-1}$ are distinct positive integers, not divisible by p, then $\operatorname{Cay}(\mathbb{Z}, \{a_1, a_2, \ldots, a_{p-1}, p\})$ is Hamilton-decomposable \iff admissible.

No Hamilton path in K_9 with the following multisets for edge lengths:

Theorem (Bryant, S.H., Maenhaut, Webb)

If $k \geqslant 3$ is odd and a_1, \ldots, a_{k-1} are distinct positive integers such that $a_i \equiv i \pmod{k}$, then $\operatorname{Cay}(\mathbb{Z}, \{a_1, \ldots, a_{k-1}, k\})$ is Hamilton-decomposable \iff admissible.

Theorem (Bryant, S.H., Maenhaut, Webb)

If $k \geqslant 3$ is odd and a_1, \ldots, a_{k-1} are distinct positive integers such that $a_i \equiv i \pmod{k}$, then $\operatorname{Cay}(\mathbb{Z}, \{a_1, \ldots, a_{k-1}, k\})$ is Hamilton-decomposable \iff admissible.

Theorem (Bryant, S.H., Maenhaut, Webb)

If $k \geqslant 3$ is odd and a_1, \ldots, a_{k-1} are distinct positive integers such that $a_i \equiv i \pmod{k}$, then $\operatorname{Cay}(\mathbb{Z}, \{a_1, \ldots, a_{k-1}, k\})$ is Hamilton-decomposable \iff admissible.

 $Cay(\mathbb{Z}, \{1, 2, 3 \dots, k\})$ admissible: $k \equiv 0, 1 \pmod{4}$

Theorem (Bryant, S.H., Maenhaut, Webb)

If $k \geqslant 3$ is odd and a_1, \ldots, a_{k-1} are distinct positive integers such that $a_i \equiv i \pmod{k}$, then $\operatorname{Cay}(\mathbb{Z}, \{a_1, \ldots, a_{k-1}, k\})$ is Hamilton-decomposable \iff admissible.

 $Cay(\mathbb{Z}, \{1, 2, 3, \dots, k\})$ admissible: $k \equiv 0, 1 \pmod{4}$

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z},\{1,2,\ldots,k\})$ is Hamilton-decomposable \iff admissible.

Other 2k-Valent Cases

Other 2k-Valent Cases

Theorem (Bryant, S.H., Maenhaut, Webb)

 $Cay(\mathbb{Z}, \{1, 2, \dots, k-1, k+1\})$ is Hamilton-decomposable \iff admissible.

Other 2k-Valent Cases

Theorem (Bryant, S.H., Maenhaut, Webb)

 $Cay(\mathbb{Z}, \{1, 2, \dots, k-1, k+1\})$ is Hamilton-decomposable \iff admissible.

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z},\{1,2,4,6,\dots,2t\})$ is Hamilton-decomposable \iff admissible.

Corollary

If a and b are distinct positive integers, not divisible by 3, then $Cay(\mathbb{Z}, \{3, a, b\})$ is Hamilton-decomposable \iff admissible.

Corollary

If a and b are distinct positive integers, not divisible by 3, then $Cay(\mathbb{Z}, \{3, a, b\})$ is Hamilton-decomposable \iff admissible.

Unknown: $Cay(\mathbb{Z}, \{a, 3t, 3\})$, where $a \not\equiv 0 \pmod{3}$

Corollary

If a and b are distinct positive integers, not divisible by 3, then $Cay(\mathbb{Z}, \{3, a, b\})$ is Hamilton-decomposable \iff admissible.

Unknown: $Cay(\mathbb{Z}, \{a, 3t, 3\})$, where $a \not\equiv 0 \pmod{3}$

Corollary

If a, $b \in \mathbb{Z}^+$ are odd and relatively prime then $\mathrm{Cay}(\mathbb{Z},\{1,a,b\})$ is Hamilton-decomposable.

Corollary

If a and b are distinct positive integers, not divisible by 3, then $\operatorname{Cay}(\mathbb{Z}, \{3, a, b\})$ is Hamilton-decomposable \iff admissible.

Unknown: $Cay(\mathbb{Z}, \{a, 3t, 3\})$, where $a \not\equiv 0 \pmod{3}$

Corollary

If a, $b \in \mathbb{Z}^+$ are odd and relatively prime then $\operatorname{Cay}(\mathbb{Z}, \{1, a, b\})$ is Hamilton-decomposable.

Unknown: $Cay(\mathbb{Z}, \{1, a, b\})$ when a, b are both even or when a, b are both odd but not relatively prime.

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z},\{1,2,c\})$ is Hamilton-decomposable \iff admissible.

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z},\{1,2,c\})$ is Hamilton-decomposable \iff admissible.

Ex: $Cay(\mathbb{Z}, \{1, 2, 10\})$

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z},\{1,2,c\})$ is Hamilton-decomposable \iff admissible.

Ex: $Cay(\mathbb{Z}, \{1, 2, 10\})$

Theorem (Bryant, S.H., Maenhaut, Webb)

 $\operatorname{Cay}(\mathbb{Z},\{1,2,c\})$ is Hamilton-decomposable \iff admissible.

Ex: $Cay(\mathbb{Z}, \{1, 2, 10\})$

Tentative Conjecture

Every admissible infinite circulant graph is Hamilton-decomposable.

Tentative Conjecture

Every admissible infinite circulant graph is Hamilton-decomposable.

Open Problem

Characterise the connected Cayley graphs on finitely-generated infinite abelian groups of finite valency that are Hamilton-decomposable.

Tentative Conjecture

Every admissible infinite circulant graph is Hamilton-decomposable.

Open Problem

Characterise the connected Cayley graphs on finitely-generated infinite abelian groups of finite valency that are Hamilton-decomposable.

