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Infinite Circulant Graphs

Group G with identity e and S ⊆ G − {e}, inverse-closed

The Cayley graph on the group G with connection set S , denoted
Cay(G, S), is the undirected simple graph where

• the vertices are the elements of G and
• the edge set is {{g , gs} | g ∈ G, s ∈ S}.
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Hamilton Decompositions (Finite)

Theorem (Chen, Quimpo 1981)

Every 2k-regular connected Cayley graph on a finite abelian group has a
Hamilton cycle.

Alspach’s Conjecture (1984)

Every 2k-regular connected Cayley graph on a finite abelian group is
Hamilton-decomposable.

k = 1 X k = 2 X k > 3 ? (many partial results)

Theorem (Bryant, Dean 2015)

There exist 2k-regular connected Cayley graphs on finite NON-abelian groups
that are NOT Hamilton-decomposable.
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Infinite Analogue of a Hamilton Cycle

two-way infinite Hamilton path: connected 2-regular spanning subgraph

An infinite graph is Hamilton-decomposable if it is decomposable into
two-way-infinite Hamilton paths.

Theorem (Nash-Williams 1959)

Every connected Cayley graph on a finitely-generated infinite abelian
group has a two-way infinite Hamilton path.

[Abelian groups, graphs and generalized knights]

Theorem (Zhang, Huang 1995)

Every connected infinite circulant graph has a (two-way infinite)
Hamilton path. Furthermore, Cay(Z,S) is connected ⇐⇒ gcd(S) = 1.
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Infinite Connection Sets

G is ∞-connected if G has no finite cut-set.
G has infinite edge-connectivity if G has no finite edge-cut.

Theorem (Witte 1990)

Let G be a countably infinite graph with infinite valency.
If G is vertex-transitive and has a Hamilton path then G is ∞-connected.
Also, G is Hamilton-decomposable if and only if G has a Hamilton path
and infinite edge-connectivity.

Theorem (Bryant, S.H., Maenhaut, Webb)

Every connected Cayley graph on finitely-generated infinite abelian group
of infinite valency is Hamilton-decomposable.
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Finite Connection Sets

Let G = Cay(Z, S) where |S | = k.

Suppose G has a Hamilton decomposition.

Let E = {{u, v} | u 6 0, v > 1}.

0 1 0 1

|E | =
∑
s∈S

s

Each of the k Hamilton paths uses an odd number of edges of E .

Hence |E | and k have the same parity.

Necessary conditions for G to be Hamilton-decomposable:

(1) gcd(S) = 1 (2)
∑
s∈S

s ≡ |S | (mod 2)
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Admissible Infinite Circulants

Ex: Cay(Zn, {1, 2}) is Hamilton-decomposable ∀n > 5,
but Cay(Z, {1, 2}) is NOT Hamilton-decomposable.

Cay(Z, S) is admissible if gcd(S) = 1 and
∑
s∈S

s ≡ |S | (mod 2).

Cay(Z, S) admissible =⇒ for each positive even integer s 6∈ S ,
Cay(Z,S ∪ {s}) not admissible.

There are infinitely many connected infinite circulant graphs with finite
valency that are not Hamilton-decomposable.

Is every admissible infinite circulant graph Hamilton-decomposable?
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4-Regular Infinite Circulants

Theorem (Bryant, S.H., Maenhaut, Webb)

Cay(Z, {a, b}) is Hamilton-decomposable ⇐⇒ admissible
(a and b both odd and gcd(a, b) = 1).

Find a “starter path” with 2b edges starting at 0 and ending at 2b
covering a vertex from each congruence class modulo 2b

Take translates by 2b to get a Hamilton path H1

H2 = H1 + b

Ex: Cay(Z, {3, 5})
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General Construction Lemma

The length of an edge {u, v} in a graph with vertex set Zn is the
distance from u to v in Cay(Zn, {1})

Ex: G = Cay(Z, {1, 2, 8, 9, 5})
In K5 with vertex set Z5,

`([0], [1]) = 1

`([0], [2]) = 2

`([0], [8]) = 2

`([0], [9]) = 1
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General Construction Lemma

Lemma (Bryant, S.H., Maenhaut, Webb)

Let G = Cay(Z, {a1, . . . , ak−1, k}) be an admissible infinite circulant
graph where k is odd and each ai is not divisible by k.

If there exists a Hamilton path in Kk with edge lengths given by the
multiset {`([0], [ai ]) | i = 1, 2, . . . , k − 1},

then G is Hamilton-decomposable.

Buratti’s Conjecture (2007)

If p is an odd prime and L is a multiset of p − 1 elements from
{1, . . . , p−12 }, then there exists a Hamilton path in Kp with edge lengths
given by L.
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Using the Lemma

Buratti’s Conjecture has been verified in the following cases:

p 6 23 [Meszka]

the edges are of at most two lengths [Horak, Rosa 2009]

some results for p not necessarily prime
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If p is an odd prime, where p 6 23, and a1, a2, . . . , ap−1 are distinct
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No Hamilton path in K9 with the following multisets for edge lengths:

{1, 3, 3, 3, 3, 3, 3, 3} {2, 3, 3, 3, 3, 3, 3, 3}

{3, 3, 3, 3, 3, 3, 3, 3} {3, 3, 3, 3, 3, 3, 3, 4}
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6-Regular Infinite Circulants

Corollary

If a and b are distinct positive integers, not divisible by 3, then
Cay(Z, {3, a, b}) is Hamilton-decomposable ⇐⇒ admissible.

Unknown: Cay(Z, {a, 3t, 3}), where a 6≡ 0 (mod 3)

Corollary

If a, b ∈ Z+ are odd and relatively prime then Cay(Z, {1, a, b}) is
Hamilton-decomposable.

Unknown: Cay(Z, {1, a, b}) when a, b are both even or when a, b are
both odd but not relatively prime.
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Future Directions

Tentative Conjecture

Every admissible infinite circulant graph is Hamilton-decomposable.

Open Problem

Characterise the connected Cayley graphs on finitely-generated infinite
abelian groups of finite valency that are Hamilton-decomposable.

Ben Reiniger



Future Directions

Tentative Conjecture

Every admissible infinite circulant graph is Hamilton-decomposable.

Open Problem

Characterise the connected Cayley graphs on finitely-generated infinite
abelian groups of finite valency that are Hamilton-decomposable.

Ben Reiniger



Future Directions

Tentative Conjecture

Every admissible infinite circulant graph is Hamilton-decomposable.

Open Problem

Characterise the connected Cayley graphs on finitely-generated infinite
abelian groups of finite valency that are Hamilton-decomposable.

Ben Reiniger



Future Directions

Tentative Conjecture

Every admissible infinite circulant graph is Hamilton-decomposable.

Open Problem

Characterise the connected Cayley graphs on finitely-generated infinite
abelian groups of finite valency that are Hamilton-decomposable.

Ben Reiniger



Thanks!


