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Evolutionary dynamics

Main ingredients:

m Fitness: The ability to survive and reproduce.

m Selection emerges when two or more individuals reproduce at
different rates.

m Mutation: One type can change into another.

m Neutral drift: A finite population of two types will eventually

consist of only one type.
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How does spatial population
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The Moran Process

The Moran Process

m Discrete time stochastic process M := {M,}, n € Ny.

m Birth-death process on a well-mixed population of V
individuals.

m Here, the initial state of the population is:

m N — 1 wild type individuals with fitness 1
m 1 mutant with fitness r > 0
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The Moran Process

The Moran Process

One reproductive event at each time step:
m Select one individual for birth at random, but with probability
proportional to its fitness.
m This individual produces one clonal offspring.
m Randomly choose an individual to be replaced by the new
offspring.
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The Moran Process

The Moran Process

Replacement
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The Moran Process

The Moran Process

m Markov process on the number of mutants.
m State space S ={0,1,2,..., N} with initial state My = 1.

m Assumption: no further mutations. Therefore, the states 0
and N are absorbing.
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The Moran Process

Transition Probabilities for the Moran Process

The probability to increase or decrease the number of mutants, or to stay
with ¢ mutants at the next time step are:

ri N —1
th == P(Mpy1=i+1|M,=1) = .
i (Mnyy =i+1] Ry A
N —i i
t7 = P(Mpy1=i—1| M, =1i) = — .
‘ (M1 = | ) ri+N—i N-—1
t) = P(Myy, =i | M, =1) = 1-tf -t .
for0 <4< N.
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The Moran Process

Success Probability of the Mutants

Fixation probability:
<I>ZN is the probability to reach state IV from state 7.
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The Moran Process

Success Probability of the Mutants

ON =17 0N +tfON, + (1—t; —thHeN

where <I>(J)V =0; N = 1.
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N n—Ojljl o
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Solving the recursion:  ®;' = — ﬁ -
n=0 j=1 fj'

1—L

For the Moran process in a well-mixed pop.: &N = —.

N
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The Moran Process

Conditional Fixation Time

The expected time until absorption into the state N starting from
one single mutant, given that it will succeed:
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The Moran Process

Moran Process on Graphs

Let G := (V, E) define a graph, consisting of a set of vertices V

and edges E.
Individuals inhabit the nodes of a graph and reproduce into their

adjacent nodes.
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The Moran Process

Moran Process on Graphs

Let G := (V, E) define a graph, consisting of a set of vertices V

and edges E.
Individuals inhabit the nodes of a graph and reproduce into their

adjacent nodes.

Birth

death
Replacement

O Wild-type: fitness 1

. Mutant: fitness r
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The Moran Process

Moran Process on Graphs

B

Extinction Initial State Fixation
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The Moran Process

Reference Case

Well-mixed population Complete graph
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The Moran Process

Methods

Different approaches for calculating the fixation probability and
time in graphs:

m Individual-based simulations

m Transition matrix for up to 2% states.
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The Moran Process

Transition matrix

Renumber the s = ¢ + a states. The transition matrix now has the
following canonical form:

TsXs — ( tht Rtxa )

Oaxt Ia><a

Cal F =% ,Q"=(I— Q) "' the fundamental matrix of the Markov
chain. The entry F; ; is the expected sojourn time in state j, given that
the process starts in transient state 4.

C.M. Grinstead & J.L. Snell Introduction to Probability (1997)
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The Moran Process

Transition matrix

Probability of absorption in state j after starting in state i:

o = (FR), ; . (1)
Conditional fixation time!:
N-1 N
NS (2
[ N 2%
j=1 &

1W.J. Ewens. Theoretical Population Biology (1973)
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The Moran Process

Popular Examples

Mutants of fitness r =2 arising in a population of 50 individuals

Out of 10 runs: 5 4 r . 9
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M. Frean et al. Proc. R. Soc. B (2013)
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The Moran Process

Questions

Question 1:
Does every undirected graph that differs from the well-mixed
population increase the fixation time of advantageous mutants?

Question 2:
Given any population structure, does the removal of one link
always lead to a higher fixation time?
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The Moran Process

There are six different connected graphs of size four:
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The Moran Process

States of the Moran process on the complete graph:

M-R-K-K-K
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The Moran Process

States of the Moran process on the complete graph:
And on the ring:
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The Moran Process

States of the Moran process on the diamond:
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Fixation Time

Fixation Time

Question 2: Does the removal of a link always lead to a higher fixation
time?

Mean conditional fixation time

0 1 2 3 4 5

Fitness of mutants
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Fixation Time

Fixation Time

Question 2: Does the removal of a link always lead to a longer fixation
time?

Mean conditional fixation time

i
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Fitness of mutants
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Fixation Time

Fixation Time

Question 2: Does the removal of a link always lead to a longer fixation
time?

Mean conditional fixation time

1 2 3 4 5

Fitness of mutants

Answer: No!
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Fixation Time

Is this effect still present in larger networks?
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Figure : Influence of the extra link in rings of size four, six and eight. A
mutant fitness 7 = 1.5 is used.
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Fixation Time

Is this effect still present in larger networks?

PP
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Fixation Time

(a

Nl

4000

3000 -

2000 -

1000 -

Mean conditional fixation time

O~ . ‘ ‘ ]
4000 T

T 7

(b

3000 -

2000 -

1000 +

Mean conditional fixation time ~~

Ob—"" . .
4916 25 36 49 64 81

Population size

L. Hindersin & A. Traulsen. Proc. R. Soc. Interface (2014)
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Fixation Time

What makes it so hard to answer Question 1

Question 1:
Does every graph that differs from the well-mixed population
increase the fixation time of advantageous mutants?

Problems:
m Non-trivial relationship of the fixation probability and time,
because the fixation time depends on the probability.
m For non-isothermal graphs, the transition matrix

m does not have a tridiagonal shape, since it is generally not a
simple birth-death process,
m can be very large.

Laura Hindersin Evolutionary dynamics on graphs 25 /40



Fixation probability

Popular Examples

Mutants of fitness r =2 arising in a population of 50 individuals

Out of 10 runs: 5 4 r . 9
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M. Frean et al. Proc. R. Soc. B (2013)
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Fixation probability

Amplifier and Suppressor of Selection

Graph G is an amplifier of
selection if

N

r>1 = pG > pmix and
r<l = PG < Pmix-

fixation probability
nie

G is a suppressor of selection if
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Fixation probability

Amplifiers of Selection

E. Lieberman et al. Nature (2005)
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Fixation probability

Node Properties

Let G = (V. E) be an undirected graph with N nodes.

The degree k; of a node i € V is defined by the number of its

neighbors:
kii=|{eij :eij € B},

The temperature 7; of a node i € V is defined by the sum over
all incoming links, weighted by their degree:

N ..

'ﬁzzzeljj.

Jj=1

Laura Hindersin Evolutionary dynamics on graphs 29 /40



Fixation probability

Graph Properties

A graph G = (V, E) is called isothermal if 7; = 7; for all 4,5 € V.

Denote the fixation probability of a single mutant in a well-mixed
population as ppix 1= <I>{V .

A population structure represented by a graph GG, where one
mutant has fixation probability

PG = Pmix

is called p-equivalent to the well-mixed population.
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Fixation probability

Isothermal Theorem

Theorem

A graph G is p-equivalent iff it is isothermal.

A proof can be found in 2.

2| ieberman et al. [2005]: Evolutionary dynamics on graphs. Nature, 433,
Pages 312-316, Supplementary Notes.
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Fixation probability

Observation

For size N = 4, all non-regular graphs are amplifiers of selection.
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Fixation probability

Underlying Update Mechanisms

Bi:th
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Fixation probability

Procedure

m Generate an Erd6s-Rényi random graph G for given N and p.
m Calculate the fixation probability pg.

m Compare it to the fixation probability pmix-

[

Classify as amplifier or suppressor if possible.
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Fixation probability

300 Birth-death on 300 random graphs of size 10 200 Death-birth on 200 random graphs of size 10
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Fixation probability

Summary

Changing the structure can have
counterintuitive effects on the fixation
time.

Bd: almost all random networks are
amplifiers.

dB: almost all random networks are
SUppressors.

Laura Hindersin Evolutionary dynamics on graphs 36 /40



Fixation probability

Applications

Biological:

m Experimental evolution: Using an amplifier graph increases fixation
probability, but the time is increased as well.

m Biological networks, like protein or gene regulatory networks are
often scale-free®. Scale-free networks can amplify selection.
Social:

m Social networks: The spreading of ideas can be very likely, but may
take a long time.

m Scientific collaborations networks are often scale-free.

3R. Albert & A.-L. Barabasi, Review of Modern Physics (2002)
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Outlook: Metapopulations

Next Step

Consider subpopulations at the nodes. The links determine the
migration paths.
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Outlook: Metapopulations

Next Step
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Outlook: Metapopulations
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