Subtraction games with expandable subtraction sets

Bao Ho

Department of Mathematics and Statistics La Trobe University

> Monash University April 11, 2012

Outline

- The game of Nim
- Nim-values and Nim-sequences
- Subtraction games
- Periodicity of subtraction games
- Expansion of subtraction sets

The game of Nim

- a row of piles of coins,
- two players move alternately, choosing one pile and removing an arbitrary number of coins from that pile,
- the game ends when all piles become empty,
- the player who makes the last move wins.

Nim-addition

Nim-addition, denoted by \oplus , is the addition in the binary number system without carrying.

For example, $5=101_2$, $3=11_2$ and so $5\oplus 3$ is 6 obtained as follows

Winning strategy in Nim

You can win in Nim if you can force your opponent to move from a position of the form (a_1, a_2, \ldots, a_k) such that

$$a_1 \oplus a_2 \oplus \ldots \oplus a_k = 0^1$$
.

¹C.L. Bouton, Nim, a game with a complete mathematical theory, *Ann. of Math.* (2) **3** (1901/02), no. 1/4, 35–39.

Example

$$(2,3,6){\rightarrow}(2,3,1)\rightarrow(3,1){\rightarrow}(1,1)\rightarrow(1){\rightarrow}\emptyset.$$

Homework: Find a winning move from position (1,2,3,4).

$$(1,2,3,4) \rightarrow ?$$

One-pile Nim-like games: example 1

From a pile of coins, remove any number of coins strictly smaller than half the size of the pile.

Strategy: You can win if and only if you can leave the game in a pile of size 2^k .

One-pile Nim-like games: example 2

Given a pile of coins, remove at most m coins, for some given m.

Strategy: You can win if and only if you can leave the game in a pile of size n such that mod(n, m + 1) = 0.

Games as directed graphs

A game \equiv finite directed acyclic graph without multiple edges in which

- vertices = positions,
- downward edges = moves,
- source = initial position,
- sinks = final positions.

We can assume that such a graph have exactly one sink.

mex value

Let **S** be a set of nonnegative integers.

The minimum excluded value of the set S is the least nonnegative integer which is not included in S and is denoted mex(S).

$$mex(S) = min\{k \in \mathbb{Z}, k \ge 0 | k \notin S\}.$$

We define $mex\{\} = 0$.

Example:

$$mex{0,1,3,4} = 2.$$

Sprague-Grundy function

The Sprague-Grundy function for a game is the function

 \mathcal{G} : {positions of the game} \rightarrow { $n \in \mathbb{Z}$; $n \ge 0$ }

defined inductively from the final position (sink of graph) by

 $\mathcal{G}(p) = mex\{\mathcal{G}(q)|\text{if there is one move from } p \text{ to } q\}.$

The value G(p) is also called nim-value.

Subtraction games

A subtraction game is a variant of Nim involving a finite set *S* of positive integers:

- the set S is called subtraction set,
- the two players alternately remove some s coins provided that $s \in S$.

The subtraction game with subtraction set $\{a_1, a_2, \dots, a_k\}$ is denoted by $S(a_1, a_2, \dots, a_k)$.

Nim-sequence

For each non-negative integer n, we denote by $\mathcal{G}(n)$ the nim-value of the single pile of size n of a subtraction game.

The sequence

$$\{\mathcal{G}(n)\}_{n\geq 0}=\mathcal{G}(0),\mathcal{G}(1),\mathcal{G}(2),\ldots$$

is called nim-sequence.

Nim-sequences of some subtraction games

Periodicity of nim-sequences

A nim-sequence is said to be ultimately periodic if there exist N, p such that $\mathcal{G}(n+p) = \mathcal{G}(n)$ for all $n \geq N$. The smallest such number p is called the period.

If N = 0, then the nim-sequence is said to be periodic.

Periodicity of subtraction games

A game is said to be (ultimately) periodic if its nim-sequence is (ultimately) periodic.

Theorem

^a Every subtraction game is (ultimately) periodic.

^aE.R. Berlekamp, J.H. Conway, R.K. Guy, *Winning ways for your mathematical plays. Vol. 1*, second ed., A K Peters Ltd., Natick, MA, 2001.

Open problem in the periodicity of subtraction games²

Problem

Given a subtraction set, describe the nim-sequence of the subtraction game.

The question is still open for subtraction games with three element subtraction sets.

Subtraction games agreeing nim-sequences: Examples

•
$$S(2,3)$$

$$0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, \dots$$

•
$$S(2,3,7)$$

$$0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, \dots$$

•
$$S(2,3,7,8)$$

$$0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, \dots$$

•
$$S(2,3,7,8,12)$$

$$0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, 1, 2, 0, 0, 1, \dots$$

More examples

Subtraction set (with optional extras)	nim-sequence	period
1 (3,5,7,9,)	010101	2
2 (6,10,14,18,)	00110011	4
1,2 (4,5,7,8,10,11,)	012012	3
3 (9,15,21,27,)	000111000111	6
2,3 (7,8,12,13,17,18,)	0011200112	5
2,3 (7,8,12,13,17,18,)	0011200112	5
3,6,7 (4,5,13,14,15,16,17,23,24)	0001112223	
,	0001112223	10

Problem³

Problem

Let $S = \{a_1, a_2, \dots, a_k\}$ be a subtraction set. Find all integers a so that a can be added into S without changing the nim-sequence.

Problem³

Problem

Let $S = \{a_1, a_2, \dots, a_k\}$ be a subtraction set. Find all integers a so that a can be added into S without changing the nim-sequence.

If we can find a so that $\mathcal{G}(n-a) \neq \mathcal{G}(n)$ for every n then a can be added into the subtraction set without changing the nim-sequence.

³E.R. Berlekamp, J.H. Conway, R.K. Guy, *Winning ways for your mathematical play* 1, second ed., A K Peters Ltd., Natick, MA, 2001.

Problem³

Problem

Let $S = \{a_1, a_2, \dots, a_k\}$ be a subtraction set. Find all integers a so that a can be added into S without changing the nim-sequence.

If we can find a so that $\mathcal{G}(n-a) \neq \mathcal{G}(n)$ for every n then a can be added into the subtraction set without changing the nim-sequence.

For a given subtraction set S, we denote by S^{ex} the set of all integers that can be added into S without changing the nim-sequence.

Periodic games

Let $S(s_1, s_2, ..., s_k)$ be a periodic subtraction game with period p. Then, for $1 \le i \le k$ and $m \ge 0$, $s_i + mp$ can be added into the

subtraction set without changing the nim-sequence.

Let

$$S^{*p} = \{s_i + mp | 1 \le i \le k, m \ge 0\}.$$

Then,

$$S = \{s_1, s_2, \dots, s_k\} \subseteq S^{*p} \subseteq S^{ex}.$$

Periodic games

Let $S(s_1, s_2, \ldots, s_k)$ be a periodic subtraction game with period p. Then, for $1 \le i \le k$ and $m \ge 0$, $s_i + mp$ can be added into the subtraction set without changing the nim-sequence.

Let

$$S^{*p} = \{s_i + mp | 1 \le i \le k, m \ge 0\}.$$

Then,

$$S = \{s_1, s_2, \dots, s_k\} \subseteq S^{*p} \subseteq S^{ex}.$$

Definition

If

$$S^{*p} = S^{ex}$$

then the subtraction set S is said to be non-expandable. Otherwise, S is expandable and S^{ex} is called the expansion of S. The first simple case: $S = \{a\}$

The singleton subtraction set is non-expandable.

The second simple case: $S = \{a, b\}$

Let a < b (gcd(a, b) = 1, b is not an odd multiple of a). Consider the subtraction set $\{a, b\}$.

• If $a + 1 < b \le 2a$, then the subtraction set has expansion

$${a, a+1, \ldots, b}^{*(a+b)}$$
.

• If either a = 1, or b = a + 1, or b > 2a, then the subtraction set is non-expandable.

More examples: $S = \{1, a, b\}$

Example 1:

Let $a \ge 2$ be an even integer. The subtraction game S(1, a, 2a + 1) is periodic and the subtraction set is non-expandable.

Example 2:

Let a < b such that a is odd, b is even. The subtraction set $\{1, a, b\}$ is expandable with the expansion

$$\{\{1,3,\ldots,a\}\cup\{b,b+2,\ldots,b+a-1\}\}^{*(a+b)}$$
.

Ultimately periodic games

Let $S(s_1, s_2, ..., s_k)$ be an ultimately periodic subtraction game with period p.

Note that the inclusion $S^{*p} \subseteq S^{ex}$ does not necessarily hold.

Definition

If $S^{\text{ex}} = S$ then the subtraction set S is non-expandable. Otherwise, S^{ex} is called the expansion of S.

An example

Let $a \ge 4$ be an even integer. The subtraction game S(1, a, 3a - 2) is ultimately periodic with period 3a - 1.

- If a = 4 then the subtraction set is non-expandable,
- otherwise, the subtraction set has expansion

$$\{1, a, 3a - 2, 3a\} \cup \{4a - 1, 6a - 1\}^{*(3a - 1)}.$$

Ultimately bipartite subtraction games

A subtraction game is said to be ultimately bipartite if its nim-sequence is ultimately periodic with period 2 with, for sufficiently large n, alternating nim-values 0, 1, 0, 1, 0, 1,

Ultimately bipartite subtraction games

A subtraction game is said to be ultimately bipartite if its nim-sequence is ultimately periodic with period 2 with, for sufficiently large n, alternating nim-values 0, 1, 0, 1, 0, 1,

Some ultimately bipartite subtraction games:

- $S(3,5,9,\ldots,2^k+1)$, for $k \ge 3$,
- $S(3,5,2^k+1)$, for $k \ge 3$,
- S(a, a + 2, 2a + 3), for odd $a \ge 3$,
- S(a, 2a + 1, 3a), for odd $a \ge 5$.

Ultimately bipartite subtraction games

A subtraction game is said to be ultimately bipartite if its nim-sequence is ultimately periodic with period 2 with, for sufficiently large n, alternating nim-values 0, 1, 0, 1, 0, 1,

Some ultimately bipartite subtraction games:

- $S(3,5,9,\ldots,2^k+1)$, for $k \ge 3$,
- $S(3,5,2^k+1)$, for $k \ge 3$,
- S(a, a + 2, 2a + 3), for odd $a \ge 3$,
- S(a, 2a + 1, 3a), for odd $a \ge 5$.

Example:

$$S(3,5,9)$$
: 0, 0, 0, 1, 1, 1, 2, 2, 0, 3, 3, 1, 0, 2, 0, 1, 0, 1, 0, 1, ...

A conjecture

The subtraction set of an ultimately bipartite game is non-expandable.

For more details

G. Cairns, and N. B. Ho, Ultimately bipartite subtraction games. *Australas. J. Combin.* **48** (2010), 213–220

N. B. Ho, Subtraction games with three-element subtraction sets, submitted, arXiv:1202.2986v1.