Switching techniques for edge decompositions of graphs

Daniel Horsley

Monash University, Australia

Switching techniques for edge decompositions of graphs

Daniel Horsley

Monash University, Australia

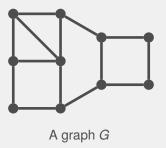
Darryn Bryant, Barbara Maenhaut

Edge decomposition

A set $\{G_1, \ldots, G_t\}$ of subgraphs of a graph G such that $\{E(G_1), \ldots, E(G_t)\}$ is a partition of E(G).

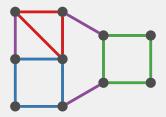
Edge decomposition

A set $\{G_1, \ldots, G_t\}$ of subgraphs of a graph G such that $\{E(G_1), \ldots, E(G_t)\}$ is a partition of E(G).



Edge decomposition

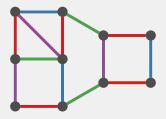
A set $\{G_1, \ldots, G_t\}$ of subgraphs of a graph G such that $\{E(G_1), \ldots, E(G_t)\}$ is a partition of E(G).



A decomposition of G into cycles and a matching

Edge decomposition

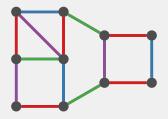
A set $\{G_1, \ldots, G_t\}$ of subgraphs of a graph G such that $\{E(G_1), \ldots, E(G_t)\}$ is a partition of E(G).



A decomposition of *G* into matchings

Edge decomposition

A set $\{G_1, \ldots, G_t\}$ of subgraphs of a graph G such that $\{E(G_1), \ldots, E(G_t)\}$ is a partition of E(G).



A decomposition of *G* into matchings

proper t-edge colouring

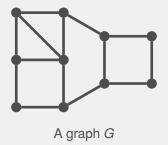
A decomposition of a graph into *t* matchings.

Packing

A decomposition of G into graphs G_1, \ldots, G_t and a *leave* graph L.

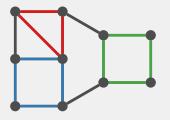
Packing

A decomposition of G into graphs G_1, \ldots, G_t and a *leave* graph L.



Packing

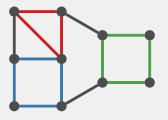
A decomposition of G into graphs G_1, \ldots, G_t and a *leave* graph L.



A packing of G with cycles

Packing

A decomposition of G into graphs G_1, \ldots, G_t and a *leave* graph L.



A packing of G with cycles

Switching technique

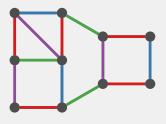
A method for locally modifying edge decompositions that feels kind of switchy.

Proper edge colourings

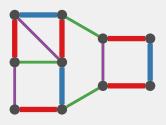
Warm up:

Theorem

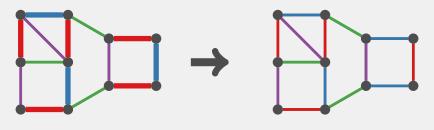
Theorem



Theorem

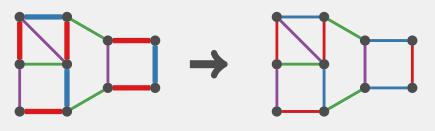


Theorem



Theorem

If a graph G has a proper t-edge colouring, then it has a proper t-edge colouring such that the sizes of any two colour classes differ by at most one.



Theorem (Vizing 1964)

Every graph *G* has a proper $(\Delta(G) + 1)$ -edge colouring.

Feels kind of switchy

Is reminiscent of the argument on the last slide.

Feels kind of switchy

Is reminiscent of the argument on the last slide.

This talk is about applying these kinds of switching techniques to edge decompositions of graphs *other than* edge colourings.

Embedding partial Steiner triple systems

Part 1:

STS(v): A decomposition of K_v into triangles.

PSTS(u): A packing of K_u with triangles.

STS(v): A decomposition of K_v into triangles.

PSTS(u): A packing of K_u with triangles.

STS(v): A decomposition of K_v into triangles.

PSTS(u): A packing of K_u with triangles.

STS(v): A decomposition of K_v into triangles.

PSTS(u): A packing of K_u with triangles.

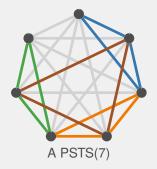


Theorem (Kirkman 1847)

An STS(v) exists if and only if $v \equiv 1,3 \pmod{6}$.

STS(v): A decomposition of K_v into triangles.

PSTS(u): A packing of K_u with triangles.



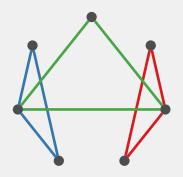
Theorem (Kirkman 1847)

An STS(v) exists if and only if $v \equiv 1,3 \pmod{6}$.

Call such orders admissible.

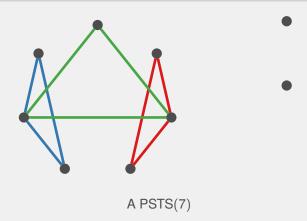
Problem

Problem

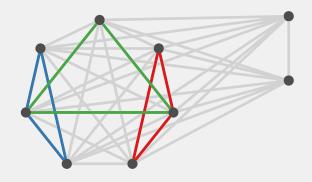


A PSTS(7)

Problem

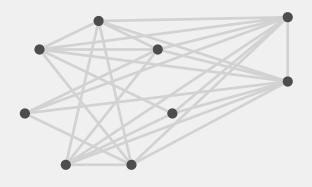


Problem



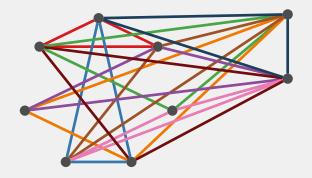
A PSTS(7)

Problem



A PSTS(7)

Problem



An embedding of the PSTS(7) of order 9

History

History

Treash (1971): Every PSTS(u) has an embedding (of order at most 2^{2u}).

Lindner (1975): Every PSTS(u) has an embedding of order 6u + 3.

Conjecture (Lindner 1977)

Every PSTS(u) has an embedding of order v for each admissible $v \ge 2u + 1$.

Andersen, Hilton, Mendelsohn (1980): Every PSTS(u) has an embedding of order v for each admissible $v \ge 4u + 1$.

Bryant (2004): Every PSTS(u) has an embedding of order v for each admissible $v \ge 3u - 2$.

Bryant, H. (2009): Lindner's conjecture is true.

History

Treash (1971): Every PSTS(u) has an embedding (of order at most 2^{2u}).

Lindner (1975): Every PSTS(u) has an embedding of order 6u + 3.

Conjecture (Lindner 1977)

Every PSTS(u) has an embedding of order v for each admissible $v \ge 2u + 1$.

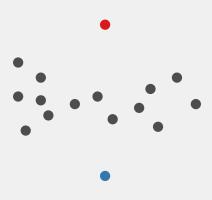
Andersen, Hilton, Mendelsohn (1980): Every PSTS(u) has an embedding of order v for each admissible $v \ge 4u + 1$.

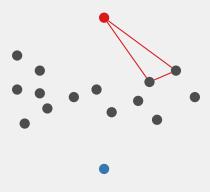
Bryant (2004): Every PSTS(u) has an embedding of order v for each admissible $v \ge 3u - 2$.

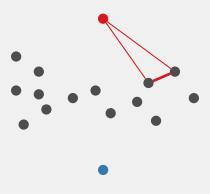
Bryant, H. (2009): Lindner's conjecture is true.

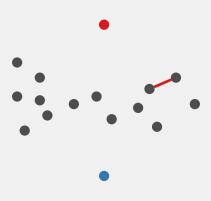
Work on embeddings of $PTS(v, \lambda)$ s and quasigroup variants by Andersen, Colbourn, Hamm, Hao, Hoffman, Lindner, Mendelsohn, Raines, Rodger, Rosa, Stubbs, Wallis in the 1970s, 80s, 90s and 00s.

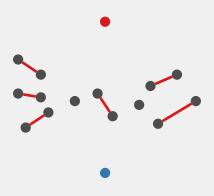
• and • are twin (have the same neighbours) in the underlying graph

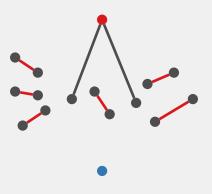


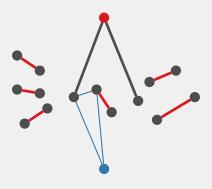


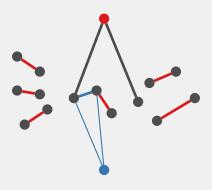


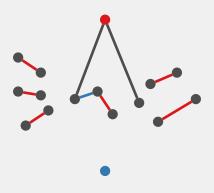


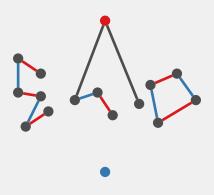


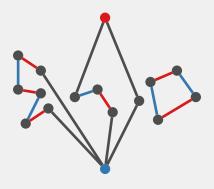


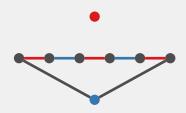


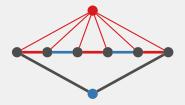


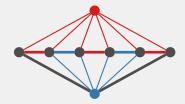


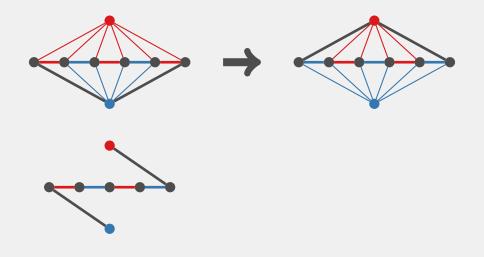


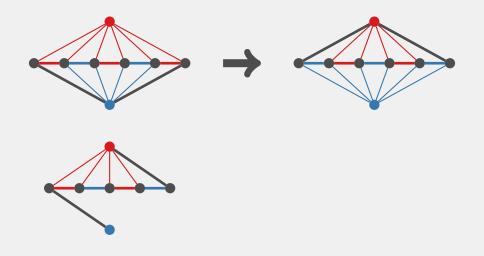


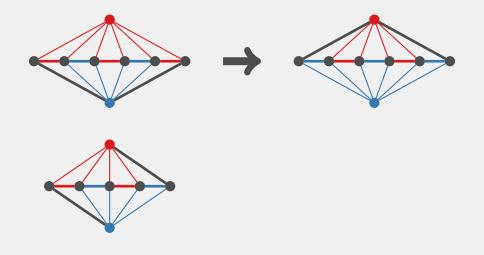


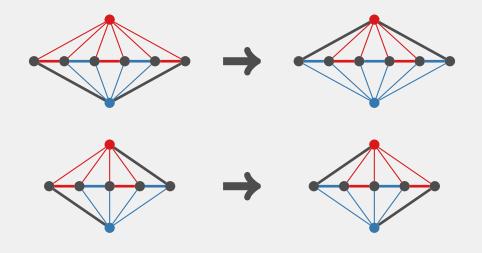


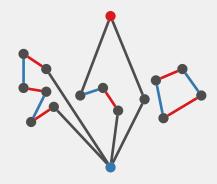


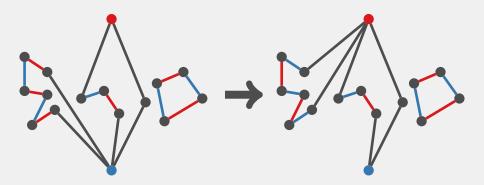


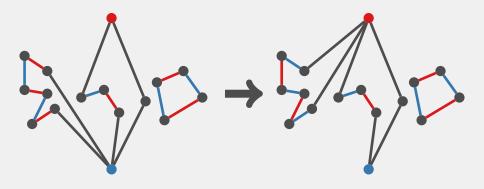






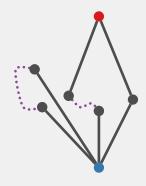


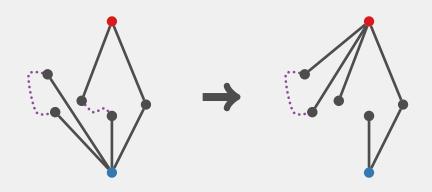


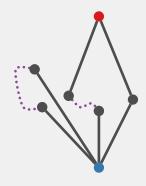


Lemma (Andersen, Hilton, Mendelsohn 1980)

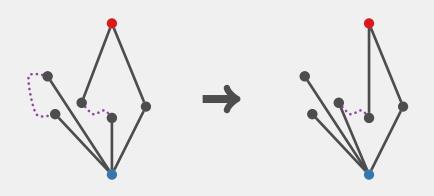
If there is a PSTS(u) with t triangles, then there is a PSTS(u) with t triangles such that the numbers of triangles on any two vertices differ by at most one.







Switching in triangle packings

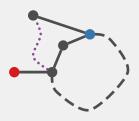


Say we wish to add another triangle to a partial embedding.

Say we wish to add another triangle to a partial embedding.

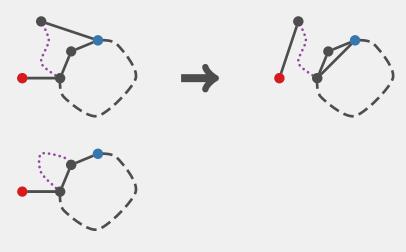
Say we wish to add another triangle to a partial embedding.

Say we wish to add another triangle to a partial embedding.

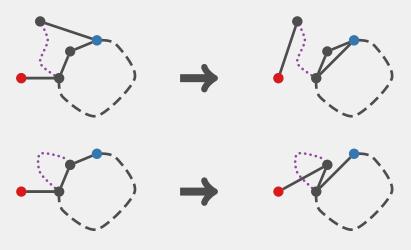


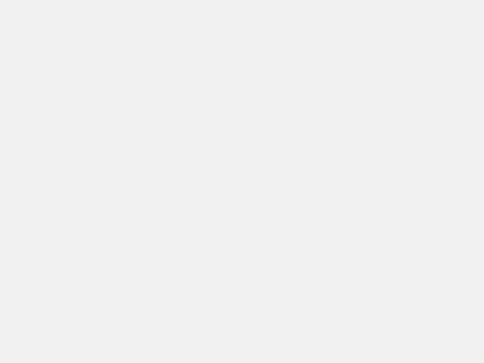
Say we wish to add another triangle to a partial embedding.

Say we wish to add another triangle to a partial embedding.



Say we wish to add another triangle to a partial embedding.





Theorem (Bryant, H. 2009)

Every PSTS(u) has an embedding of order v for each admissible $v \ge 2u + 1$.

More switching-assisted results on embeddings

Bryant, Buchanan (2007): Every partial totally symmetric quasigroup of order u has an embedding of order v for each even $v \ge 2u + 4$.

Bryant, Martin (2012): For $u \ge 28$, every PTS (u, λ) has an embedding triple of order v for each admissible $v \ge 2u + 1$.

Martin, McCourt (2012): Any partial 5-cycle system of order $u \ge 255$ has an embedding of order at most $\frac{1}{4}(9u + 146)$.

H. (2014): "Half" of the possible embeddings of order less than 2u+1 for PSTS(u)s with $\Delta(L) \leqslant \frac{1}{4}(u-9)$ and $|E(L)| < \frac{1}{32}(u-5)(u-11) + 2$ exist.

H. (2014): Any PSTS(u) with at most $\frac{1}{50}u^2 + o(u)$ triples has an embedding for each admissible order $v \ge \frac{1}{5}(8u + 17)$.

Part 2:

Cycle decompositions

 $K_n \rightsquigarrow m_1, \ldots, m_t$

"There is a decomposition of K_n into cycles of lengths m_1, \ldots, m_t ."

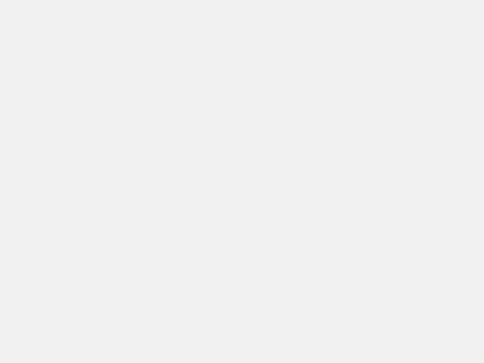
 $K_n \leadsto m_1, \ldots, m_t$

"There is a decomposition of K_n into cycles of lengths m_1, \ldots, m_t ."

$$K_n \leadsto m_1, \ldots, m_t$$

"There is a decomposition of K_n into cycles of lengths m_1, \ldots, m_t ."

 $K_7 \rightsquigarrow 7, 6, 4, 4$



```
If K_n \rightsquigarrow m_1, \ldots, m_t then
```

- (1) *n* is odd;
- (2) $n \ge m_1, ..., m_t \ge 3$; and
- (3) $m_1 + \cdots + m_t = \binom{n}{2}$.

```
If K_n \rightsquigarrow m_1, \dots, m_t then
(1) n is odd;
(2) n > m_1, \dots, m_t > 3
```

(2)
$$n \geqslant m_1, ..., m_t \geqslant 3$$
; and

(3)
$$m_1 + \cdots + m_t = \binom{n}{2}$$
.

Alspach's cycle decomposition problem (1981)

Prove (1), (2) and (3) are sufficient for $K_n \rightsquigarrow m_1, \ldots, m_t$.

When does $K_n \rightsquigarrow m, \ldots, m$?

When does $K_n \rightsquigarrow m, \ldots, m$?

- Kirkman and Walecki solved special cases in the 1800s.
- ► Results from Kotzig, Rosa, Huang in the 1960s.
- Reductions of the problem from Bermond, Huang, Sotteau and from Hoffman, Lindner, Rodger in the 1980s and 90s.
- ► Solved by Alspach, Gavlas, Šajna in 2001–2002.

When does $K_n \rightsquigarrow m, \ldots, m$?

- Kirkman and Walecki solved special cases in the 1800s.
- ► Results from Kotzig, Rosa, Huang in the 1960s.
- Reductions of the problem from Bermond, Huang, Sotteau and from Hoffman, Lindner, Rodger in the 1980s and 90s.
- ► Solved by Alspach, Gavlas, Šajna in 2001–2002.

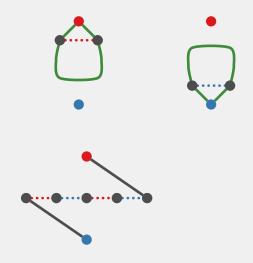
When does $K_n \rightsquigarrow m_1, \ldots, m_t$?

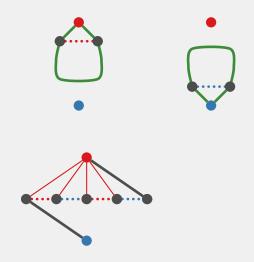
When does $K_n \rightsquigarrow m, \ldots, m$?

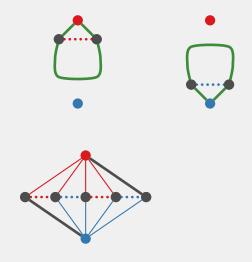
- ► Kirkman and Walecki solved special cases in the 1800s.
- ► Results from Kotzig, Rosa, Huang in the 1960s.
- Reductions of the problem from Bermond, Huang, Sotteau and from Hoffman, Lindner, Rodger in the 1980s and 90s.
- ► Solved by Alspach, Gavlas, Šajna in 2001–2002.

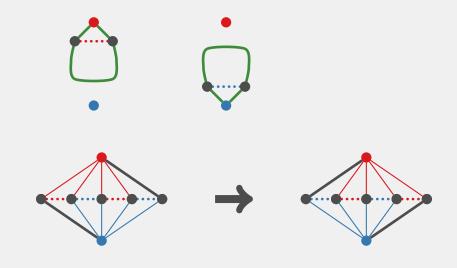
When does $K_n \rightsquigarrow m_1, \ldots, m_t$?

- Work on limited sets of cycle lengths from Adams, Bryant, Heinrich, Horák, Khodkar, Maehaut, Rosa in the 1980s, 90s and 00s.
- A more general result from Balister in 2001.
- ► A reduction from Bryant, H. in 2009–2010.
- ► Solved by Bryant, H., Pettersson in 2014.



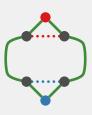


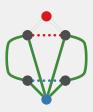


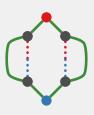


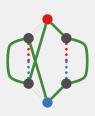
Theorem (Raines, Szaniszló 1999)

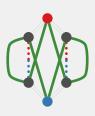
For $m \in \{4,5\}$, if there is a packing of K_n with t m-cycles, then there is a packing of K_n with t m-cycles such that the numbers of cycles on any two vertices differ by at most one.

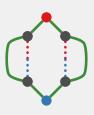


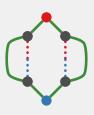


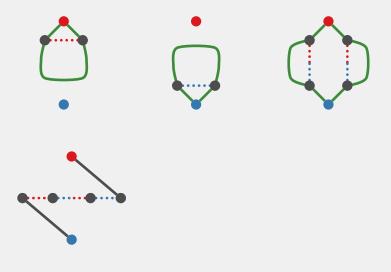


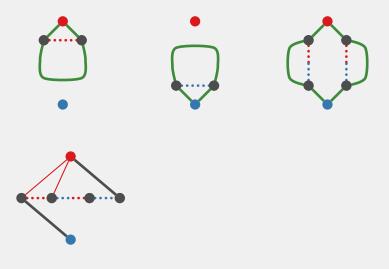


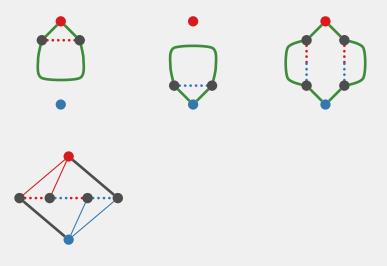


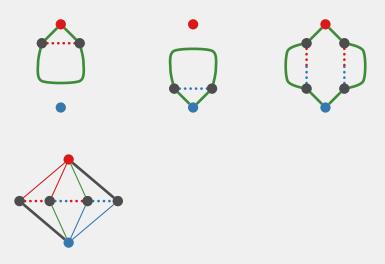


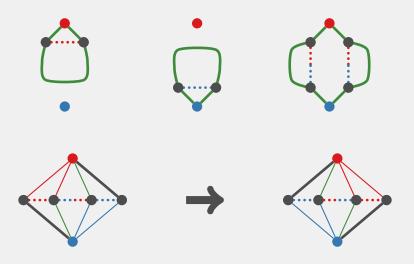






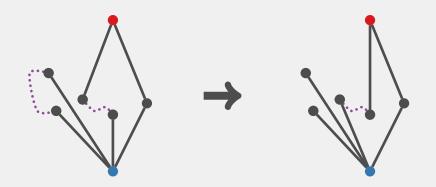


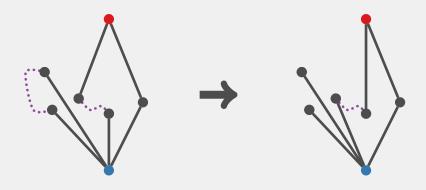






(Bryant, H., Maenhaut 2005)





this works for packings with cycles of arbitrary lengths
and • must be twin vertices in the underlying graph (for a packing of K_n this is trivial)

Using switching in cycle packings

Using switching in cycle packings

Equalising lemma (Bryant, H.)

$$K_n \rightsquigarrow (m_1, m_2, \dots, m_t, x, y) \Longrightarrow K_n \rightsquigarrow (m_1, m_2, \dots, m_t, x+1, y-1)$$
 when $x < y$ and $x + y \geqslant n+2$.

Merging lemma (Bryant, H.)

$$K_n \rightsquigarrow (m_1, m_2, \dots, m_t, c, x, y) \Longrightarrow K_n \rightsquigarrow (m_1, m_2, \dots, m_t, c, x + y)$$

when $c \geqslant \frac{1}{2}(x + y)$ and $x + y + c \leqslant n + 1$.

Using switching in cycle packings

Equalising lemma (Bryant, H.)

$$K_n \rightsquigarrow (m_1, m_2, \dots, m_t, x, y) \Longrightarrow K_n \rightsquigarrow (m_1, m_2, \dots, m_t, x+1, y-1)$$

when $x < y$ and $x + y \geqslant n+2$.

Merging lemma (Bryant, H.)

$$K_n \rightsquigarrow (m_1, m_2, \dots, m_t, c, x, y) \Longrightarrow K_n \rightsquigarrow (m_1, m_2, \dots, m_t, c, x + y)$$

when $c \geqslant \frac{1}{2}(x + y)$ and $x + y + c \leqslant n + 1$.

Reduction (Bryant, H.)

To solve Alspach's problem for K_n it suffices to solve it for lists of the form $3, 3, \ldots, 3, 4, 4, \ldots, 4, 5, 5, \ldots, 5, k, n, n, \ldots, n$.

Theorem (Bryant, H., Pettersson 2014)

1110010111 (B. Jan, 1.1., 1. otto:00011 2011

There is an
$$(m_1, \ldots, m_t)$$
-decomposition of K_n if and only if

(2) $n \ge m_1, \dots, m_t \ge 3$; and (3) $m_1 + \dots + m_t = \binom{n}{2}$.

(1) n is odd;

Switching-assisted cycle decomposition results

Bryant (2010): Characterisation of when λK_n has a decomposition into paths of lengths m_1, \ldots, m_t .

H. (2012): Partial results on when a complete multipartite graph has a decomposition into cycles of length m.

H., Hoyte (2016, 2017): Partial results on when $K_n - K_h$ has a decomposition into cycles of lengths m_1, \ldots, m_t .

Asplund, Chaffee, Hammer (2017+): Partial results on when $\lambda K_{a,b}$ has a decomposition into cycles of lengths m_1, \ldots, m_t .

Bryant, H., Maenhaut, Smith (2017+): Characterisation of when λK_n has a decomposition into cycles of lengths m_1, \ldots, m_t .

Hoyte (2017+): Characterisation of when λK_n has a packing with cycles of lengths m_1, \ldots, m_t .

Switching-assisted cycle decomposition results

Bryant (2010): Characterisation of when λK_n has a decomposition into paths of lengths m_1, \ldots, m_t .

H. (2012): Partial results on when a complete multipartite graph has a decomposition into cycles of length m.

H., Hoyte (2016, 2017): Partial results on when $K_n - K_h$ has a decomposition into cycles of lengths m_1, \ldots, m_t .

Asplund, Chaffee, Hammer (2017+): Partial results on when $\lambda K_{a,b}$ has a decomposition into cycles of lengths m_1, \ldots, m_t .

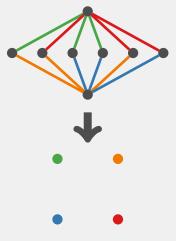
Bryant, H., Maenhaut, Smith (2017+): Characterisation of when λK_n has a decomposition into cycles of lengths m_1, \ldots, m_t .

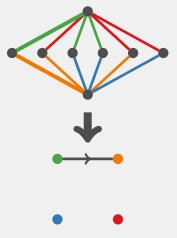
Hoyte (2017+): Characterisation of when λK_n has a packing with cycles of lengths m_1, \ldots, m_t .

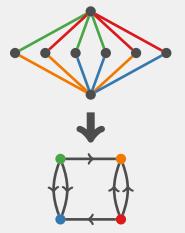
Note the underlying graphs in these results have large sets of pairwise twin vertices.

Part 3:

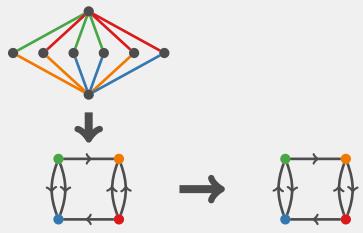
Almost regular decompositions



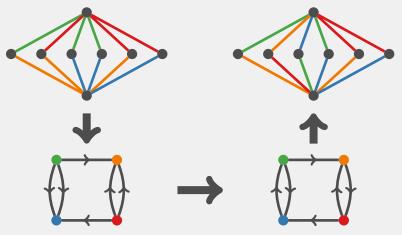




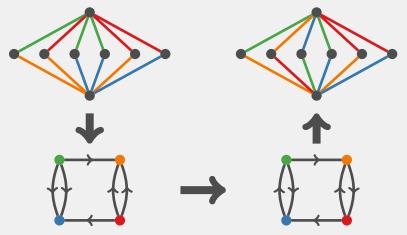
In an improper edge colouring of K_n , we want to make the colour classes "as regular as possible" (without changing their sizes).



In an improper edge colouring of K_n , we want to make the colour classes "as regular as possible" (without changing their sizes).

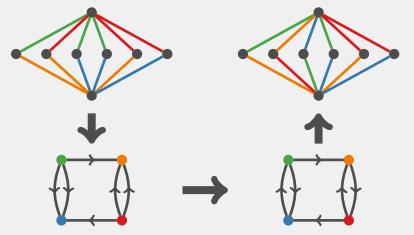


In an improper edge colouring of K_n , we want to make the colour classes "as regular as possible" (without changing their sizes).



(Bryant, Maenhaut 2008)

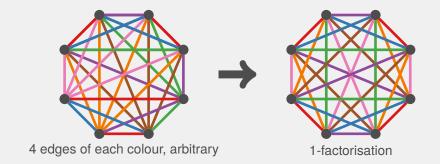
In an improper edge colouring of K_n , we want to make the colour classes "as regular as possible" (without changing their sizes).

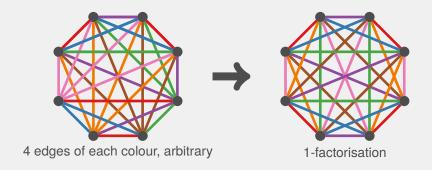


(Bryant, Maenhaut 2008)

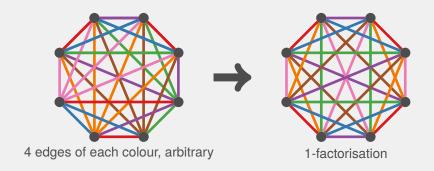
Our previous switching techniques can also be viewed in this framework.

4 edges of each colour, arbitrary





This argument can be extended to give a neat proof of Cruse (1974) and Andersen and Hilton (1980) that characterise when an (improper) edge colouring of K_u can be extended to a k-factorisation of K_v .



This argument can be extended to give a neat proof of Cruse (1974) and Andersen and Hilton (1980) that characterise when an (improper) edge colouring of K_u can be extended to a k-factorisation of K_v .

Bryant recently extended these arguments to hypergraphs, where they give elegant proofs of many generalisations of Baranyai's theorem.

Future directions

Future directions

Can hypergraph switching be used in a more sophisticated way?

Keevash and Barber, Csaba, Glock, Kühn, Lo, Osthus, Treglown have recently obtained very strong results on edge decomposition of dense graphs. Can switching be usefully applied in this setting?

Can switching be usefully applied to fractional decomposition of graphs?

That's all