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Definitions

Edge decomposition
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is a partition of E(G).

proper t-edge colouring
A decomposition of a graph into t matchings.
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Embedding partial Steiner triple systems
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STS(v): A decomposition of Kv into triangles.
PSTS(u): A packing of Ku with triangles.

An STS(7) A PSTS(7)

Theorem (Kirkman 1847)
An STS(v) exists if and only if v ≡ 1,3 (mod 6).

Call such orders admissible.
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Problem
Given a PSTS, find the smallest v for which there is an STS(v) containing
the PSTS.

An embedding of the PSTS(7) of order 9



History

Treash (1971): Every PSTS(u) has an embedding (of order at most 22u).

Lindner (1975): Every PSTS(u) has an embedding of order 6u + 3.

Conjecture (Lindner 1977)
Every PSTS(u) has an embedding of order v for each admissible v > 2u + 1.

Andersen, Hilton, Mendelsohn (1980): Every PSTS(u) has an embedding
of order v for each admissible v > 4u + 1.

Bryant (2004): Every PSTS(u) has an embedding of order v for each
admissible v > 3u − 2.

Bryant, H. (2009): Lindner’s conjecture is true.

Work on embeddings of PTS(v, λ)s and quasigroup variants by Andersen,
Colbourn, Hamm, Hao, Hoffman, Lindner, Mendelsohn, Raines, Rodger,
Rosa, Stubbs, Wallis in the 1970s, 80s, 90s and 00s.
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new vertices.
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More switching-assisted results on embeddings

Bryant, Buchanan (2007): Every partial totally symmetric quasigroup of
order u has an embedding of order v for each even v > 2u + 4.

Bryant, Martin (2012): For u > 28, every PTS(u, λ) has an embedding
triple of order v for each admissible v > 2u + 1.

Martin, McCourt (2012): Any partial 5-cycle system of order u > 255 has
an embedding of order at most 1

4 (9u + 146).

H. (2014): “Half” of the possible embeddings of order less than 2u + 1 for
PSTS(u)s with ∆(L) 6 1

4 (u − 9) and |E(L)| < 1
32 (u − 5)(u − 11) + 2 exist.

H. (2014): Any PSTS(u) with at most 1
50 u2 + o(u) triples has an embedding

for each admissible order v > 1
5 (8u + 17).
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If Kn  m1, . . . ,mt then
(1) n is odd;
(2) n > m1, . . . ,mt > 3; and
(3) m1 + · · ·+ mt =

(n
2
)

.

Alspach’s cycle decomposition problem (1981)
Prove (1), (2) and (3) are sufficient for Kn  m1, . . . ,mt .
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History (highlights)

When does Kn  m, . . . ,m?
I Kirkman and Walecki solved special cases in the 1800s.

I Results from Kotzig, Rosa, Huang in the 1960s.

I Reductions of the problem from Bermond, Huang, Sotteau and from Hoffman, Lindner,
Rodger in the 1980s and 90s.

I Solved by Alspach, Gavlas, Šajna in 2001–2002.

When does Kn  m1, . . . ,mt?
I Work on limited sets of cycle lengths from Adams, Bryant, Heinrich, Horák, Khodkar,

Maehaut, Rosa in the 1980s, 90s and 00s.

I A more general result from Balister in 2001.

I A reduction from Bryant, H. in 2009–2010.

I Solved by Bryant, H., Pettersson in 2014.
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When does Kn  m1, . . . ,mt?
I Work on limited sets of cycle lengths from Adams, Bryant, Heinrich, Horák, Khodkar,

Maehaut, Rosa in the 1980s, 90s and 00s.

I A more general result from Balister in 2001.

I A reduction from Bryant, H. in 2009–2010.

I Solved by Bryant, H., Pettersson in 2014.



History (highlights)

When does Kn  m, . . . ,m?
I Kirkman and Walecki solved special cases in the 1800s.

I Results from Kotzig, Rosa, Huang in the 1960s.

I Reductions of the problem from Bermond, Huang, Sotteau and from Hoffman, Lindner,
Rodger in the 1980s and 90s.

I Solved by Alspach, Gavlas, Šajna in 2001–2002.
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Switching in cycle packings

Theorem (Raines, Szaniszló 1999)
For m ∈ {4,5}, if there is a packing of Kn with t m-cycles, then there is a
packing of Kn with t m-cycles such that the numbers of cycles on any two
vertices differ by at most one.
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Using switching in cycle packings

Equalising lemma (Bryant, H.)
Kn  (m1,m2, . . . ,mt , x, y) =⇒ Kn  (m1,m2, . . . ,mt , x + 1, y − 1)

when x < y and x + y > n + 2.

Merging lemma (Bryant, H.)
Kn  (m1,m2, . . . ,mt , c, x, y) =⇒ Kn  (m1,m2, . . . ,mt , c, x + y)

when c > 1
2 (x + y) and x + y + c 6 n + 1.

Reduction (Bryant, H.)
To solve Alspach’s problem for Kn it suffices to solve it for lists of the form

3,3, . . . ,3,4,4, . . . ,4,5,5, . . . ,5, k,n,n, . . . ,n.
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Theorem (Bryant, H., Pettersson 2014)
There is an (m1, . . . ,mt)-decomposition of Kn if and only if
(1) n is odd;
(2) n > m1, . . . ,mt > 3; and
(3) m1 + · · ·+ mt =

(n
2
)

.



Switching-assisted cycle decomposition results

Bryant (2010): Characterisation of when λKn has a decomposition into
paths of lengths m1, . . . ,mt .

H. (2012): Partial results on when a complete multipartite graph has a
decomposition into cycles of length m.

H., Hoyte (2016, 2017): Partial results on when Kn − Kh has a
decomposition into cycles of lengths m1, . . . ,mt .

Asplund, Chaffee, Hammer (2017+): Partial results on when λKa,b has a
decomposition into cycles of lengths m1, . . . ,mt .

Bryant, H., Maenhaut, Smith (2017+): Characterisation of when λKn has a
decomposition into cycles of lengths m1, . . . ,mt .

Hoyte (2017+): Characterisation of when λKn has a packing with cycles of
lengths m1, . . . ,mt .

Note the underlying graphs in these results have large sets of pairwise twin
vertices.



Switching-assisted cycle decomposition results

Bryant (2010): Characterisation of when λKn has a decomposition into
paths of lengths m1, . . . ,mt .

H. (2012): Partial results on when a complete multipartite graph has a
decomposition into cycles of length m.

H., Hoyte (2016, 2017): Partial results on when Kn − Kh has a
decomposition into cycles of lengths m1, . . . ,mt .

Asplund, Chaffee, Hammer (2017+): Partial results on when λKa,b has a
decomposition into cycles of lengths m1, . . . ,mt .

Bryant, H., Maenhaut, Smith (2017+): Characterisation of when λKn has a
decomposition into cycles of lengths m1, . . . ,mt .

Hoyte (2017+): Characterisation of when λKn has a packing with cycles of
lengths m1, . . . ,mt .

Note the underlying graphs in these results have large sets of pairwise twin
vertices.



Switching-assisted cycle decomposition results

Bryant (2010): Characterisation of when λKn has a decomposition into
paths of lengths m1, . . . ,mt .

H. (2012): Partial results on when a complete multipartite graph has a
decomposition into cycles of length m.

H., Hoyte (2016, 2017): Partial results on when Kn − Kh has a
decomposition into cycles of lengths m1, . . . ,mt .

Asplund, Chaffee, Hammer (2017+): Partial results on when λKa,b has a
decomposition into cycles of lengths m1, . . . ,mt .

Bryant, H., Maenhaut, Smith (2017+): Characterisation of when λKn has a
decomposition into cycles of lengths m1, . . . ,mt .

Hoyte (2017+): Characterisation of when λKn has a packing with cycles of
lengths m1, . . . ,mt .

Note the underlying graphs in these results have large sets of pairwise twin
vertices.



Part 3:
Almost regular decompositions



Regularising improper edge colourings

In an improper edge colouring of Kn, we want to make the colour classes “as
regular as possible” (without changing their sizes).

(Bryant, Maenhaut 2008)
Our previous switching techniques can also be viewed in this framework.
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Applications

4 edges of each colour, arbitrary

1-factorisation

This argument can be extended to give a neat proof of Cruse (1974) and
Andersen and Hilton (1980) that characterise when an (improper) edge
colouring of Ku can be extended to a k-factorisation of Kv .

Bryant recently extended these arguments to hypergraphs, where they give
elegant proofs of many generalisations of Baranyai’s theorem.
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Future directions

Can hypergraph switching be used in a more sophisticated way?

Keevash and Barber, Csaba, Glock, Kühn, Lo, Osthus, Treglown have
recently obtained very strong results on edge decomposition of dense
graphs. Can switching be usefully applied in this setting?

Can switching be usefully applied to fractional decomposition of graphs?
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That’s all


