
Locating arrays and disjoint partitions

Daniel Horsley (Monash University, Australia)

Joint work with Charles Colbourn and Bingli Fan.





Covering arrays



A fault detection problem



A fault detection problem



A fault detection problem

Suppose WhatsApp wants to test its new features:
bold
italic
underline
strikethrough
subscript

Testing every possible combination of these would require 32 tests:

0 0 0 0 0 test
0 0 0 0 1 test
0 0 0 1 0 test
...

...
...

...
...

...
1 1 1 1 0 test
1 1 1 1 1 test



A fault detection problem
Suppose WhatsApp wants to test its new features:

bold
italic
underline
strikethrough
subscript

Testing every possible combination of these would require 32 tests:

0 0 0 0 0 test
0 0 0 0 1 test
0 0 0 1 0 test
...

...
...

...
...

...
1 1 1 1 0 test
1 1 1 1 1 test



A fault detection problem
Suppose WhatsApp wants to test its new features:

bold
italic
underline
strikethrough
subscript

Testing every possible combination of these would require 32 tests:

0 0 0 0 0 test
0 0 0 0 1 test
0 0 0 1 0 test
...

...
...

...
...

...
1 1 1 1 0 test
1 1 1 1 1 test



A fault detection problem

Assumption: Faults are caused by interactions of at most two settings.

Examples:

0
A 1-way interaction

1 0
A 2-way interaction

How many tests do we need now?



A fault detection problem

Assumption: Faults are caused by interactions of at most two settings.

Examples:

0
A 1-way interaction

1 0
A 2-way interaction

How many tests do we need now?



A fault detection problem

Assumption: Faults are caused by interactions of at most two settings.

Examples:

0
A 1-way interaction

1 0
A 2-way interaction

How many tests do we need now?



A fault detection problem

Assumption: Faults are caused by interactions of at most two settings.

Examples:

0
A 1-way interaction

1 0
A 2-way interaction

How many tests do we need now?



Covering arrays

We can make do with 6 tests:

0 0 1 0 0
0 1 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 0 0
0 0 1 1 1

A covering array with N = 6, k = 5 and v = 2

Reveals if there’s a faulty 1- or 2-way interaction. (The strength is 2.)

For example, if
1 0

is faulty then the third test will be failed.

This approach becomes vital when k is big. For k = 3000 and v = 2, there
exists a strength 2 covering array with 15 rows. And 15� 23000.



Covering arrays
We can make do with 6 tests:

0 0 1 0 0
0 1 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 0 0
0 0 1 1 1

A covering array with N = 6, k = 5 and v = 2

Reveals if there’s a faulty 1- or 2-way interaction. (The strength is 2.)

For example, if
1 0

is faulty then the third test will be failed.

This approach becomes vital when k is big. For k = 3000 and v = 2, there
exists a strength 2 covering array with 15 rows. And 15� 23000.



Covering arrays
We can make do with 6 tests:

0 0 1 0 0
0 1 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 0 0
0 0 1 1 1

A covering array with N = 6, k = 5 and v = 2

Reveals if there’s a faulty 1- or 2-way interaction. (The strength is 2.)

For example, if
1 0

is faulty then the third test will be failed.

This approach becomes vital when k is big. For k = 3000 and v = 2, there
exists a strength 2 covering array with 15 rows. And 15� 23000.



Covering arrays
We can make do with 6 tests:

0 0 1 0 0
0 1 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 0 0
0 0 1 1 1

A covering array with N = 6, k = 5 and v = 2

Reveals if there’s a faulty 1- or 2-way interaction. (The strength is 2.)

For example, if
1 0

is faulty then the third test will be failed.

This approach becomes vital when k is big. For k = 3000 and v = 2, there
exists a strength 2 covering array with 15 rows. And 15� 23000.



Covering arrays
We can make do with 6 tests:

0 0 1 0 0
0 1 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 0 0
0 0 1 1 1

A covering array with N = 6, k = 5 and v = 2

Reveals if there’s a faulty 1- or 2-way interaction. (The strength is 2.)

For example, if
1 0

is faulty then the third test will be failed.

This approach becomes vital when k is big. For k = 3000 and v = 2, there
exists a strength 2 covering array with 15 rows. And 15� 23000.



Covering arrays
We can make do with 6 tests:

0 0 1 0 0
0 1 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 0 0
0 0 1 1 1

A covering array with N = 6, k = 5 and v = 2

Reveals if there’s a faulty 1- or 2-way interaction. (The strength is 2.)

For example, if
1 0

is faulty then the third test will be failed.

This approach becomes vital when k is big. For k = 3000 and v = 2, there
exists a strength 2 covering array with 15 rows.

And 15� 23000.



Covering arrays
We can make do with 6 tests:

0 0 1 0 0
0 1 0 1 1
1 0 0 1 0
1 1 1 0 1
0 1 0 0 0
0 0 1 1 1

A covering array with N = 6, k = 5 and v = 2

Reveals if there’s a faulty 1- or 2-way interaction. (The strength is 2.)

For example, if
1 0

is faulty then the third test will be failed.

This approach becomes vital when k is big. For k = 3000 and v = 2, there
exists a strength 2 covering array with 15 rows. And 15� 23000.



The covering array problem

I A piece of software has k parameters; each can take one of v values.

I We know faults are caused only by t-way interactions.

I We can test the software on any assignment of values to parameters
and obtain a pass or a fail.

I We wish to prespecify a schedule of N tests after which we will be able
to determine if a fault exists (for N as small as possible).

We can give a solution to this problem as a strength t covering array.



The covering array problem

I A piece of software has k parameters; each can take one of v values.

I We know faults are caused only by t-way interactions.

I We can test the software on any assignment of values to parameters
and obtain a pass or a fail.

I We wish to prespecify a schedule of N tests after which we will be able
to determine if a fault exists (for N as small as possible).

We can give a solution to this problem as a strength t covering array.



The covering array problem

I A piece of software has k parameters; each can take one of v values.

I We know faults are caused only by t-way interactions.

I We can test the software on any assignment of values to parameters
and obtain a pass or a fail.

I We wish to prespecify a schedule of N tests after which we will be able
to determine if a fault exists (for N as small as possible).

We can give a solution to this problem as a strength t covering array.



The covering array problem

I A piece of software has k parameters; each can take one of v values.

I We know faults are caused only by t-way interactions.

I We can test the software on any assignment of values to parameters
and obtain a pass or a fail.

I We wish to prespecify a schedule of N tests after which we will be able
to determine if a fault exists (for N as small as possible).

We can give a solution to this problem as a strength t covering array.



Covering arrays

I Covering arrays are used extensively in software testing.

I They’ve been well-studied by mathematicians and computer scientists.

I For fixed t and v, the minimum number of rows in a strength t covering
array with k columns and v symbols is Θ(log k). The exact value has
been determined only for t = v = 2.

I The symbols in any column of a covering array can be permuted.

I Covering arrays with strength 1 are trivial. For example,

0 0 0 0 0
1 1 1 1 1



Covering arrays

I Covering arrays are used extensively in software testing.

I They’ve been well-studied by mathematicians and computer scientists.

I For fixed t and v, the minimum number of rows in a strength t covering
array with k columns and v symbols is Θ(log k). The exact value has
been determined only for t = v = 2.

I The symbols in any column of a covering array can be permuted.

I Covering arrays with strength 1 are trivial. For example,

0 0 0 0 0
1 1 1 1 1



Covering arrays

I Covering arrays are used extensively in software testing.

I They’ve been well-studied by mathematicians and computer scientists.

I For fixed t and v, the minimum number of rows in a strength t covering
array with k columns and v symbols is Θ(log k). The exact value has
been determined only for t = v = 2.

I The symbols in any column of a covering array can be permuted.

I Covering arrays with strength 1 are trivial. For example,

0 0 0 0 0
1 1 1 1 1



Covering arrays

I Covering arrays are used extensively in software testing.

I They’ve been well-studied by mathematicians and computer scientists.

I For fixed t and v, the minimum number of rows in a strength t covering
array with k columns and v symbols is Θ(log k).

The exact value has
been determined only for t = v = 2.

I The symbols in any column of a covering array can be permuted.

I Covering arrays with strength 1 are trivial. For example,

0 0 0 0 0
1 1 1 1 1



Covering arrays

I Covering arrays are used extensively in software testing.

I They’ve been well-studied by mathematicians and computer scientists.

I For fixed t and v, the minimum number of rows in a strength t covering
array with k columns and v symbols is Θ(log k). The exact value has
been determined only for t = v = 2.

I The symbols in any column of a covering array can be permuted.

I Covering arrays with strength 1 are trivial. For example,

0 0 0 0 0
1 1 1 1 1



Covering arrays

I Covering arrays are used extensively in software testing.

I They’ve been well-studied by mathematicians and computer scientists.

I For fixed t and v, the minimum number of rows in a strength t covering
array with k columns and v symbols is Θ(log k). The exact value has
been determined only for t = v = 2.

I The symbols in any column of a covering array can be permuted.

I Covering arrays with strength 1 are trivial. For example,

0 0 0 0 0
1 1 1 1 1



Covering arrays

I Covering arrays are used extensively in software testing.

I They’ve been well-studied by mathematicians and computer scientists.

I For fixed t and v, the minimum number of rows in a strength t covering
array with k columns and v symbols is Θ(log k). The exact value has
been determined only for t = v = 2.

I The symbols in any column of a covering array can be permuted.

I Covering arrays with strength 1 are trivial. For example,

0 0 0 0 0
1 1 1 1 1



Locating arrays



Locating faults

Suppose
1 0

is faulty.

0 0 1 0 0

pass

0 1 0 1 1

pass

1 0 0 1 0

fail

1 1 1 0 1

pass

0 1 0 0 0

pass

0 0 1 1 1

pass

We would get the same pass/fail pattern if
0 0

were faulty.

A locating array is a covering array which also allows faults to be identified.

Locating arrays with strength 1 are not trivial.
In fact, this talk will be about locating arrays with strength 1.



Locating faults

Suppose
1 0

is faulty.

0 0 1 0 0

pass

0 1 0 1 1

pass

1 0 0 1 0

fail

1 1 1 0 1

pass

0 1 0 0 0

pass

0 0 1 1 1

pass

We would get the same pass/fail pattern if
0 0

were faulty.

A locating array is a covering array which also allows faults to be identified.

Locating arrays with strength 1 are not trivial.
In fact, this talk will be about locating arrays with strength 1.



Locating faults

Suppose
1 0

is faulty.

0 0 1 0 0

pass

0 1 0 1 1

pass

1 0 0 1 0

fail

1 1 1 0 1

pass

0 1 0 0 0

pass

0 0 1 1 1

pass

We would get the same pass/fail pattern if
0 0

were faulty.

A locating array is a covering array which also allows faults to be identified.

Locating arrays with strength 1 are not trivial.
In fact, this talk will be about locating arrays with strength 1.



Locating faults

Suppose
1 0

is faulty.

0 0 1 0 0 pass
0 1 0 1 1 pass
1 0 0 1 0 fail
1 1 1 0 1 pass
0 1 0 0 0 pass
0 0 1 1 1 pass

We would get the same pass/fail pattern if
0 0

were faulty.

A locating array is a covering array which also allows faults to be identified.

Locating arrays with strength 1 are not trivial.
In fact, this talk will be about locating arrays with strength 1.



Locating faults

Suppose
1 0

is faulty.

0 0 1 0 0 pass
0 1 0 1 1 pass
1 0 0 1 0 fail
1 1 1 0 1 pass
0 1 0 0 0 pass
0 0 1 1 1 pass

We would get the same pass/fail pattern if
0 0

were faulty.

A locating array is a covering array which also allows faults to be identified.

Locating arrays with strength 1 are not trivial.
In fact, this talk will be about locating arrays with strength 1.



Locating faults

Suppose
1 0

is faulty.

0 0 1 0 0 pass
0 1 0 1 1 pass
1 0 0 1 0 fail
1 1 1 0 1 pass
0 1 0 0 0 pass
0 0 1 1 1 pass

We would get the same pass/fail pattern if
0 0

were faulty.

A locating array is a covering array which also allows faults to be identified.

Locating arrays with strength 1 are not trivial.
In fact, this talk will be about locating arrays with strength 1.



Locating faults

Suppose
1 0

is faulty.

0 0 1 0 0 pass
0 1 0 1 1 pass
1 0 0 1 0 fail
1 1 1 0 1 pass
0 1 0 0 0 pass
0 0 1 1 1 pass

We would get the same pass/fail pattern if
0 0

were faulty.

A locating array is a covering array which also allows faults to be identified.

Locating arrays with strength 1 are not trivial.

In fact, this talk will be about locating arrays with strength 1.



Locating faults

Suppose
1 0

is faulty.

0 0 1 0 0 pass
0 1 0 1 1 pass
1 0 0 1 0 fail
1 1 1 0 1 pass
0 1 0 0 0 pass
0 0 1 1 1 pass

We would get the same pass/fail pattern if
0 0

were faulty.

A locating array is a covering array which also allows faults to be identified.

Locating arrays with strength 1 are not trivial.
In fact, this talk will be about locating arrays with strength 1.



Our problem

I A piece of software has k parameters; each can take one of v values.

I We know the software is faulty on at most one 1-way interaction.

I We can test the software on any assignment of values to parameters
and obtain a pass or a fail.

I We wish to prespecify a schedule of N tests after which we will be able
to identify the fault (for N as small as possible).

We give a solution to this problem as a (1,1)-locating array.



Our problem

I A piece of software has k parameters; each can take one of v values.

I We know the software is faulty on at most one 1-way interaction.

I We can test the software on any assignment of values to parameters
and obtain a pass or a fail.

I We wish to prespecify a schedule of N tests after which we will be able
to identify the fault (for N as small as possible).

We give a solution to this problem as a (1,1)-locating array.



Our problem

I A piece of software has k parameters; each can take one of v values.

I We know the software is faulty on at most one 1-way interaction.

I We can test the software on any assignment of values to parameters
and obtain a pass or a fail.

I We wish to prespecify a schedule of N tests after which we will be able
to identify the fault (for N as small as possible).

We give a solution to this problem as a (1,1)-locating array.



Our problem

I A piece of software has k parameters; each can take one of v values.

I We know the software is faulty on at most one 1-way interaction.

I We can test the software on any assignment of values to parameters
and obtain a pass or a fail.

I We wish to prespecify a schedule of N tests after which we will be able
to identify the fault (for N as small as possible).

We give a solution to this problem as a (1,1)-locating array.



Locating arrays

Not a (1,1)-locating array with N = 6, k = 9 and v = 3:
1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 1
2 2 1 3 3 3 1 2 3
3 2 2 1 3 3 3 1 3
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 2

A (1,1)-locating array with N = 6, k = 9 and v = 3:
1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 3
2 2 1 3 3 3 1 2 1
3 2 2 1 3 3 3 1 2
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 3

Given k and v, we want to minimise N.



Locating arrays
Not a (1,1)-locating array with N = 6, k = 9 and v = 3:

1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 1
2 2 1 3 3 3 1 2 3
3 2 2 1 3 3 3 1 3
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 2

A (1,1)-locating array with N = 6, k = 9 and v = 3:
1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 3
2 2 1 3 3 3 1 2 1
3 2 2 1 3 3 3 1 2
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 3

Given k and v, we want to minimise N.



Locating arrays
Not a (1,1)-locating array with N = 6, k = 9 and v = 3:

1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 1
2 2 1 3 3 3 1 2 3
3 2 2 1 3 3 3 1 3
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 2

A (1,1)-locating array with N = 6, k = 9 and v = 3:
1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 3
2 2 1 3 3 3 1 2 1
3 2 2 1 3 3 3 1 2
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 3

Given k and v, we want to minimise N.



Locating arrays
Not a (1,1)-locating array with N = 6, k = 9 and v = 3:

1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 1
2 2 1 3 3 3 1 2 3
3 2 2 1 3 3 3 1 3
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 2

A (1,1)-locating array with N = 6, k = 9 and v = 3:
1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 3
2 2 1 3 3 3 1 2 1
3 2 2 1 3 3 3 1 2
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 3

Given k and v, we want to minimise N.



Locating arrays
Not a (1,1)-locating array with N = 6, k = 9 and v = 3:

1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 1
2 2 1 3 3 3 1 2 3
3 2 2 1 3 3 3 1 3
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 2

A (1,1)-locating array with N = 6, k = 9 and v = 3:
1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 3
2 2 1 3 3 3 1 2 1
3 2 2 1 3 3 3 1 2
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 3

Given k and v, we want to minimise N.



Our problem: Given N and v, find the maximum number of columns in a
(1,1)-locating array with N rows and v symbols.

Similar problems have been considered in the combinatorial group testing
literature, but not this one exactly.



Our problem: Given N and v, find the maximum number of columns in a
(1,1)-locating array with N rows and v symbols.

Similar problems have been considered in the combinatorial group testing
literature, but not this one exactly.



Our problem: Given N and v, find the maximum number of columns in a
(1,1)-locating array with N rows and v symbols.

Similar problems have been considered in the combinatorial group testing
literature, but not this one exactly.





Disjoint set partitions



Disjoint set partitions

1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 3
2 2 1 3 3 3 1 2 1
3 2 2 1 3 3 3 1 2
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 3

Equivalently:
{1} {2,3} {4,5,6}
{2} {3,4} {1,5,6}
{3} {4,5} {1,2,6}
{4} {5,6} {1,2,3}
{5} {1,6} {2,3,4}
{6} {1,2} {3,4,5}
{1,3} {2,5} {4,6}
{2,4} {3,6} {1,5}
{3,5} {1,4} {2,6}



Disjoint set partitions

1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 3
2 2 1 3 3 3 1 2 1
3 2 2 1 3 3 3 1 2
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 3

Equivalently:
{1} {2,3} {4,5,6}
{2} {3,4} {1,5,6}
{3} {4,5} {1,2,6}
{4} {5,6} {1,2,3}
{5} {1,6} {2,3,4}
{6} {1,2} {3,4,5}
{1,3} {2,5} {4,6}
{2,4} {3,6} {1,5}
{3,5} {1,4} {2,6}



Disjoint set partitions

1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 3
2 2 1 3 3 3 1 2 1
3 2 2 1 3 3 3 1 2
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 3

Equivalently:
{1} {2,3} {4,5,6}
{2} {3,4} {1,5,6}
{3} {4,5} {1,2,6}
{4} {5,6} {1,2,3}
{5} {1,6} {2,3,4}
{6} {1,2} {3,4,5}
{1,3} {2,5} {4,6}
{2,4} {3,6} {1,5}
{3,5} {1,4} {2,6}



Disjoint set partitions

1 3 3 3 2 2 1 3 2
2 1 3 3 3 2 2 1 3
2 2 1 3 3 3 1 2 1
3 2 2 1 3 3 3 1 2
3 3 2 2 1 3 2 3 1
3 3 3 2 2 1 3 2 3

Equivalently:
{1} {2,3} {4,5,6}
{2} {3,4} {1,5,6}
{3} {4,5} {1,2,6}
{4} {5,6} {1,2,3}
{5} {1,6} {2,3,4}
{6} {1,2} {3,4,5}
{1,3} {2,5} {4,6}
{2,4} {3,6} {1,5}
{3,5} {1,4} {2,6}



Disjoint set partitions

Fact
A (1,1)-locating array with N rows, k columns and v symbols is equivalent
to k partitions of {1, . . . ,N}, each with v nonempty classes, such that no two
of the kv classes are equal.

I’ll say disjoint v-partitions of {1, . . . ,N} from now on.

Our problem (rephrased)
Given N and v, find the maximum number of disjoint v-partitions of
{1, . . . ,N}.

Similar problems have been considered in the set systems literature, but not
this one exactly.



Disjoint set partitions

Fact
A (1,1)-locating array with N rows, k columns and v symbols is equivalent
to k partitions of {1, . . . ,N}, each with v nonempty classes, such that no two
of the kv classes are equal.

I’ll say disjoint v-partitions of {1, . . . ,N} from now on.

Our problem (rephrased)
Given N and v, find the maximum number of disjoint v-partitions of
{1, . . . ,N}.

Similar problems have been considered in the set systems literature, but not
this one exactly.



Disjoint set partitions

Fact
A (1,1)-locating array with N rows, k columns and v symbols is equivalent
to k partitions of {1, . . . ,N}, each with v nonempty classes, such that no two
of the kv classes are equal.

I’ll say disjoint v-partitions of {1, . . . ,N} from now on.

Our problem (rephrased)
Given N and v, find the maximum number of disjoint v-partitions of
{1, . . . ,N}.

Similar problems have been considered in the set systems literature, but not
this one exactly.



Disjoint set partitions

Fact
A (1,1)-locating array with N rows, k columns and v symbols is equivalent
to k partitions of {1, . . . ,N}, each with v nonempty classes, such that no two
of the kv classes are equal.

I’ll say disjoint v-partitions of {1, . . . ,N} from now on.

Our problem (rephrased)
Given N and v, find the maximum number of disjoint v-partitions of
{1, . . . ,N}.

Similar problems have been considered in the set systems literature, but not
this one exactly.



Disjoint set partitions

Fact
A (1,1)-locating array with N rows, k columns and v symbols is equivalent
to k partitions of {1, . . . ,N}, each with v nonempty classes, such that no two
of the kv classes are equal.

I’ll say disjoint v-partitions of {1, . . . ,N} from now on.

Our problem (rephrased)
Given N and v, find the maximum number of disjoint v-partitions of
{1, . . . ,N}.

Similar problems have been considered in the set systems literature, but not
this one exactly.



Disjoint set partitions

Fact
A (1,1)-locating array with N rows, k columns and v symbols is equivalent
to k partitions of {1, . . . ,N}, each with v nonempty classes, such that no two
of the kv classes are equal.

I’ll say disjoint v-partitions of {1, . . . ,N} from now on.

Our problem (rephrased)
Given N and v, find the maximum number of disjoint v-partitions of
{1, . . . ,N}.

Similar problems have been considered in the set systems literature, but not
this one exactly.



Disjoint set partitions

Fact
A (1,1)-locating array with N rows, k columns and v symbols is equivalent
to k partitions of {1, . . . ,N}, each with v nonempty classes, such that no two
of the kv classes are equal.

I’ll say disjoint v-partitions of {1, . . . ,N} from now on.

Our problem (rephrased)
Given N and v, find the maximum number of disjoint v-partitions of
{1, . . . ,N}.

Similar problems have been considered in the set systems literature, but not
this one exactly.



Shapes

partition shape

{1} {2,3} {4,5,6}

[1,2,3]

{2} {3,4} {1,5,6}

[1,2,3]

{3} {4,5} {1,2,6}

[1,2,3]

{4} {5,6} {1,2,3}

[1,2,3]

{5} {1,6} {2,3,4}

[1,2,3]

{6} {1,2} {3,4,5}

[1,2,3]

{1,3} {2,5} {4,6}

[2,2,2]

{2,4} {3,6} {1,5}

[2,2,2]

{3,5} {1,4} {2,6}

[2,2,2]

k disjoint v-partitions of {1, . . . ,N} give rise to k shapes, each with v parts,
such at most

(N
i
)

of the kv parts are equal to i for i ∈ {1, . . . ,N}.

I’ll say admissible family of v-shapes from now on.



Shapes

partition shape

{1} {2,3} {4,5,6}

[1,2,3]

{2} {3,4} {1,5,6}

[1,2,3]

{3} {4,5} {1,2,6}

[1,2,3]

{4} {5,6} {1,2,3}

[1,2,3]

{5} {1,6} {2,3,4}

[1,2,3]

{6} {1,2} {3,4,5}

[1,2,3]

{1,3} {2,5} {4,6}

[2,2,2]

{2,4} {3,6} {1,5}

[2,2,2]

{3,5} {1,4} {2,6}

[2,2,2]

k disjoint v-partitions of {1, . . . ,N} give rise to k shapes, each with v parts,
such at most

(N
i
)

of the kv parts are equal to i for i ∈ {1, . . . ,N}.

I’ll say admissible family of v-shapes from now on.



Shapes

partition shape
{1} {2,3} {4,5,6} [1,2,3]
{2} {3,4} {1,5,6} [1,2,3]
{3} {4,5} {1,2,6} [1,2,3]
{4} {5,6} {1,2,3} [1,2,3]
{5} {1,6} {2,3,4} [1,2,3]
{6} {1,2} {3,4,5} [1,2,3]
{1,3} {2,5} {4,6} [2,2,2]
{2,4} {3,6} {1,5} [2,2,2]
{3,5} {1,4} {2,6} [2,2,2]

k disjoint v-partitions of {1, . . . ,N} give rise to k shapes, each with v parts,
such at most

(N
i
)

of the kv parts are equal to i for i ∈ {1, . . . ,N}.

I’ll say admissible family of v-shapes from now on.



Shapes

partition shape
{1} {2,3} {4,5,6} [1,2,3]
{2} {3,4} {1,5,6} [1,2,3]
{3} {4,5} {1,2,6} [1,2,3]
{4} {5,6} {1,2,3} [1,2,3]
{5} {1,6} {2,3,4} [1,2,3]
{6} {1,2} {3,4,5} [1,2,3]
{1,3} {2,5} {4,6} [2,2,2]
{2,4} {3,6} {1,5} [2,2,2]
{3,5} {1,4} {2,6} [2,2,2]

k disjoint v-partitions of {1, . . . ,N} give rise to k shapes, each with v parts,
such at most

(N
i
)

of the kv parts are equal to i for i ∈ {1, . . . ,N}.

I’ll say admissible family of v-shapes from now on.



Shapes

partition shape
{1} {2,3} {4,5,6} [1,2,3]
{2} {3,4} {1,5,6} [1,2,3]
{3} {4,5} {1,2,6} [1,2,3]
{4} {5,6} {1,2,3} [1,2,3]
{5} {1,6} {2,3,4} [1,2,3]
{6} {1,2} {3,4,5} [1,2,3]
{1,3} {2,5} {4,6} [2,2,2]
{2,4} {3,6} {1,5} [2,2,2]
{3,5} {1,4} {2,6} [2,2,2]

k disjoint v-partitions of {1, . . . ,N} give rise to k shapes, each with v parts,
such at most

(N
i
)

of the kv parts are equal to i for i ∈ {1, . . . ,N}.

I’ll say admissible family of v-shapes from now on.



Shapes

partition shape
{1} {2,3} {4,5,6} [1,2,3]
{2} {3,4} {1,5,6} [1,2,3]
{3} {4,5} {1,2,6} [1,2,3]
{4} {5,6} {1,2,3} [1,2,3]
{5} {1,6} {2,3,4} [1,2,3]
{6} {1,2} {3,4,5} [1,2,3]
{1,3} {2,5} {4,6} [2,2,2]
{2,4} {3,6} {1,5} [2,2,2]
{3,5} {1,4} {2,6} [2,2,2]

k disjoint v-partitions of {1, . . . ,N} give rise to k shapes, each with v parts,
such at most

(N
i
)

of the kv parts are equal to i for i ∈ {1, . . . ,N}.

I’ll say admissible family of v-shapes from now on.



Shapes

Theorem
A family of disjoint partitions of {1, . . . ,N} with specified shapes exists if and
only if the family of specified shapes is admissible.

This is a generalisation of:

Baranyai’s theorem
There are 1

v
(uv

u
)

disjoint v-partitions of {1, . . . ,uv} such that each class of
each partition has size u.

Our proof is adapted from an inductive proof Baranyai’s theorem, due to
Brouwer and Schrijver, that uses the integer flow theorem.

See also Bahmanian and Bryant.

Our problem (re-rephrased)
Given N and v, find the maximum size of an admissible family of v-shapes.



Shapes

Theorem
A family of disjoint partitions of {1, . . . ,N} with specified shapes exists if and
only if the family of specified shapes is admissible.

This is a generalisation of:

Baranyai’s theorem
There are 1

v
(uv

u
)

disjoint v-partitions of {1, . . . ,uv} such that each class of
each partition has size u.

Our proof is adapted from an inductive proof Baranyai’s theorem, due to
Brouwer and Schrijver, that uses the integer flow theorem.

See also Bahmanian and Bryant.

Our problem (re-rephrased)
Given N and v, find the maximum size of an admissible family of v-shapes.



Shapes

Theorem
A family of disjoint partitions of {1, . . . ,N} with specified shapes exists if and
only if the family of specified shapes is admissible.

This is a generalisation of:

Baranyai’s theorem
There are 1

v
(uv

u
)

disjoint v-partitions of {1, . . . ,uv} such that each class of
each partition has size u.

Our proof is adapted from an inductive proof Baranyai’s theorem, due to
Brouwer and Schrijver, that uses the integer flow theorem.

See also Bahmanian and Bryant.

Our problem (re-rephrased)
Given N and v, find the maximum size of an admissible family of v-shapes.



Shapes

Theorem
A family of disjoint partitions of {1, . . . ,N} with specified shapes exists if and
only if the family of specified shapes is admissible.

This is a generalisation of:

Baranyai’s theorem
There are 1

v
(uv

u
)

disjoint v-partitions of {1, . . . ,uv} such that each class of
each partition has size u.

Our proof is adapted from an inductive proof Baranyai’s theorem, due to
Brouwer and Schrijver, that uses the integer flow theorem.

See also Bahmanian and Bryant.

Our problem (re-rephrased)
Given N and v, find the maximum size of an admissible family of v-shapes.



Shapes

Theorem
A family of disjoint partitions of {1, . . . ,N} with specified shapes exists if and
only if the family of specified shapes is admissible.

This is a generalisation of:

Baranyai’s theorem
There are 1

v
(uv

u
)

disjoint v-partitions of {1, . . . ,uv} such that each class of
each partition has size u.

Our proof is adapted from an inductive proof Baranyai’s theorem, due to
Brouwer and Schrijver, that uses the integer flow theorem.

See also Bahmanian and Bryant.

Our problem (re-rephrased)
Given N and v, find the maximum size of an admissible family of v-shapes.



Shapes

Theorem
A family of disjoint partitions of {1, . . . ,N} with specified shapes exists if and
only if the family of specified shapes is admissible.

This is a generalisation of:

Baranyai’s theorem
There are 1

v
(uv

u
)

disjoint v-partitions of {1, . . . ,uv} such that each class of
each partition has size u.

Our proof is adapted from an inductive proof Baranyai’s theorem, due to
Brouwer and Schrijver, that uses the integer flow theorem.

See also Bahmanian and Bryant.

Our problem (re-rephrased)
Given N and v, find the maximum size of an admissible family of v-shapes.



Maximal families

Example: N = 38, v = 7 (f = bN+1
v c = 5, d = v(f + 1)− N = 4)

I There are at most
(38

1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)

I There are at most
(38

1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.

I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.

I The total defect in the other shapes is at most 3
(38

3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.

I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.

I So there are at most
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]

×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families
Example: N = 38, v = 7 (f = bN+1

v c = 5, d = v(f + 1)− N = 4)
I There are at most

(38
1
)

+
(38

2
)

special shapes containing a 1 or 2.
I Let the defect of a part x 6 5 be f + 1− x = 6− x.
I The total defect in the other shapes is at most 3

(38
3
)

+ 2
(38

4
)

+
(38

5
)

.
I Any shape has total defect at least d = 4.
I So there are at most

⌊(
3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

other shapes.

I So at most
(38

1
)

+
(38

2
)

+
⌊(

3
(38

3
)

+ 2
(38

4
)

+
(38

5
))/

4
⌋

shapes in total.

[1,6,6,6,6,6,7]×
(38

1
)

[2,6,6,6,6,6,6]×
(38

2
)

[3,5,6,6,6,6,6]×
(38

3
)

[4,5,5,6,6,6,6]×
(38

4
)

[5,5,5,5,6,6,6]×
⌊((38

5
)
− 2
(38

4
)
−
(38

3
))/

4
⌋

Close to
(38

5
)

5s, and fewer than
(38

6
)

6s are used.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)

− 2r

[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)

− 2r

[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)

− 2r

[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)

− 2r

[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)

− 2r

[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)

− 2r

[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)

− 2r

[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)

− 2r
[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)

− 2r
[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)
− 2r

[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Too many 6s.



Maximal families

The idea on the previous slide works unless N ≡ v − 1 (mod v).

Example: N = 41, v = 7 (f = bN+1
v c = 6, d = v(f + 1)− N = 8)

[1,6,6,7,7,7,7]×
(41

1
)

[2,6,6,6,7,7,7]×
(41

2
)

[3,6,6,6,6,7,7]×
(41

3
)

[4,6,6,6,6,6,7]×
(41

4
)

[5,6,6,6,6,6,6]×
(41

5
)
− 2r

[5,5,6,6,6,6,7]× r

where r = 2
(41

1
)

+ 3
(41

2
)

+ 4
(41

3
)

+ 5
(41

4
)

.

Exactly
(41

5
)

5s, close to
(41

6
)

6s, and fewer than
(41

7
)

7s are used.



The solution

Theorem
Let N and v be integers such that 2 6 v 6 N. The maximum number of
disjoint v-partitions of {1, . . . ,N} is 1

d

f∑
i=f−d+2

i>1

(f + 1− i)
(N

i

)+
f−d+1∑

i=1

(N
i

)
,

where f = bN+1
v c and d = v(f + 1)− N.

Or, this is the maximum number of columns in a (1,1)-locating array with N
rows and v symbols.

For fixed v, we have N = v
v log v−(v−1) log(v−1) log k + O(log log k).



The solution

Theorem
Let N and v be integers such that 2 6 v 6 N. The maximum number of
disjoint v-partitions of {1, . . . ,N} is 1

d

f∑
i=f−d+2

i>1

(f + 1− i)
(N

i

)+
f−d+1∑

i=1

(N
i

)
,

where f = bN+1
v c and d = v(f + 1)− N.

Or, this is the maximum number of columns in a (1,1)-locating array with N
rows and v symbols.

For fixed v, we have N = v
v log v−(v−1) log(v−1) log k + O(log log k).



The solution

Theorem
Let N and v be integers such that 2 6 v 6 N. The maximum number of
disjoint v-partitions of {1, . . . ,N} is 1

d

f∑
i=f−d+2

i>1

(f + 1− i)
(N

i

)+
f−d+1∑

i=1

(N
i

)
,

where f = bN+1
v c and d = v(f + 1)− N.

Or, this is the maximum number of columns in a (1,1)-locating array with N
rows and v symbols.

For fixed v, we have N = v
v log v−(v−1) log(v−1) log k + O(log log k).



The solution

Theorem
Let N and v be integers such that 2 6 v 6 N. The maximum number of
disjoint v-partitions of {1, . . . ,N} is 1

d

f∑
i=f−d+2

i>1

(f + 1− i)
(N

i

)+
f−d+1∑

i=1

(N
i

)
,

where f = bN+1
v c and d = v(f + 1)− N.

Or, this is the maximum number of columns in a (1,1)-locating array with N
rows and v symbols.

For fixed v, we have N = v
v log v−(v−1) log(v−1) log k + O(log log k).



Future work

I Dealing with multiple faults.

I Higher strength locating arrays (faults caused by t-way interactions).

I Sperner partition systems (Meagher, Moura, Stevens).



Future work

I Dealing with multiple faults.

I Higher strength locating arrays (faults caused by t-way interactions).

I Sperner partition systems (Meagher, Moura, Stevens).



Future work

I Dealing with multiple faults.

I Higher strength locating arrays (faults caused by t-way interactions).

I Sperner partition systems (Meagher, Moura, Stevens).



Future work

I Dealing with multiple faults.

I Higher strength locating arrays (faults caused by t-way interactions).

I Sperner partition systems (Meagher, Moura, Stevens).



That’s all.


