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(v , k , λ)-designs

A collection of k-subsets (blocks) of a v -set (of points) such that every pair of
points appears together in exactly λ blocks.
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Necessary conditions for a design to exist

Obvious necessary conditions. If there exists an (v , k, λ)-design then

(1) r =
λ(v − 1)

k − 1
is an integer;

(2) b =
rv

k
is an integer.
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Fisher’s inequality (1940). Any non-trivial (v , k , λ)-design has b ≥ v .

Equivalently,

I has r ≥ k; or

I has v ≥ k(k−1)
λ + 1.

We say parameter sets (v , k, λ) with v < k(k−1)
λ + 1 are subsymmetric.
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Incidence matrix arithmetic

Consider the incidence matrix of our (9, 3, 1)-design.

12 blocks
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

1 0 0 1 0 0 1 0 0 1 0 0 4

1 1 0 0 1 0 0 1 0 0 0 0 4

1 0 1 0 0 1 0 0 0 0 1 0 4

0 1 0 1 0 0 0 0 1 0 1 0 4

0 0 1 0 1 0 1 0 1 0 0 0 4

0 0 0 0 0 1 0 1 1 1 0 0 4
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0 1 0 0 0 1 1 0 0 0 0 1 4

3 3 3 3 3 3 3 3 3 3 3 3
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Fisher’s inequality proof example

Suppose a (21, 6, 1)-design exists. It has r = 4.

I Note that b = 14.

I Let A be the design’s incidence matrix.

I A is 21 × 14. Rows add to 4. Distinct rows have dot product 1.

I So AAT is the 21 × 21 matrix

AAT =





4 1 1 . . . 1 1 1
1 4 1 . . . 1 1 1
1 1 4 1 1 1
...

...
. . .

...
...

1 1 1 4 1 1
1 1 1 . . . 1 4 1
1 1 1 . . . 1 1 4

.

I So AAT has rank 21. Contradiction.
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(v , k , λ)-coverings

A collection of k-subsets (blocks) of a v -set (of points) such that every pair of
points appears together in at least λ blocks.
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A (15, 4, 1)-covering with 19 blocks

The degree of a point in the excess is determined by the number of blocks on
that point.
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Necessary conditions for a covering to exist

Obvious Necessary Conditions. If there exists an (v , k, λ)-covering then

(1) for each point x the number of blocks containing x satisfies

rx ≥ r where r =
⌈
λ(v − 1)

k − 1

⌉
;

(2) the total number of blocks satisfies

b ≥
⌈
rv

k

⌉
.

The latter is called the Schönheim bound.

Hanani. We can increase this by 1 if λ(v − 1) ≡ 0 (mod k − 1) and
λv(v − 1) ≡ 1 (mod k).

These conditions are probably sufficient for v � k .
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Improvements to the Schönheim bound

For subsymmetric parameter sets:

I Fisher’s inequality and the Bruck-Ryser-Chowla theorem improve the
Schönheim bound by 1 in some cases where a covering meeting the bound
would be a design.

I Bose and Connor improved the Schönheim bound by 1 in some cases
where λ(v − 1) = −1 (mod k − 1).

I For λ = 1, Todorov has improved the Schönheim bound in various cases:

I v = rk + 1;
I some cases where v − 1 = r(k − 1);
I some cases where k > O(v

5
7 ).

I Bryant, Buchanan, Horsley, Maenhaut and Scharaschkin improved the
Schönheim bound by 1 in some cases where
λ(v − 1) = −1,−2 (mod k − 1).
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A new bound for coverings

Suppose there is a (v , k, λ)-covering with b blocks.

Let r =
⌈
λ(v − 1)

k − 1

⌉
.

Schönheim bound. Then b ≥
⌈
vr

k

⌉
.

New bound. If r(k − 2) < λ(v − 2), then b ≥
⌈
v(r + 1)

k + 1

⌉
.

The new bound is at least as good as the Schönheim bound for subsymmetric
parameter sets, and never an improvement otherwise.
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New bound proof example

Suppose there exists a (176, 15, 1)-covering with 153 blocks.

I Note r = 13. It must be that rx = 13 for at least 169 points.

I The incidence matrix A is 176 × 153. Row x adds to rx . Distinct rows x
and y have dot product 1 + µE (xy).

I So AAT − J is 176 × 176, symmetric, looks like

>13


> 20

6 7 rows
. . .

...

>13 > 20

12 7

> 169 rows

. . .
...

. . .
...

12 7

I So AAT − J has rank at least 169 and thus AAT has rank at least 168.
Contradiction.

I The condition r(k − 2) < λ(v − 2) corresponds to 12 > 7.
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Further stuff

New bound. If r(k − 2) < λ(v − 2), then b ≥
⌈
v(r + 1)

k + 1

⌉
.

More results:

I Some improvements to the new bounds for r(k − 2) < λ(v − 2).

I Some new bounds for r(k − 2) ≥ λ(v − 2).

Future work:

I Can coverings that meet these bounds be constructed?
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That’s all.


