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A (9,3, 1)-design with 12 blocks
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Necessary conditions for a design to exist

Obvious necessary conditions. If there exists an (v, k, A)-design then

(1) r= )‘(kv__ll) is an integer;

(2) b= r—: is an integer.

Fisher's inequality (1940). Any non-trivial (v, k, A)-design has b > v.
Equivalently,
> has r > k; or

» has v > ( )+1.

We say parameter sets (v, k, A) with v < @ + 1 are subsymmetric.
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Consider the incidence matrix of our (9, 3, 1)-design.

Incidence matrix arithmetic

12 blocks
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Incidence matrix arithmetic

Consider the incidence matrix of our (9, 3, 1)-design.
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Incidence matrix arithmetic
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Incidence matrix arithmetic

Consider the incidence matrix of our (9, 3, 1)-design.
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Consider the incidence matrix of our (9, 3, 1)-design.

Incidence matrix arithmetic
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AAT is 9 x 9 and has rank 9.
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Fisher's inequality proof example
Suppose a (21,6, 1)-design exists. It has r = 4.
» Note that b = 14.
> Let A be the design’s incidence matrix.
» Ais 21 x 14. Rows add to 4. Distinct rows have dot product 1.
» So AAT is the 21 x 21 matrix

4 1 1 1 1 1

1 1 1 1 1

1 1 4 1 1 1
AAT =

1 1 1 4 1 1

1 1 1 1 4 1

1 1 1 1 1 4

> So AAT has rank 21. Contradiction.
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(v, k, \)-coverings
A collection of k-subsets (blocks) of a v-set (of points) such that every pair of
points appears together in at least A blocks.
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A (15,4, 1)-covering with 19 blocks

The degree of a point in the excess is determined by the number of blocks on
that point.
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Necessary conditions for a covering to exist

Obvious Necessary Conditions. If there exists an (v, k, \)-covering then

(1) for each point x the number of blocks containing x satisfies

)\(v—l)" ;

re > r where r:{ 1

(2) the total number of blocks satisfies
rv
b>|%|.

The latter is called the Schénheim bound.

Hanani. We can increase this by 1 if A(v —1) = 0 (mod k — 1) and
Av(v —1) =1 (mod k).

These conditions are probably sufficient for v > k.
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Improvements to the Schonheim bound

For subsymmetric parameter sets:

> Fisher's inequality and the Bruck-Ryser-Chowla theorem improve the
Schonheim bound by 1 in some cases where a covering meeting the bound
would be a design.

» Bose and Connor improved the Schénheim bound by 1 in some cases
where \(v — 1) = —1 (mod k — 1).
» For A =1, Todorov has improved the Schénheim bound in various cases:
» v=rk+1;
» some cases where v — 1 = r(k — 1);
> some cases where k > O(v7).

» Bryant, Buchanan, Horsley, Maenhaut and Scharaschkin improved the
Schonheim bound by 1 in some cases where
Av—=1)=-1,-2(mod k —1).
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A new bound for coverings

Suppose there is a (v, k, A)-covering with b blocks.
Lot r= [A2]

k—1

Schénheim bound. Then b > [Vﬂ

New bound. If r(k —2) < A(v — 2), then b > mr:ll)].

The new bound is at least as good as the Schonheim bound for subsymmetric
parameter sets, and never an improvement otherwise.
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New bound proof example
Suppose there exists a (176, 15, 1)-covering with 153 blocks.
> Note r = 13. It must be that r, = 13 for at least 169 points.

» The incidence matrix A is 176 x 153. Row x adds to r,. Distinct rows x
and y have dot product 1+ pg(xy).

» So AAT — Jis 176 x 176, symmetric, looks like

>13 > 20
: < 7 rows
>13 > 20
12 7
> 169 rows
12 7

> So AAT — J has rank at least 169 and thus AAT has rank at least 168.
Contradiction.

> The condition r(k — 2) < A(v — 2) corresponds to 12 > 7.
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Further stuff

New bound. If r(k —2) < A(v — 2), then b > M’:f)]
More results:

> Some improvements to the new bounds for r(k —2) < A(v — 2).

> Some new bounds for r(k —2) > A(v — 2).

Future work:

» Can coverings that meet these bounds be constructed?



That's all.



