Extending Fisher's inequality to coverings

Daniel Horsley (Monash University)

(v, k, λ) -designs

(v, k, λ) -designs

A collection of k-subsets (blocks) of a v-set (of points) such that every pair of points appears together in exactly λ blocks.

(v, k, λ) -designs

A collection of k-subsets (blocks) of a v-set (of points) such that every pair of points appears together in exactly λ blocks.

A (9,3,1)-design with 12 blocks

Obvious necessary conditions. If there exists an (v, k, λ) -design then

(1)
$$r = \frac{\lambda(\nu - 1)}{k - 1}$$
 is an integer;

(2)
$$b = \frac{rv}{k}$$
 is an integer.

Obvious necessary conditions. If there exists an (v, k, λ) -design then

- (1) $r = \frac{\lambda(\nu 1)}{k 1}$ is an integer;
- (2) $b = \frac{rv}{k}$ is an integer.

Obvious necessary conditions. If there exists an (v, k, λ) -design then

(1)
$$r = \frac{\lambda(\nu - 1)}{k - 1}$$
 is an integer;

(2)
$$b = \frac{rv}{k}$$
 is an integer.

Obvious necessary conditions. If there exists an (v, k, λ) -design then

(1)
$$r = \frac{\lambda(\nu - 1)}{k - 1}$$
 is an integer;

(2)
$$b = \frac{rv}{k}$$
 is an integer.

Fisher's inequality (1940). Any non-trivial (v, k, λ) -design has $b \ge v$.

Obvious necessary conditions. If there exists an (v, k, λ) -design then

(1)
$$r = \frac{\lambda(\nu - 1)}{k - 1}$$
 is an integer;

(2)
$$b = \frac{rv}{k}$$
 is an integer.

Fisher's inequality (1940). Any non-trivial (v, k, λ) -design has $b \ge v$.

Equivalently,

- ▶ has $r \ge k$; or
- ▶ has $v \ge \frac{k(k-1)}{\lambda} + 1$.

Obvious necessary conditions. If there exists an (v, k, λ) -design then

- (1) $r = \frac{\lambda(v-1)}{k-1}$ is an integer;
- (2) $b = \frac{rv}{k}$ is an integer.

Fisher's inequality (1940). Any non-trivial (v, k, λ) -design has $b \ge v$.

Equivalently,

- ▶ has $r \ge k$; or
- ▶ has $v \ge \frac{k(k-1)}{\lambda} + 1$.

We say parameter sets (v, k, λ) with $v < \frac{k(k-1)}{\lambda} + 1$ are *subsymmetric*.

	12 blocks												
	_/ 1	0	0	1	0	0	1	0	0	1	0	0	4
9 points	1	1	0	0	1	0	0	1	0	0	0	0 \	4
	1	0	1	0	0	1	0	0	0	0	1	0	4
	0	1	0	1	0	0	0	0	1	0	1	0	4
	0	0	1	0	1	0	1	0	1	0	0	0	4
	0	0	0	0	0	1	0	1	1	1	0	0	4
	0	0	1	1	0	0	0	1	0	0	0	1	4
	0	0	0	0	1	0	0	0	0	1	1	1 /	4
	/0	1	0	0	0	1	1	0	0	0	0	1^{\prime}	4
	3	3	3	3	3	3	3	3	3	3	3	3	

Consider the incidence matrix of our (9,3,1)-design.

 AA^T is 9×9 and has rank 9.

Suppose a (21, 6, 1)-design exists.

Suppose a (21, 6, 1)-design exists. It has r = 4.

▶ Note that b = 14.

- Note that b = 14.
- Let A be the design's incidence matrix.

- Note that b = 14.
- Let A be the design's incidence matrix.
- ▶ A is 21×14 . Rows add to 4. Distinct rows have dot product 1.

- Note that b = 14.
- Let A be the design's incidence matrix.
- ▶ A is 21×14 . Rows add to 4. Distinct rows have dot product 1.
- ▶ So AA^T is the 21×21 matrix

$$AA^{T} = \begin{pmatrix} 4 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 4 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 4 & & & 1 & 1 & 1 \\ \vdots & \vdots & & \ddots & & \vdots & \vdots \\ 1 & 1 & 1 & & & 4 & 1 & 1 \\ 1 & 1 & 1 & \dots & 1 & 4 & 1 \\ 1 & 1 & 1 & \dots & 1 & 1 & 4 \end{pmatrix}.$$

Suppose a (21, 6, 1)-design exists. It has r = 4.

- Note that b = 14.
- Let A be the design's incidence matrix.
- ightharpoonup A is 21 imes 14. Rows add to 4. Distinct rows have dot product 1.
- ▶ So AA^T is the 21×21 matrix

$$AA^{T} = \begin{pmatrix} 4 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 4 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 4 & & & 1 & 1 & 1 \\ \vdots & \vdots & & \ddots & & \vdots & \vdots \\ 1 & 1 & 1 & & & 4 & 1 & 1 \\ 1 & 1 & 1 & \dots & 1 & 4 & 1 \\ 1 & 1 & 1 & \dots & 1 & 1 & 4 \end{pmatrix}.$$

► So AA^T has rank 21. Contradiction.

A collection of k-subsets (blocks) of a v-set (of points) such that every pair of points appears together in at least λ blocks.

A collection of k-subsets (blocks) of a v-set (of points) such that every pair of points appears together in at least λ blocks.

A collection of k-subsets (blocks) of a v-set (of points) such that every pair of points appears together in at least λ blocks.

A (15,4,1)-covering with 19 blocks

The degree of a point in the excess is determined by the number of blocks on that point.

Obvious Necessary Conditions. If there exists an (v, k, λ) -covering then

(1) for each point x the number of blocks containing x satisfies

$$r_{x} \geq r$$
 where $r = \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil$;

(2) the total number of blocks satisfies

$$b \geq \left\lceil \frac{rv}{k} \right\rceil$$
.

Obvious Necessary Conditions. If there exists an (v, k, λ) -covering then

(1) for each point x the number of blocks containing x satisfies

$$r_{\mathsf{x}} \geq r$$
 where $r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$;

(2) the total number of blocks satisfies

$$b \geq \left\lceil \frac{rv}{k} \right\rceil$$
.

The latter is called the *Schönheim bound*.

Obvious Necessary Conditions. If there exists an (v, k, λ) -covering then

(1) for each point x the number of blocks containing x satisfies

$$r_{\mathsf{x}} \geq r$$
 where $r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$;

(2) the total number of blocks satisfies

$$b \geq \left\lceil \frac{rv}{k} \right\rceil$$
.

The latter is called the Schönheim bound.

Hanani. We can increase this by 1 if $\lambda(v-1) \equiv 0 \pmod{k-1}$ and $\lambda v(v-1) \equiv 1 \pmod{k}$.

Obvious Necessary Conditions. If there exists an (v, k, λ) -covering then

(1) for each point x the number of blocks containing x satisfies

$$r_{x} \geq r$$
 where $r = \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil$;

(2) the total number of blocks satisfies

$$b \geq \left\lceil \frac{rv}{k} \right\rceil$$
.

The latter is called the Schönheim bound.

Hanani. We can increase this by 1 if $\lambda(v-1) \equiv 0 \pmod{k-1}$ and $\lambda v(v-1) \equiv 1 \pmod{k}$.

These conditions are probably sufficient for $v \gg k$.

Improvements to the Schönheim bound

Improvements to the Schönheim bound

For subsymmetric parameter sets:

Improvements to the Schönheim bound

For subsymmetric parameter sets:

- ► Fisher's inequality and the Bruck-Ryser-Chowla theorem improve the Schönheim bound by 1 in some cases where a covering meeting the bound would be a design.
- ▶ Bose and Connor improved the Schönheim bound by 1 in some cases where $\lambda(v-1) = -1 \pmod{k-1}$.
- ▶ For $\lambda = 1$, Todorov has improved the Schönheim bound in various cases:
 - ▶ v = rk + 1;
 - ▶ some cases where v 1 = r(k 1);
 - some cases where $k > O(v^{\frac{5}{7}})$.
- ▶ Bryant, Buchanan, Horsley, Maenhaut and Scharaschkin improved the Schönheim bound by 1 in some cases where $\lambda(v-1) = -1, -2 \pmod{k-1}$.

Suppose there is a (v, k, λ) -covering with b blocks.

Suppose there is a (v, k, λ) -covering with b blocks.

Let
$$r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$$
.

Suppose there is a (v, k, λ) -covering with b blocks.

Let
$$r = \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil$$
.

Schönheim bound. Then
$$b \ge \left\lceil \frac{vr}{k} \right\rceil$$
.

Suppose there is a (v, k, λ) -covering with b blocks.

Let
$$r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$$
.

Schönheim bound. Then $b \ge \left\lceil \frac{vr}{k} \right\rceil$.

New bound. If
$$r(k-2) < \lambda(v-2)$$
, then $b \ge \left\lceil \frac{v(r+1)}{k+1} \right\rceil$.

Suppose there is a (v, k, λ) -covering with b blocks.

Let
$$r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$$
.

Schönheim bound. Then $b \ge \left\lceil \frac{vr}{k} \right\rceil$.

New bound. If
$$r(k-2) < \lambda(v-2)$$
, then $b \ge \left\lceil \frac{v(r+1)}{k+1} \right\rceil$.

The new bound is at least as good as the Schönheim bound for subsymmetric parameter sets, and never an improvement otherwise.

Comparison of bounds for k=16, $\lambda=1$

Comparison of bounds for k = 16, $\lambda = 1$

Suppose there exists a (176, 15, 1)-covering with 153 blocks.

Note r = 13. It must be that $r_x = 13$ for at least 169 points.

- Note r = 13. It must be that $r_x = 13$ for at least 169 points.
- ► The incidence matrix A is 176 × 153. Row x adds to r_x . Distinct rows x and y have dot product $1 + \mu_E(xy)$.

- Note r = 13. It must be that $r_x = 13$ for at least 169 points.
- ► The incidence matrix A is 176 \times 153. Row x adds to r_x . Distinct rows x and y have dot product $1 + \mu_E(xy)$.
- ▶ So $AA^T J$ is 176 × 176, symmetric, looks like

Suppose there exists a (176, 15, 1)-covering with 153 blocks.

- Note r = 13. It must be that $r_x = 13$ for at least 169 points.
- ► The incidence matrix A is 176 × 153. Row x adds to r_x . Distinct rows x and y have dot product $1 + \mu_E(xy)$.
- ▶ So $AA^T J$ is 176 × 176, symmetric, looks like

$$\left(\begin{array}{c|c}\geqslant 13\\ & \ddots\\ & \geqslant 13\\ \hline & & 12\\ & & \ddots\\ & & & \ddots\\ & & & 12\\ \end{array}\right) \geqslant 20\\ 7\\ \vdots\\ \vdots\\ 7$$

So AA^T − J has rank at least 169 and thus AA^T has rank at least 168. Contradiction.

- Note r = 13. It must be that $r_x = 13$ for at least 169 points.
- ► The incidence matrix A is 176 × 153. Row x adds to r_x . Distinct rows x and y have dot product $1 + \mu_E(xy)$.
- ▶ So $AA^T J$ is 176 × 176, symmetric, looks like

$$\left(\begin{array}{c} \geqslant 13 \\ & \ddots \\ & \geqslant 13 \\ \hline & & 12 \\ & & \ddots \\ & & & \ddots \\ & & & & 12 \\ \end{array} \right) \geqslant \begin{array}{c} 20 \\ \vdots \\ \geqslant 20 \\ 7 \\ \vdots \\ \vdots \\ \vdots \\ 7 \end{array} \right\} \leqslant 7 \text{ rows}$$

- So AA^T − J has rank at least 169 and thus AA^T has rank at least 168. Contradiction.
- ▶ The condition $r(k-2) < \lambda(\nu-2)$ corresponds to 12 > 7.

New bound. If $r(k-2) < \lambda(\nu-2)$, then $b \ge \left\lceil \frac{\nu(r+1)}{k+1} \right\rceil$.

New bound. If
$$r(k-2) < \lambda(v-2)$$
, then $b \ge \left\lceil \frac{v(r+1)}{k+1} \right\rceil$.

More results:

- ▶ Some improvements to the new bounds for $r(k-2) < \lambda(\nu-2)$.
- ▶ Some new bounds for $r(k-2) \ge \lambda(v-2)$.

New bound. If
$$r(k-2) < \lambda(v-2)$$
, then $b \ge \left\lceil \frac{v(r+1)}{k+1} \right\rceil$.

More results:

- ▶ Some improvements to the new bounds for $r(k-2) < \lambda(v-2)$.
- ▶ Some new bounds for $r(k-2) \ge \lambda(v-2)$.

Future work:

► Can coverings that meet these bounds be constructed?

That's all.