Symmetric coverings and the Bruck-Ryser-Chowla theorem

Daniel Horsley (Monash University, Australia)

Joint work with
Darryn Bryant, Melinda Buchanan, Barbara Maenhaut and Victor Scharaschkin
and with

Nevena Francetić and Sara Herke

Part 1:

The Bruck-Ryser-Chowla theorem

A (v, k, λ) -design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ) -design is a set of v points and a collection of k-sets of points (*blocks*), such that any two points occur together in exactly λ blocks.

A (v, k, λ) -design is symmetric if it has exactly v blocks.

A (v, k, λ) -design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ) -design is symmetric if it has exactly v blocks.

Famous examples include finite projective planes and Hadamard designs.

(, , , _ , accig.

A (v,k,λ) -design is a set of v points and a collection of k-sets of points (blocks), such that any two points occur together in exactly λ blocks.

A (v, k, λ) -design is symmetric if it has exactly v blocks.

Famous examples include finite projective planes and Hadamard designs.

A symmetric (v, k, λ) -design has $v = \frac{k(k-1)}{\lambda} + 1$.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- ▶ if v is even, then $k \lambda$ is square; and
- ▶ if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- ▶ if v is even, then $k \lambda$ is square; and
- ▶ if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- ▶ if v is even, then $k \lambda$ is square; and
- ▶ if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

► This is the only general nonexistence result known for symmetric designs.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- ▶ if v is even, then $k \lambda$ is square; and
- ▶ if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

- ► This is the only general nonexistence result known for symmetric designs.
- ▶ In 1991 Lam, Thiel and Swiercz proved there is no (111,11,1)-design using heavy computation.

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ) -design exists then

- ▶ if v is even, then $k \lambda$ is square; and
- ▶ if v is odd, then $x^2 = (k \lambda)y^2 + (-1)^{(v-1)/2}\lambda z^2$ has a solution for integers x, y, z, not all zero.

- ► This is the only general nonexistence result known for symmetric designs.
- ▶ In 1991 Lam, Thiel and Swiercz proved there is no (111,11,1)-design using heavy computation.

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The inner product of two distinct rows is λ .

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The inner product of two distinct rows is λ .

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The inner product of two distinct rows is λ .

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The inner product of two distinct rows is λ .

The inner product of a row with itself is $k = \frac{\lambda(\nu-1)}{k-1}$.

The *incidence matrix M* of a symmetric (v, k, λ) -design is a $v \times v$ matrix whose (i, j) entry is 1 if point i is in block j and 0 otherwise.

The inner product of two distinct rows is λ .

The inner product of a row with itself is $k = \frac{\lambda(\nu-1)}{k-1}$.

If M is the incidence matrix of a symmetric design, then MM^{T} looks like

If M is the incidence matrix of a symmetric design, then MM' looks like

The BRC theorem can be proved by observing that

If M is the incidence matrix of a symmetric design, then MM^T looks like

The BRC theorem can be proved by observing that

► $|MM^T| = |M|^2$ is square; and

If M is the incidence matrix of a symmetric design, then MM^T looks like

The BRC theorem can be proved by observing that

- ► $|MM^T| = |M|^2$ is square; and
- ► $MM^T \sim I$ (MM^T is rationally congruent to I).

 $(A \sim B \text{ if } A = QBQ^T \text{ for an invertible rational matrix } Q.)$

Part 2:

Extending BRC to coverings

A *symmetric* (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A *symmetric* (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric (12, 4, 1)-covering with a 1-regular excess.

A *symmetric* (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric (12,4,1)-covering with a 1-regular excess.

The excess is the multigraph on the point set where # of xy-edges in the excess = (# of blocks containing x and y) – λ .

A *symmetric* (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric (12, 4, 1)-covering with a 1-regular excess.

The excess is the multigraph on the point set where # of xy-edges in the excess = (# of blocks containing x and y) – λ .

When $v = \frac{k(k-1)-1}{\lambda} + 1$, a symmetric (v, k, λ) -covering must have a 1-regular excess.

Pair coverings

A *symmetric* (v, k, λ) -covering has v points and v blocks, each containing k points. Any two points occur together in at least λ blocks.

A symmetric (12, 4, 1)-covering with a 1-regular excess.

The excess is the multigraph on the point set where # of xy-edges in the excess = (# of blocks containing x and y) – λ .

When $v = \frac{k(k-1)-1}{\lambda} + 1$, a symmetric (v, k, λ) -covering must have a 1-regular excess.

The Bruck-Ryser-Chowla theorem establishes the non-existence of certain symmetric coverings with empty excesses.

A symmetric (11, 4, 1)-covering with excess [11].

A symmetric (11,4,1)-covering with excess [11].

When $v = \frac{k(k-1)-2}{\lambda} + 1$, a symmetric (v, k, λ) -covering must have a 2-regular excess.

A symmetric (11,4,1)-covering with excess [7,4].

When $v = \frac{k(k-1)-2}{\lambda} + 1$, a symmetric (v, k, λ) -covering must have a 2-regular excess.

A symmetric (11, 4, 1)-covering with excess [5, 4, 2].

When $v = \frac{k(k-1)-2}{\lambda} + 1$, a symmetric (v, k, λ) -covering must have a 2-regular excess.

A symmetric (11, 4, 1)-covering with excess [5, 4, 2].

When $v = \frac{k(k-1)-2}{\lambda} + 1$, a symmetric (v, k, λ) -covering must have a 2-regular excess.

The rest of this talk is about nonexistence of symmetric coverings with 2-regular excesses.

Degenerate coverings

Degenerate coverings

There is a (v, v-2, v-4)-symmetric covering with excess D for every $v \ge 5$ and every 2-regular graph D on v vertices.

(It has block set $\{V \setminus \{x,y\} : xy \in E(D)\}$.)

What does MM^T look like now?

If M is the incidence matrix of a (11,4,1)-covering with excess [11],

We call this matrix $X_{(11,4,1)}[11]$.

What does MM^T look like now?

If M is the incidence matrix of a (11,4,1)-covering with excess [7,4],

We call this matrix $X_{(11,4,1)}[7,4]$.

What does MM^T look like now?

If M is the incidence matrix of a (11,4,1)-covering with excess [6,3,2],

We call this matrix $X_{(11,4,1)}[6,3,2]$.

Based around the observation that $|MM^T|$ is square.

Based around the observation that $|MM^T|$ is square.

Lemma

$$|X_{(v,k,\lambda)}[c_1,\ldots,c_t]|=(k-\lambda+2)^{t-1}(k-\lambda-2)^e$$
 (up to a square), where e is the number of even c_i .

Based around the observation that $|MM^T|$ is square.

Lemma

$$|X_{(v,k,\lambda)}[c_1,\ldots,c_t]|=(k-\lambda+2)^{t-1}(k-\lambda-2)^e$$
 (up to a square), where e is the number of even c_i .

Theorem

If there exists a nondegenerate symmetric (v,k,λ)-covering with a 2-regular excess, then

- ightharpoonup v is even, $k-\lambda-2$ is square, and the excess has an odd number of cycles; or
- \triangleright *v* is even, $k \lambda + 2$ is square, and the excess has an even number of cycles; or
- ightharpoonup v is odd and the excess has an odd number of cycles.

Based around the observation that $|MM^T|$ is square.

Lemma

$$|X_{(v,k,\lambda)}[c_1,\ldots,c_t]|=(k-\lambda+2)^{t-1}(k-\lambda-2)^e$$
 (up to a square), where e is the number of even c_i .

Theorem

If there exists a nondegenerate symmetric (v, k, λ)-covering with a 2-regular excess, then

- ightharpoonup v is even, $k \lambda 2$ is square, and the excess has an odd number of cycles; or
- \blacktriangleright *v* is even, $k \lambda + 2$ is square, and the excess has an even number of cycles; or
- ▶ v is odd and the excess has an odd number of cycles.

Corollary

There does not exist a nondegenerate symmetric (v, k, λ) -covering with a 2-regular excess if v is even and neither $k - \lambda - 2$ nor $k - \lambda + 2$ is square.

Based around the observation that $|MM^T|$ is square.

Lemma

$$|X_{(v,k,\lambda)}[c_1,\ldots,c_t]|=(k-\lambda+2)^{t-1}(k-\lambda-2)^e$$
 (up to a square), where e is the number of even c_i .

Theorem

If there exists a nondegenerate symmetric (ν, k, λ)-covering with a 2-regular excess, then

- \triangleright *v* is even, $k \lambda 2$ is square, and the excess has an odd number of cycles; or
- \blacktriangleright *v* is even, $k \lambda + 2$ is square, and the excess has an even number of cycles; or
- ▶ v is odd and the excess has an odd number of cycles.

Corollary

There does not exist a nondegenerate symmetric (v, k, λ) -covering with a 2-regular excess if v is even and neither $k - \lambda - 2$ nor $k - \lambda + 2$ is square.

Can we say more (especially for odd v)?

Based around the observation that $MM^T \sim I$.

Based around the observation that $MM^T \sim I$.

Lemma

Rational, nondegenerate $n \times n$ matrices X, Y are rationally congruent if and only if $C_p(X) = C_p(Y)$ for all primes p and for $p = \infty$,

where

- ▶ a matrix is nondegenerate if all of its principal minors are invertible, and
- ▶ $C_p(X) \in \{-1, 1\}$ is the Hasse-Minkowski invariant of X with respect to p.

Based around the observation that $MM^T \sim I$.

Lemma

Rational, nondegenerate $n \times n$ matrices X, Y are rationally congruent if and only if

$$C_p(X) = C_p(Y)$$
 for all primes p and for $p = \infty$,

where

- ▶ a matrix is nondegenerate if all of its principal minors are invertible, and
- ▶ $C_p(X) \in \{-1, 1\}$ is the Hasse-Minkowski invariant of X with respect to p.

$$C_p(X) := (-1, -|X_n|)_p \prod_{i=1}^{n-1} (|X_i|, -|X_{i+1}|)_p$$
, where

- ➤ X_i is the ith principal minor of X
- ▶ $(\cdot, \cdot)_p \in \{-1, 1\}$ is the *Hilbert symbol* with respect to *p*.

Based around the observation that $MM^T \sim I$.

Lemma

Rational, nondegenerate $n \times n$ matrices X, Y are rationally congruent if and only if $C_p(X) = C_p(Y)$ for all primes p and for $p = \infty$,

where

- ▶ a matrix is nondegenerate if all of its principal minors are invertible, and
- ▶ $C_p(X) \in \{-1, 1\}$ is the Hasse-Minkowski invariant of X with respect to p.

$$C_p(X) := (-1, -|X_n|)_p \prod_{i=1}^{n-1} (|X_i|, -|X_{i+1}|)_p,$$
 where

- ➤ X_i is the ith principal minor of X
- ▶ $(\cdot, \cdot)_p \in \{-1, 1\}$ is the *Hilbert symbol* with respect to *p*.

tl;dr

- ▶ If $C_p(X) \neq C_p(Y)$ for some p, then $X \sim Y$.
- ▶ The hard part of computing $C_p(X)$ is taking a determinant of every principal minor of X.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])=C_p(I)=\left\{egin{array}{ll} -1, & ext{if } p\in\{2,\infty\}\ +1, & ext{if } p ext{ is an odd prime.} \end{array}
ight.$$

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])=C_p(I)=\left\{ egin{array}{ll} -1, & ext{if } p\in\{2,\infty\} \\ +1, & ext{if } p ext{ is an odd prime.} \end{array}
ight.$$

Computing $C_p(X_{(\nu,k,\lambda)}[c_1,\ldots,c_l])$ naively involves calculating the determinant of every leading principal minor of $X_{(\nu,k,\lambda)}[c_1,\ldots,c_l]$.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t]) = C_p(I) = \left\{ egin{array}{ll} -1, & ext{if } p \in \{2,\infty\} \\ +1, & ext{if } p ext{ is an odd prime.} \end{array}
ight.$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,\ldots,c_t]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t]) = C_p(I) = \left\{ egin{array}{ll} -1, & ext{if } p \in \{2,\infty\} \\ +1, & ext{if } p ext{ is an odd prime.} \end{array}
ight.$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,\ldots,c_t]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

This let us get extensive computational results:

Lemma

If a (v, k, λ) -covering with excess $[c_1, \dots, c_t]$ exists then, for all p,

$$C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])=C_p(I)=\left\{egin{array}{ll} -1, & ext{if } p\in\{2,\infty\} \\ +1, & ext{if } p ext{ is an odd prime.} \end{array}
ight.$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,\ldots,c_t]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

This let us get extensive computational results:

We could not rule out the existence of symmetric coverings for any more entire parameter sets.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \dots, c_t]$ exists then, for all p,

$$C_{\rho}(X_{(v,k,\lambda)}[c_1,\ldots,c_t])=C_{\rho}(I)=\left\{egin{array}{ll} -1, & ext{if } p\in\{2,\infty\} \\ +1, & ext{if } p ext{ is an odd prime.} \end{array}
ight.$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_l])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,\ldots,c_l]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

This let us get extensive computational results:

- We could not rule out the existence of symmetric coverings for any more entire parameter sets.
- We ruled out the existence of many more symmetric coverings with specified excesses.

Lemma

If a (v, k, λ) -covering with excess $[c_1, \ldots, c_t]$ exists then, for all p,

$$C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t]) = C_p(I) = \left\{ egin{array}{ll} -1, & ext{if } p \in \{2,\infty\} \\ +1, & ext{if } p ext{ is an odd prime.} \end{array}
ight.$$

Computing $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ naively involves calculating the determinant of every leading principal minor of $X_{(v,k,\lambda)}[c_1,\ldots,c_t]$.

We gave an expression for $C_p(X_{(v,k,\lambda)}[c_1,\ldots,c_t])$ in terms of Hilbert symbols of the first v terms of a recursive sequence.

This let us get extensive computational results:

- We could not rule out the existence of symmetric coverings for any more entire parameter sets.
- We ruled out the existence of many more symmetric coverings with specified excesses.
- We ruled out the existence of cyclic symmetric coverings for some entire parameter sets.

```
Example: (v, k, \lambda) = (11, 4, 1)

Possible excess types:

[11],

[9,2], [8,3], [7,4], [6,5],

[7,2,2], [6,3,2], [5,4,2], [5,3,3], [4,4,3],

[5,2,2,2], [4,3,2,2], [3,3,2,2],

[5,2,2,2,2]
```

```
Example: (v, k, \lambda) = (11, 4, 1)

Possible excess types:

[11],

[9,2], [8,3], [7,4], [6,5],

[7,2,2], [6,3,2], [5,4,2], [5,3,3], [4,4,3],

[5,2,2,2], [4,3,2,2], [3,3,2,2],

[5,2,2,2,2]
```

ruled out by determinant arguments

```
Example: (v, k, \lambda) = (11, 4, 1)

Possible excess types: [11], [9,2], [8,3], [7,4], [6,5], [7,2,2], [6,3,2], [5,4,2], [5,3,3], [4,4,3], [5,2,2,2], [4,3,2,2], [3,3,2,2], [5,2,2,2,2]
```

ruled out by determinant arguments

ruled out by rational congruence arguments

```
Example: (v, k, \lambda) = (11, 4, 1)

Possible excess types:

[11],

[9,2], [8,3], [7,4], [6,5],

[7,2,2], [6,3,2], [5,4,2], [5,3,3], [4,4,3],

[5,2,2,2], [4,3,2,2], [3,3,2,2],

[5,2,2,2,2]
```

ruled out by determinant arguments

ruled out by rational congruence arguments

It turns out [11] and [6,3,2] are realisable and [5,3,3] is not.

For $\lambda = 1$

For $\lambda = 1$

Then v = k(k-1) - 1 is odd and again our determinant results say the excess must have an odd number of cycles.

For $\lambda = 1$

Then v = k(k-1) - 1 is odd and again our determinant results say the excess must have an odd number of cycles.

(v,k,λ)	# of excess	# ruled out	# ruled out by RC	# which	
	types	by det results	results ($p < 10^3$)	may exist	
(11, 4, 1)	14	7	4	3	
(19, 5, 1)	105	52	43	10	
(29, 6, 1)	847	423	393	31	
(41, 7, 1)	7245	3621	3376	248	
(55, 8, 1)	65121	32555	30746	1820	
(71, 9, 1)	609237	304604	292475	12158	

► A *cyclic* symmetric covering is one obtained by applying a cyclic permutation to a single block.

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ) -covering with 2-regular excess is equivalent to a $(v, k, \lambda, v 3)$ -almost difference set.

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ) -covering with 2-regular excess is equivalent to a $(v, k, \lambda, v 3)$ -almost difference set.
- ► These must have excesses consisting of cycles of uniform length.

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ) -covering with 2-regular excess is equivalent to a $(v, k, \lambda, v 3)$ -almost difference set.
- ► These must have excesses consisting of cycles of uniform length.
- ▶ Using p < 1000 we can rule out cyclic symmetric coverings with the following parameter sets for v < 200.

V	k	λ	V	k	λ	V	k	λ	V	k	λ
153	18	2	111	32	9	95	49	25	199	98	48
37	11	3	157	38	9	53	38	27	199	101	51
169	23	3	63	30	14	81	47	27	137	87	55
23	10	4	81	34	14	123	60	29	111	79	56
53	15	4	63	33	17	123	63	32	117	86	63
27	12	5	37	26	18	135	66	32	157	119	90
23	13	7	121	47	18	135	69	35	199	134	90
161	34	7	137	50	18	171	84	41	161	127	100
27	15	8	199	65	21	171	87	44	153	135	119
117	31	8	95	46	22	121	74	45	169	146	126

- A cyclic symmetric covering is one obtained by applying a cyclic permutation to a single block.
- A cyclic symmetric (v, k, λ) -covering with 2-regular excess is equivalent to a $(v, k, \lambda, v 3)$ -almost difference set.
- ▶ These must have excesses consisting of cycles of uniform length.
- ▶ Using p < 1000 we can rule out cyclic symmetric coverings with the following parameter sets for v < 200.

V	k	λ	V	k	λ	V	k	λ	V	k	λ
153	18	2	111	32	9	95	49	25	199	98	48
37	11	3	157	38	9	53	38	27	199	101	51
169	23	3	63	30	14	81	47	27	137	87	55
23	10	4	81	34	14	123	60	29	111	79	56
53	15	4	63	33	17	123	63	32	117	86	63
27	12	5	37	26	18	135	66	32	157	119	90
23	13	7	121	47	18	135	69	35	199	134	90
161	34	7	137	50	18	171	84	41	161	127	100
27	15	8	199	65	21	171	87	44	153	135	119
117	31	8	95	46	22	121	74	45	169	146	126

▶ The red entries correspond to $(v, \frac{v-3}{2}, \frac{v-7}{4}, v-3)$ -almost difference sets which can be used to produce sequences with desirable autocorrelation properties.

Theoretical rational congruence results

Theoretical rational congruence results

Theorem

There does not exist a symmetric $(\frac{1}{2}p^{\alpha}(p^{\alpha}-1),p^{\alpha},2)$ -covering with Hamilton cycle excess when $p\equiv 3\pmod 4$ is prime, α is odd and $(p,\alpha)\neq (3,1)$.

The end.

