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Nevena Francetić and Sara Herke



Part 1:

The Bruck-Ryser-Chowla theorem
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A symmetric (7, 4, 2)-design

A (v, k, λ)-design is a set of v points and a collection of k-sets of points (blocks),
such that any two points occur together in exactly λ blocks.

A (v, k, λ)-design is symmetric if it has exactly v blocks.

Famous examples include finite projective planes and Hadamard designs.

A symmetric (v, k, λ)-design has v = k(k−1)
λ

+ 1.
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The BRC theorem

Bruck-Ryser-Chowla theorem (1950)

If a symmetric (v, k, λ)-design exists then
I if v is even, then k − λ is square; and
I if v is odd, then x2 = (k − λ)y2 + (−1)(v−1)/2λz2 has a solution for integers

x, y, z, not all zero.

I This is the only general nonexistence result known for symmetric designs.
I In 1991 Lam, Thiel and Swiercz proved there is no (111, 11, 1)-design using

heavy computation.
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BRC proof

The incidence matrix M of a symmetric (v, k, λ)-design is a v × v matrix whose (i, j)
entry is 1 if point i is in block j and 0 otherwise.



b1 b2

point x1 1 0 0 0 1 0 0 1 1 0 0 0 0

point x2 0 1 0 0 1 0 1 0 0 0 0 1 0



The inner product of two distinct rows is λ.

The inner product of a row with itself is k = λ(v−1)
k−1 .
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BRC proof

If M is the incidence matrix of a symmetric design, then MMT looks like
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.

The BRC theorem can be proved by observing that
I |MMT | = |M|2 is square; and
I MMT ∼ I (MMT is rationally congruent to I).

(A ∼ B if A = QBQT for an invertible rational matrix Q.)
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Part 2:

Extending BRC to coverings



Pair coverings

A symmetric (v, k, λ)-covering has v points and v blocks, each containing k points.
Any two points occur together in at least λ blocks.
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12×

A symmetric (12, 4, 1)-covering with a 1-regular excess.

The excess is the multigraph on the point set where
# of xy-edges in the excess = (# of blocks containing x and y)− λ.
When v = k(k−1)−1

λ
+ 1, a symmetric (v, k, λ)-covering must have a 1-regular excess.
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The Bruck-Ryser-Chowla theorem establishes the non-existence of certain
symmetric coverings with empty excesses.



BRC results for coverings



BRC results for coverings

Bose and Connor (1952) used similar methods to establish the non-existence of
certain symmetric coverings with 1-regular excesses.
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2-regular excesses
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A symmetric (11, 4, 1)-covering with excess [11].

When v = k(k−1)−2
λ

+ 1, a symmetric (v, k, λ)-covering must have a 2-regular excess.

The rest of this talk is about nonexistence of symmetric coverings with 2-regular excesses.
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There is a (v, v − 2, v − 4)-symmetric covering with excess D for every v > 5 and
every 2-regular graph D on v vertices.

(It has block set {V \ {x, y} : xy ∈ E(D)}.)
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If M is the incidence matrix of a (11, 4, 1)-covering with excess [6, 3, 2],
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Determinant results (with BBM&S)

Based around the observation that |MMT | is square.

Lemma
|X(v,k,λ)[c1, . . . , ct ]| = (k − λ+ 2)t−1(k − λ− 2)e (up to a square),

where e is the number of even ci .

Theorem
If there exists a nondegenerate symmetric (v, k, λ)-covering with a 2-regular excess,
then

I v is even, k − λ− 2 is square, and the excess has an odd number of cycles; or
I v is even, k − λ+ 2 is square, and the excess has an even number of cycles; or
I v is odd and the excess has an odd number of cycles.

Corollary
There does not exist a nondegenerate symmetric (v, k, λ)-covering with a 2-regular
excess if v is even and neither k − λ− 2 nor k − λ+ 2 is square.

Can we say more (especially for odd v)?
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Rational congruence results (with F&H)

Based around the observation that MMT ∼ I.

Lemma
Rational, nondegenerate n× n matrices X , Y are rationally congruent if and only if

Cp(X) = Cp(Y ) for all primes p and for p =∞,
where

I a matrix is nondegenerate if all of its principal minors are invertible, and
I Cp(X) ∈ {−1, 1} is the Hasse-Minkowski invariant of X with respect to p.

Cp(X) := (−1,−|Xn|)p
∏n−1

i=1 (|Xi |,−|Xi+1|)p, where
I Xi is the ith principal minor of X
I (·, ·)p ∈ {−1, 1} is the Hilbert symbol with respect to p.

tl;dr
I If Cp(X) 6= Cp(Y ) for some p, then X � Y .
I The hard part of computing Cp(X) is taking a determinant of every principal

minor of X .
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Rational congruence results (with F&H)

Lemma
If a (v, k, λ)-covering with excess [c1, . . . , ct ] exists then, for all p,

Cp(X(v,k,λ)[c1, . . . , ct ]) = Cp(I) =
{
−1, if p ∈ {2,∞}
+1, if p is an odd prime.

Computing Cp(X(v,k,λ)[c1, . . . , ct ]) naively involves calculating the determinant of
every leading principal minor of X(v,k,λ)[c1, . . . , ct ].

We gave an expression for Cp(X(v,k,λ)[c1, . . . , ct ]) in terms of Hilbert symbols of the
first v terms of a recursive sequence.

This let us get extensive computational results:
I We could not rule out the existence of symmetric coverings for any more entire

parameter sets.
I We ruled out the existence of many more symmetric coverings with specified

excesses.
I We ruled out the existence of cyclic symmetric coverings for some entire

parameter sets.
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Computational rational congruence results

Example: (v, k, λ) = (11, 4, 1)

Possible excess types:

[11],
[9, 2], [8, 3], [7, 4], [6, 5],
[7, 2, 2], [6, 3, 2], [5, 4, 2], [5, 3, 3], [4, 4, 3],
[5, 2, 2, 2], [4, 3, 2, 2], [3, 3, 2, 2],
[5, 2, 2, 2, 2]

ruled out by determinant arguments

ruled out by rational congruence arguments

It turns out [11] and [6, 3, 2] are realisable and [5, 3, 3] is not.
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Example: (v, k, λ) = (11, 4, 1)
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Computational rational congruence results

For λ = 1

Then v = k(k − 1)− 1 is odd and again our determinant results say the excess must
have an odd number of cycles.

(v, k, λ) # of excess # ruled out # ruled out by RC # which
types by det results results (p < 103) may exist

(11, 4, 1) 14 7 4 3
(19, 5, 1) 105 52 43 10
(29, 6, 1) 847 423 393 31
(41, 7, 1) 7245 3621 3376 248
(55, 8, 1) 65121 32555 30746 1820
(71, 9, 1) 609237 304604 292475 12158



Computational rational congruence results

For λ = 1

Then v = k(k − 1)− 1 is odd and again our determinant results say the excess must
have an odd number of cycles.

(v, k, λ) # of excess # ruled out # ruled out by RC # which
types by det results results (p < 103) may exist

(11, 4, 1) 14 7 4 3
(19, 5, 1) 105 52 43 10
(29, 6, 1) 847 423 393 31
(41, 7, 1) 7245 3621 3376 248
(55, 8, 1) 65121 32555 30746 1820
(71, 9, 1) 609237 304604 292475 12158



Computational rational congruence results

For λ = 1

Then v = k(k − 1)− 1 is odd and again our determinant results say the excess must
have an odd number of cycles.

(v, k, λ) # of excess # ruled out # ruled out by RC # which
types by det results results (p < 103) may exist

(11, 4, 1) 14 7 4 3
(19, 5, 1) 105 52 43 10
(29, 6, 1) 847 423 393 31
(41, 7, 1) 7245 3621 3376 248
(55, 8, 1) 65121 32555 30746 1820
(71, 9, 1) 609237 304604 292475 12158



Computational rational congruence results
I A cyclic symmetric covering is one obtained by applying a cyclic permutation to

a single block.

I A cyclic symmetric (v, k, λ)-covering with 2-regular excess is equivalent to a
(v, k, λ, v − 3)-almost difference set.

I These must have excesses consisting of cycles of uniform length.
I Using p < 1000 we can rule out cyclic symmetric coverings with the following

parameter sets for v < 200.
v k λ v k λ v k λ v k λ

153 18 2 111 32 9 95 49 25 199 98 48
37 11 3 157 38 9 53 38 27 199 101 51

169 23 3 63 30 14 81 47 27 137 87 55
23 10 4 81 34 14 123 60 29 111 79 56
53 15 4 63 33 17 123 63 32 117 86 63
27 12 5 37 26 18 135 66 32 157 119 90
23 13 7 121 47 18 135 69 35 199 134 90

161 34 7 137 50 18 171 84 41 161 127 100
27 15 8 199 65 21 171 87 44 153 135 119

117 31 8 95 46 22 121 74 45 169 146 126

I The red entries correspond to (v, v−3
2 , v−7

4 , v − 3)-almost difference sets which
can be used to produce sequences with desirable autocorrelation properties.
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Theoretical rational congruence results

Theorem
There does not exist a symmetric ( 1

2 pα(pα − 1), pα, 2)-covering with Hamilton cycle
excess when p ≡ 3 (mod 4) is prime, α is odd and (p, α) 6= (3, 1).
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The end.


