Extending Fisher's inequality to coverings

Daniel Horsley (Monash University, Australia)

Introduction 1

Designs and Fisher's inequality

A (9,3,1)-design with 12 blocks

Obvious necessary conditions: If there exists a (v, k, λ) -design then

(1)
$$r = \frac{\lambda(v-1)}{k-1}$$
 is an integer;

(2)
$$b = \frac{rv}{k}$$
 is an integer.

Obvious necessary conditions: If there exists a (v, k, λ) -design then

- (1) $r = \frac{\lambda(\nu 1)}{k 1}$ is an integer;
- (2) $b = \frac{rv}{k}$ is an integer.

Obvious necessary conditions: If there exists a (v, k, λ) -design then

(1)
$$r = \frac{\lambda(\nu - 1)}{k - 1}$$
 is an integer;

(2)
$$b = \frac{rv}{k}$$
 is an integer.

Obvious necessary conditions: If there exists a (v, k, λ) -design then

- (1) $r = \frac{\lambda(\nu 1)}{k 1}$ is an integer;
- (2) $b = \frac{rv}{k}$ is an integer.

Fisher's inequality (1940): There is no (v, k, λ) -design with $v < \frac{k(k-1)}{\lambda} + 1$.

Obvious necessary conditions: If there exists a (v, k, λ) -design then

- (1) $r = \frac{\lambda(\nu 1)}{k 1}$ is an integer;
- (2) $b = \frac{rv}{k}$ is an integer.

Fisher's inequality (1940): There is no (v, k, λ) -design with $v < \frac{k(k-1)}{\lambda} + 1$.

Equivalently,

- with b < v; or
- with r < k.

Obvious necessary conditions: If there exists a (v, k, λ) -design then

- (1) $r = \frac{\lambda(\nu 1)}{k 1}$ is an integer;
- (2) $b = \frac{rv}{k}$ is an integer.

Fisher's inequality (1940): There is no (v, k, λ) -design with $v < \frac{k(k-1)}{\lambda} + 1$.

Equivalently,

- with *b* < *v*; or
- with r < k.

Symmetric designs have $v = \frac{k(k-1)}{\lambda} + 1$ (or b = v or r = k).

Incidence matrix arithmetic

Consider the incidence matrix of our (9, 3, 1)-design.

						12 bl	ocks	;				
	/1	0	0	1	0	0	1	0	0	1	0	0,
9 points	1	1	0	0	1	0	0	1	0	0	0	0)
	1	0	1	0	0	1	0	0	0	0	1	0
	0	1	0	1	0	0	0	0	1	0	1	0
	0	0	1	0	1	0	1	0	1	0	0	0
	0	0	0	0	0	1	0	1	1	1	0	0
	0	0	1	1	0	0	0	1	0	0	0	1
	0	0	0	0	1	0	0	0	0	1	1	1
	/0	1	0	0	0	1	1	0	0	0	0	1/

Incidence matrix arithmetic

Consider the incidence matrix of our (9, 3, 1)-design.

						12 bl	locks	;				
	/1	0	0	1	0	0	1	0	0	1	0	0,
9 points	1	1	0	0	1	0	0	1	0	0	0	0 \
	1	0	1	0	0	1	0	0	0	0	1	0
	0	1	0	1	0	0	0	0	1	0	1	0
	0	0	1	0	1	0	1	0	1	0	0	0
	0	0	0	0	0	1	0	1	1	1	0	0
	0	0	1	1	0	0	0	1	0	0	0	1
	0	0	0	0	1	0	0	0	0	1	1	1 /
	/0	1	0	0	0	1	1	0	0	0	0	1/

Incidence matrix arithmetic

Consider the incidence matrix of our (9, 3, 1)-design.

						12 bl	ocks	;				
	/1	0	0	1	0	0	1	0	0	1	0	0,
9 points	(1	1	0	0	1	0	0	1	0	0	0	0
	1	0	1	0	0	1	0	0	0	0	1	0
	0	1	0	1	0	0	0	0	1	0	1	0
	0	0	1	0	1	0	1	0	1	0	0	0
	0	0	0	0	0	1	0	1	1	1	0	0
	0	0	1	1	0	0	0	1	0	0	0	1
	0	0	0	0	1	0	0	0	0	1	1	1
	/0	1	0	0	0	1	1	0	0	0	0	1/

Incidence matrix arithmetic

Consider the incidence matrix of our (9, 3, 1)-design.

						12 b	locks						
	/1	0	0	1	0	0	1	0	0	1	0	0,	
9 points	(1	1	0	0	1	0	0	1	0	0	0	0 \	
	1	0	1	0	0	1	0	0	0	0	1	0	
	0	1	0	1	0	0	0	0	1	0	1	0	
	0	0	1	0	1	0	1	0	1	0	0	0	= A
	0	0	0	0	0	1	0	1	1	1	0	0	
	0	0	1	1	0	0	0	1	0	0	0	1	
	0	0	0	0	1	0	0	0	0	1	1	1 /	
	\n	1	Λ	Λ	Λ	1	1	Λ	Λ	Λ	Λ	1/	

Incidence matrix arithmetic

Consider the incidence matrix of our (9, 3, 1)-design.

In general, $z_{xx} = r$ and $z_{xy} = \lambda$.

Suppose there exists a (21, 6, 1)-design.

Suppose there exists a (21, 6, 1)-design. It has 14 blocks.

Suppose there exists a (21, 6, 1)-design. It has 14 blocks.

► Let *A* be the design's 21 × 14 incidence matrix.

Suppose there exists a (21, 6, 1)-design. It has 14 blocks.

- ▶ Let *A* be the design's 21 × 14 incidence matrix.
- Note that r = 4.

Suppose there exists a (21, 6, 1)-design. It has 14 blocks.

- ▶ Let *A* be the design's 21 × 14 incidence matrix.
- Note that r = 4.
- ▶ So AA^T is the 21 × 21 matrix

$$AA^{T} = \begin{pmatrix} 4 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 4 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 4 & & & 1 & 1 & 1 \\ \vdots & \vdots & & \ddots & & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 4 & 1 & 1 \\ 1 & 1 & 1 & \dots & 1 & 4 & 1 \\ 1 & 1 & 1 & \dots & 1 & 1 & 4 \end{pmatrix}.$$

Suppose there exists a (21, 6, 1)-design. It has 14 blocks.

- ▶ Let *A* be the design's 21 × 14 incidence matrix.
- Note that r = 4.
- ▶ So AA^T is the 21 × 21 matrix

$$AA^{T} = \begin{pmatrix} 4 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 4 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 4 & & & 1 & 1 & 1 \\ \vdots & \vdots & & \ddots & & \vdots & \vdots \\ 1 & 1 & 1 & & & 4 & 1 & 1 \\ 1 & 1 & 1 & \dots & 1 & 4 & 1 \\ 1 & 1 & 1 & \dots & 1 & 1 & 4 \end{pmatrix}.$$

So AA^T has rank 21.

Suppose there exists a (21, 6, 1)-design. It has 14 blocks.

- ▶ Let *A* be the design's 21 × 14 incidence matrix.
- ▶ Note that r = 4.
- ► So AA^T is the 21 × 21 matrix

$$AA^{T} = \begin{pmatrix} 4 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 4 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 4 & & & 1 & 1 & 1 \\ \vdots & \vdots & & \ddots & & \vdots & \vdots \\ 1 & 1 & 1 & & & 4 & 1 & 1 \\ 1 & 1 & 1 & \dots & 1 & 4 & 1 \\ 1 & 1 & 1 & \dots & 1 & 1 & 4 \end{pmatrix}.$$

So AA^T has rank 21. But A has rank at most 14.

Suppose there exists a (21, 6, 1)-design. It has 14 blocks.

- ▶ Let *A* be the design's 21 × 14 incidence matrix.
- ▶ Note that r = 4.
- ▶ So AA^T is the 21 × 21 matrix

$$AA^{T} = \begin{pmatrix} 4 & 1 & 1 & \dots & 1 & 1 & 1 \\ 1 & 4 & 1 & \dots & 1 & 1 & 1 \\ 1 & 1 & 4 & & & 1 & 1 & 1 \\ \vdots & \vdots & & \ddots & & \vdots & \vdots \\ 1 & 1 & 1 & \dots & 4 & 1 & 1 \\ 1 & 1 & 1 & \dots & 1 & 4 & 1 \\ 1 & 1 & 1 & \dots & 1 & 1 & 4 \end{pmatrix}.$$

So AA^T has rank 21. But A has rank at most 14. Contradiction.

Introduction 2

Coverings and the Schönheim bound

A (5, 3, 1)-covering with 4 blocks.

The excess of the covering.

▶ Introduced by Fort Jr and Hedlund (1958) for k = 3.

- ▶ Introduced by Fort Jr and Hedlund (1958) for k = 3.
- ► Generalised by Erdős and Hanani (1963).

- ▶ Introduced by Fort Jr and Hedlund (1958) for k = 3.
- ► Generalised by Erdős and Hanani (1963).
- ▶ Unlike designs, coverings exist for all v, k, and λ .

- ▶ Introduced by Fort Jr and Hedlund (1958) for k = 3.
- ► Generalised by Erdős and Hanani (1963).
- ▶ Unlike designs, coverings exist for all v, k, and λ .
- ▶ The goal is now to find a (v, k, λ) -covering with few blocks.

- ▶ Introduced by Fort Jr and Hedlund (1958) for k = 3.
- ► Generalised by Erdős and Hanani (1963).
- ▶ Unlike designs, coverings exist for all v, k, and λ .
- ▶ The goal is now to find a (v, k, λ) -covering with few blocks.
- ▶ The minimum number of blocks in a (v, k, λ) -covering is the *covering number*, denoted by $C_{\lambda}(v, k)$.

- ▶ Introduced by Fort Jr and Hedlund (1958) for k = 3.
- ► Generalised by Erdős and Hanani (1963).
- ▶ Unlike designs, coverings exist for all v, k, and λ .
- ▶ The goal is now to find a (v, k, λ) -covering with few blocks.
- ▶ The minimum number of blocks in a (v, k, λ) -covering is the *covering number*, denoted by $C_{\lambda}(v, k)$.
- Designs are optimal coverings.

- ▶ Introduced by Fort Jr and Hedlund (1958) for k = 3.
- ► Generalised by Erdős and Hanani (1963).
- ▶ Unlike designs, coverings exist for all v, k, and λ .
- ▶ The goal is now to find a (v, k, λ) -covering with few blocks.
- ▶ The minimum number of blocks in a (v, k, λ) -covering is the *covering number*, denoted by $C_{\lambda}(v, k)$.
- Designs are optimal coverings.

In any (v, k, λ) -covering, the number of blocks r_x containing a point x satisfies

$$r_x \geqslant r$$
 where $r = \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil$.

In any (v, k, λ) -covering, the number of blocks r_x containing a point x satisfies

$$r_x \geqslant r$$
 where $r = \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil$.

Schönheim bound: $C_{\lambda}(v,k) \geqslant \left\lceil \frac{rv}{k} \right\rceil$.

In any (v, k, λ) -covering, the number of blocks r_x containing a point x satisfies

$$r_x \geqslant r$$
 where $r = \left\lceil \frac{\lambda(v-1)}{k-1} \right\rceil$.

Schönheim bound: $C_{\lambda}(v,k) \geqslant \left\lceil \frac{rv}{k} \right\rceil$.

Designs meet the Schönheim bound.

In any (v, k, λ) -covering, the number of blocks r_x containing a point x satisfies

$$r_x \geqslant r$$
 where $r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$.

Schönheim bound: $C_{\lambda}(v,k) \geqslant \left\lceil \frac{rv}{k} \right\rceil$.

Designs meet the Schönheim bound.

Tweak: We can improve the Schönheim bound by 1 if

- ▶ $\lambda(v-1) \equiv 0 \pmod{k-1}$; and
- $\lambda v(v-1) \equiv 1 \pmod{k}.$

In any (v, k, λ) -covering, the number of blocks r_x containing a point x satisfies

$$r_x \geqslant r$$
 where $r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$.

Schönheim bound: $C_{\lambda}(v,k) \geqslant \left\lceil \frac{rv}{k} \right\rceil$.

Designs meet the Schönheim bound.

Tweak: We can improve the Schönheim bound by 1 if

- $\lambda(v-1) \equiv 0 \pmod{k-1}$; and
- $\lambda v(v-1) \equiv 1 \ (\text{mod } k).$

For the rest of this talk "the Schönheim bound" includes this tweak.

Possible (v, 10, 1)-designs

Possible (v, 10, 1)-designs

Bounds on (v, 10, 1)-coverings

Bounds on (v, 10, 1)-coverings

Bounds on (v, 10, 1)-coverings

Possible subsymmetric (v, 10, 1)-coverings

Possible subsymmetric (v, 10, 1)-coverings

Manifesto

Subsymmetric coverings are particularly interesting because there are no analogous designs.

We should investigate the value of $C_{\lambda}(v,k)$ for subsymmetric (v,k,λ) .

Manifesto

Subsymmetric coverings are particularly interesting because there are no analogous designs.

We should investigate the value of $C_{\lambda}(v,k)$ for subsymmetric (v,k,λ) .

This talk

- Fisher's inequality itself improves on the Schönheim bound for certain (very special) subsymmetric parameter sets.
- ▶ I've generalised Bose's proof to improve on the Schönheim bound for a much wider variety of subsymmetric parameter sets.
- ▶ In some cases this yields exact covering numbers.

Other work

Other work

Other results also improve on the classical bounds for subsymmetric coverings.

Fisher (1940):

There do not exist subsymmetric coverings with empty excesses.

Bose and Connor (1952):

Certain subsymmetric coverings with 1-regular excesses do not exist.

Todorov (1989):

Some general bounds on subsymmetric coverings.

Bryant, Buchanan, Horsley, Maenhaut and Scharaschkin (2011):

Certain subsymmetric coverings with 2-regular excesses do not exist.

Various:

Exact covering numbers are known when

- ▶ $k \in \{3, 4\}$
- $\lambda = 1 \text{ and } v \leqslant \frac{13}{4}k.$

Part 1

A simple new bound

A (5,3,1)-covering with 4 blocks.

A (5,3,1)-covering with 4 blocks.

The excess of the covering.

A (5,3,1)-covering with 4 blocks.

The excess of the covering.

A (5,3,1)-covering with 4 blocks.

The excess of the covering.

$$\sup_{\substack{\Omega \\ \Omega \\ \Omega}} \begin{pmatrix} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \end{pmatrix} = A$$

A (5,3,1)-covering with 4 blocks.

The *excess* of the covering.

$$AA^{T} = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 3 & 3 & 1 & 1 \\ 1 & 3 & 3 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix}$$

A (5,3,1)-covering with 4 blocks.

$$\begin{array}{c}
4 \text{ blocks} \\
5 \\
6 \\
6 \\
6 \\
6
\end{array}$$

$$\begin{array}{ccccc}
1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 \\
1 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}$$

$$= A$$

The excess of the covering.

$$AA^{T} = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 3 & 3 & 1 & 1 \\ 1 & 3 & 3 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix}$$

$$z_{xx} = r_x, \ z_{xy} = \lambda + \mu_E(xy)$$

The Schönheim bound says $C_1(176, 15) \ge 153$.

The Schönheim bound says $C_1(176, 15) \ge 153$.

 \blacktriangleright Let A be the 176 \times 153 incidence matrix of a (176, 15, 1)-covering with exactly 153 blocks.

The Schönheim bound says $C_1(176, 15) \ge 153$.

- \blacktriangleright Let A be the 176 \times 153 incidence matrix of a (176, 15, 1)-covering with exactly 153 blocks.
- Note r = 13. It must be that $r_x = 13$ for at least 169 points. These points have degree d = 7 in the excess.

The Schönheim bound says $C_1(176, 15) \ge 153$.

- ▶ Let A be the 176 × 153 incidence matrix of a (176, 15, 1)-covering with exactly 153 blocks.
- ▶ Note r = 13. It must be that $r_x = 13$ for at least 169 points. These points have degree d = 7 in the excess.
- ▶ So $AA^T J$ is 176 × 176, symmetric, and looks like

where \boldsymbol{E} is the adjacency matrix of the covering's excess.

The Schönheim bound says $C_1(176, 15) \ge 153$.

- ▶ Let A be the 176 × 153 incidence matrix of a (176, 15, 1)-covering with exactly 153 blocks.
- ▶ Note r = 13. It must be that $r_x = 13$ for at least 169 points. These points have degree d = 7 in the excess.
- ▶ So $AA^T J$ is 176 × 176, symmetric, and looks like

where *E* is the adjacency matrix of the covering's excess.

The Schönheim bound says $C_1(176, 15) \ge 153$.

- ► Let A be the 176 × 153 incidence matrix of a (176, 15, 1)-covering with exactly 153 blocks.
- ▶ Note r = 13. It must be that $r_x = 13$ for at least 169 points. These points have degree d = 7 in the excess.
- ▶ So $AA^T J$ is 176 × 176, symmetric, and looks like

where *E* is the adjacency matrix of the covering's excess.

The Schönheim bound says $C_1(176, 15) \ge 153$.

- ► Let *A* be the 176 × 153 incidence matrix of a (176, 15, 1)-covering with exactly 153 blocks.
- Note r = 13. It must be that $r_x = 13$ for at least 169 points. These points have degree d = 7 in the excess.
- ▶ So $AA^T J$ is 176 × 176, symmetric, and looks like

where *E* is the adjacency matrix of the covering's excess.

► The bottom-right submatrix of $AA^T - J$ is *diagonally dominant* and hence positive definite. Thus AA^T has rank at least 169. Contradiction.

The Schönheim bound says $C_1(176, 15) \ge 153$.

- ▶ Let A be the 176 × 153 incidence matrix of a (176, 15, 1)-covering with exactly 153 blocks.
- Note r = 13. It must be that $r_x = 13$ for at least 169 points. These points have degree d = 7 in the excess.
- ▶ So $AA^T J$ is 176 × 176, symmetric, and looks like

where *E* is the adjacency matrix of the covering's excess.

► The bottom-right submatrix of $AA^T - J$ is *diagonally dominant* and hence positive definite. Thus AA^T has rank at least 169. Contradiction.

We need $d < r - \lambda$ for this idea to work.

Let
$$r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$$
 and $d = r(k-1) - \lambda(\nu-1)$.

Let
$$r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$$
 and $d = r(k-1) - \lambda(\nu-1)$.

Schönheim bound:
$$C_{\lambda}(v,k) \geqslant \left\lceil \frac{vr}{k} \right\rceil$$
.

Let
$$r = \left\lceil \frac{\lambda(\nu - 1)}{k - 1} \right\rceil$$
 and $d = r(k - 1) - \lambda(\nu - 1)$.

Schönheim bound: $C_{\lambda}(v,k) \geqslant \left\lceil \frac{vr}{k} \right\rceil$.

New bound: If
$$d < r - \lambda$$
, $C_{\lambda}(v, k) \geqslant \left\lceil \frac{v(r+1)}{k+1} \right\rceil$.

Let
$$r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$$
 and $d = r(k-1) - \lambda(\nu-1)$.

Schönheim bound: $C_{\lambda}(v,k) \geqslant \left\lceil \frac{vr}{k} \right\rceil$.

New bound: If
$$d < r - \lambda$$
, $C_{\lambda}(v, k) \geqslant \left\lceil \frac{v(r+1)}{k+1} \right\rceil$.

The new bound:

▶ is at least as good as the Schönheim bound for subsymmetric (v, k, λ) , and never an improvement otherwise.

Let
$$r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$$
 and $d = r(k-1) - \lambda(\nu-1)$.

Schönheim bound: $C_{\lambda}(v,k) \geqslant \left\lceil \frac{vr}{k} \right\rceil$.

New bound: If
$$d < r - \lambda$$
, $C_{\lambda}(v, k) \geqslant \left\lceil \frac{v(r+1)}{k+1} \right\rceil$.

The new bound:

- ▶ is at least as good as the Schönheim bound for subsymmetric (v, k, λ) , and never an improvement otherwise.
- for fixed $k \gg \lambda$, strictly improves the Schönheim bound for almost half the subsymmetric values of v.

Let
$$r = \left\lceil \frac{\lambda(\nu-1)}{k-1} \right\rceil$$
 and $d = r(k-1) - \lambda(\nu-1)$.

Schönheim bound: $C_{\lambda}(v,k) \geqslant \left\lceil \frac{vr}{k} \right\rceil$.

New bound: If
$$d < r - \lambda$$
, $C_{\lambda}(v, k) \geqslant \left\lceil \frac{v(r+1)}{k+1} \right\rceil$.

The new bound:

- ▶ is at least as good as the Schönheim bound for subsymmetric (v, k, λ) , and never an improvement otherwise.
- for fixed $k \gg \lambda$, strictly improves the Schönheim bound for almost half the subsymmetric values of v.
- generalises Fisher's inequality.

Bounds for subsymmetric (v, 10, 1)-coverings

Bounds for subsymmetric (ν , 10, 1)-coverings

Bounds for subsymmetric (ν , 10, 1)-coverings

Bounds for subsymmetric (v, 15, 1)-coverings

Bounds for subsymmetric (ν , 15, 1)-coverings

Part 2

Extending this idea

The Schönheim bound says $C_1(79, 15) \geqslant 32$.

The Schönheim bound says $C_1(79, 15) \geqslant 32$.

► Let *A* be the incidence matrix of a (79, 15, 1)-covering with 32 blocks.

The Schönheim bound says $C_1(79, 15) \ge 32$.

- ▶ Let A be the incidence matrix of a (79, 15, 1)-covering with 32 blocks.
- ▶ Then $AA^T J$ is 79 × 79, symmetric, and looks like

where E is the adjacency matrix of the covering's excess.

The Schönheim bound says $C_1(79, 15) \ge 32$.

- ▶ Let A be the incidence matrix of a (79, 15, 1)-covering with 32 blocks.
- ▶ Then $AA^T J$ is 79 × 79, symmetric, and looks like

$$\left(\begin{array}{cccc}
\geqslant 6 & & & & & & \\
& \ddots & & & & & \\
& & \geqslant 6 & & & \\
& & & 5 & & & \\
& & & & \ddots & & \\
& & & & & 5
\end{array}\right) \geqslant 20 \\
\geqslant 20 \\
\geqslant 20 \\
6 \\
\vdots \\
\geqslant 73 \text{ rows}$$

where E is the adjacency matrix of the covering's excess.

The Schönheim bound says $C_1(79, 15) \ge 32$.

- ▶ Let A be the incidence matrix of a (79, 15, 1)-covering with 32 blocks.
- ▶ Then $AA^T J$ is 79 × 79, symmetric, and looks like

where E is the adjacency matrix of the covering's excess.

▶ If there is a 33×33 symmetric submatrix that is diagonally dominant, then we can obtain a contradiction as before.

The Schönheim bound says $C_1(79, 15) \ge 32$.

- ▶ Let A be the incidence matrix of a (79, 15, 1)-covering with 32 blocks.
- ▶ Then $AA^T J$ is 79 × 79, symmetric, and looks like

where E is the adjacency matrix of the covering's excess.

- If there is a 33 x 33 symmetric submatrix that is diagonally dominant, then we can obtain a contradiction as before.
- Such a submatrix corresponds to a set of 33 vertices in the excess that induces a subgraph with maximum degree less than 5.

The Schönheim bound says $C_1(79, 15) \ge 32$.

- ▶ Let *A* be the incidence matrix of a (79, 15, 1)-covering with 32 blocks.
- ▶ Then $AA^T J$ is 79 × 79, symmetric, and looks like

$$\begin{pmatrix}
\geqslant 6 & & & & & & & \\
& \ddots & & & & & & \\
& & \geqslant 6 & & & & \\
& & & 5 & & & & \\
& & & & \ddots & & \\
& & & & & \ddots & \\
& & & & & 5
\end{pmatrix}$$

$$\begin{vmatrix}
\geqslant 20 \\
\vdots \\
\geqslant 20 \\
6 \\
\vdots \\
\vdots \\
6
\end{vmatrix} \geqslant 73 \text{ rows}$$

$$\begin{vmatrix}
\end{cases} \Rightarrow 73 \text{ rows}$$

where E is the adjacency matrix of the covering's excess.

- If there is a 33 x 33 symmetric submatrix that is diagonally dominant, then we can obtain a contradiction as before.
- ► Such a submatrix corresponds to a set of 33 vertices in the excess that induces a subgraph with maximum degree less than 5.
- ► A result of Caro and Tuza guarantees such a 5-independent set in any multigraph with degree sequence [20⁶, 6⁷³].

▶ Sometimes this same idea can improve our original $d < r - \lambda$ bound.

- ▶ Sometimes this same idea can improve our original $d < r \lambda$ bound.
- ▶ It can help to weight the columns of $AA^T J$. For example:

- ▶ Sometimes this same idea can improve our original $d < r \lambda$ bound.
- ▶ It can help to weight the columns of $AA^T J$. For example:

- ▶ Sometimes this same idea can improve our original $d < r \lambda$ bound.
- ▶ It can help to weight the columns of $AA^T J$. For example:

$$\left(\begin{array}{ccc}
\geqslant 13 & & & & & \\
& \ddots & & & & \\
& \geqslant 13 & & & \\
& & & & \downarrow \\
& \downarrow$$

We then use an edge-weighted version of the excess.

- ▶ Sometimes this same idea can improve our original $d < r \lambda$ bound.
- ▶ It can help to weight the columns of $AA^T J$. For example:

$$\left(\begin{array}{cccc}
\geqslant 13 & & & & & \\
& \ddots & & & & & \\
& \geqslant 13 & & & & \\
& & & & \downarrow & & \\
& & & & \downarrow & & \\
& & & & & \downarrow & \\
& \downarrow & \downarrow &$$

- We then use an edge-weighted version of the excess.
- An easy extension of the Caro-Tuza result covers edge-weighted multigraphs.

► These improvements produce better bounds.

► These improvements produce better bounds.

▶ The bounds are closed form, but ugly.

- These improvements produce better bounds.
- ► The bounds are closed form, but ugly.
- ▶ For $d \ge r \lambda$ we can find infinite families of improvements over the Schönheim bound.

- These improvements produce better bounds.
- The bounds are closed form, but ugly.
- ► For $d \ge r \lambda$ we can find infinite families of improvements over the Schönheim bound.
- ▶ For $d < r \lambda$ we can find infinite families of improvements over our simple bound.

Bounds for subsymmetric (v, 15, 1)-coverings

Bounds for subsymmetric (v, 15, 1)-coverings

Bounds for subsymmetric (ν , 15, 1)-coverings

Part 3

Upper bounds and exact covering numbers

Bounds for subsymmetric (v, 10, 1)-coverings

Bounds for subsymmetric (ν , 10, 1)-coverings

A construction for coverings

Coverings constructed like this sometimes meet our new bounds. We get new infinite families of covering numbers.

Bounds for (v, 48, 1)-coverings $(v \le 250)$

Bounds for (v, 48, 1)-coverings $(v \le 250)$

Bounds for (v, 48, 1)-coverings $(v \le 250)$

Conclusion

Some final things

What about packings?

I prove very similar results for packings.

What about packings?

I prove very similar results for packings.

For $\lambda = 1$ these results are weaker than the *second Johnson bound*.

What about packings?

I prove very similar results for packings.

For $\lambda = 1$ these results are weaker than the *second Johnson bound*.

They're still of interest for $\lambda \geqslant 2$, however.

Improving these bounds:

- Better results on m-independent sets in multigraphs translate immediately to improved bounds.
- ▶ With Francetić, Herke and Singh I'm working on a procedural bound for the size of an m-independent set and on special cases where $d = r \lambda$.

Improving these bounds:

- Better results on m-independent sets in multigraphs translate immediately to improved bounds.
- ▶ With Francetić, Herke and Singh I'm working on a procedural bound for the size of an m-independent set and on special cases where $d = r \lambda$.

Exact covering numbers:

I'd like to find more situations in which we can construct coverings to meet these bounds.

Improving these bounds:

- Better results on m-independent sets in multigraphs translate immediately to improved bounds.
- ▶ With Francetić, Herke and Singh I'm working on a procedural bound for the size of an m-independent set and on special cases where $d = r \lambda$.

Exact covering numbers:

I'd like to find more situations in which we can construct coverings to meet these bounds.

Symmetric coverings:

I've looked at these with Bryant, Buchanan, Maenhaut and Scharaschkin and with Francetić and Herke.

Thanks.