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Introduction 1
Designs and Fisher’s inequality
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A collection of k-subsets (blocks) of a v-set (of points) such that every pair
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Necessary conditions for a design to exist

Obvious necessary conditions: If there exists a (v, k, λ)-design then

(1) r = λ(v − 1)
k − 1 is an integer;

(2) b =
rv
k is an integer.
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Incidence matrix arithmetic

Consider the incidence matrix of our (9,3,1)-design.

12 blocks

9
po
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



1 0 0 1 0 0 1 0 0 1 0 0
1 1 0 0 1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0 0 0 1 0
0 1 0 1 0 0 0 0 1 0 1 0
0 0 1 0 1 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 1 1 0 0
0 0 1 1 0 0 0 1 0 0 0 1
0 0 0 0 1 0 0 0 0 1 1 1
0 1 0 0 0 1 1 0 0 0 0 1
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In general, zxx = r and zxy = λ.



Bose’s proof of Fisher’s inequality

Suppose there exists a (21,6,1)-design. It has 14 blocks.
I Let A be the design’s 21 × 14 incidence matrix.
I Note that r = 4.
I So AAT is the 21 × 21 matrix

AAT =





4 1 1 . . . 1 1 1
1 4 1 . . . 1 1 1
1 1 4 1 1 1
...
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. . .

...
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1 1 1 4 1 1
1 1 1 . . . 1 4 1
1 1 1 . . . 1 1 4

.

I So AAT has rank 21. But A has rank at most 14. Contradiction.
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Introduction 2
Coverings and the Schönheim bound
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Coverings

I Introduced by Fort Jr and Hedlund (1958) for k = 3.

I Generalised by Erdős and Hanani (1963).

I Unlike designs, coverings exist for all v, k, and λ.

I The goal is now to find a (v, k, λ)-covering with few blocks.

I The minimum number of blocks in a (v, k, λ)-covering is the covering
number, denoted by Cλ(v, k).

I Designs are optimal coverings.
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The Schönheim bound

In any (v, k, λ)-covering, the number of blocks rx containing a point x
satisfies

rx > r where r =
⌈
λ(v − 1)

k − 1

⌉
.

Schönheim bound: Cλ(v, k) >
⌈ rv

k

⌉
.

Designs meet the Schönheim bound.

Tweak: We can improve the Schönheim bound by 1 if
I λ(v − 1) ≡ 0 (mod k − 1); and
I λv(v − 1) ≡ 1 (mod k).

For the rest of this talk “the Schönheim bound” includes this tweak.
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Manifesto
Subsymmetric coverings are particularly interesting because there are
no analogous designs.

We should investigate the value of Cλ(v, k) for subsymmetric (v, k, λ).

This talk
I Fisher’s inequality itself improves on the Schönheim bound for

certain (very special) subsymmetric parameter sets.

I I’ve generalised Bose’s proof to improve on the Schönheim bound
for a much wider variety of subsymmetric parameter sets.

I In some cases this yields exact covering numbers.
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Other work

Other results also improve on the classical bounds for subsymmetric coverings.

Fisher (1940):
There do not exist subsymmetric coverings with empty excesses.

Bose and Connor (1952):
Certain subsymmetric coverings with 1-regular excesses do not exist.

Todorov (1989):
Some general bounds on subsymmetric coverings.

Bryant, Buchanan, Horsley, Maenhaut and Scharaschkin (2011):
Certain subsymmetric coverings with 2-regular excesses do not exist.

Various:
Exact covering numbers are known when

I k ∈ {3, 4}
I λ = 1 and v 6 13

4 k.
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A simple new bound
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A simple new bound

The Schönheim bound says C1(176, 15) > 153.

I Let A be the 176× 153 incidence matrix of a (176, 15, 1)-covering with exactly
153 blocks.

I Note r = 13. It must be that rx = 13 for at least 169 points. These points have
degree d = 7 in the excess.

I So AAT − J is 176× 176, symmetric, and looks like

>13
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where E is the adjacency matrix of the covering’s excess.
I The bottom-right submatrix of AAT − J is diagonally dominant and hence

positive definite. Thus AAT has rank at least 169. Contradiction.

We need d < r − λ for this idea to work.
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The new bound

Let r =
⌈
λ(v − 1)

k − 1

⌉
and d = r(k − 1)− λ(v − 1).

Schönheim bound: Cλ(v, k) >
⌈vr

k

⌉
.

New bound: If d < r − λ, Cλ(v, k) >
⌈v(r + 1)

k + 1

⌉
.

The new bound:
I is at least as good as the Schönheim bound for subsymmetric (v, k, λ),

and never an improvement otherwise.
I for fixed k � λ, strictly improves the Schönheim bound for almost half

the subsymmetric values of v.
I generalises Fisher’s inequality.
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Part 2
Extending this idea



A new bound when d > r − λ

The Schönheim bound says C1(79, 15) > 32.
I Let A be the incidence matrix of a (79, 15, 1)-covering with 32 blocks.
I Then AAT − J is 79× 79, symmetric, and looks like

>6


> 20
6 6 rows. . . E ...

>6 > 20

5 6
> 73 rows

. . . ...E . . . ...

5 6

where E is the adjacency matrix of the covering’s excess.
I If there is a 33× 33 symmetric submatrix that is diagonally dominant, then we

can obtain a contradiction as before.
I Such a submatrix corresponds to a set of 33 vertices in the excess that induces

a subgraph with maximum degree less than 5.
I A result of Caro and Tuza guarantees such a 5-independent set in any

multigraph with degree sequence [206, 673].
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Improving the d < r − λ bound

I Sometimes this same idea can improve our original d < r − λ bound.
I It can help to weight the columns of AAT − J. For example:

>13


> 21
6 22 rows. . . E ...

>13 > 21

12 7
> 154 rows

. . .
...E . . .
...

12 7︸ ︷︷ ︸
×( 7

12 +ε)

I We then use an edge-weighted version of the excess.
I An easy extension of the Caro-Tuza result covers edge-weighted

multigraphs.



Improving the d < r − λ bound

I Sometimes this same idea can improve our original d < r − λ bound.

I It can help to weight the columns of AAT − J. For example:

>13


> 21
6 22 rows. . . E ...

>13 > 21

12 7
> 154 rows

. . .
...E . . .
...

12 7︸ ︷︷ ︸
×( 7

12 +ε)

I We then use an edge-weighted version of the excess.
I An easy extension of the Caro-Tuza result covers edge-weighted

multigraphs.



Improving the d < r − λ bound

I Sometimes this same idea can improve our original d < r − λ bound.
I It can help to weight the columns of AAT − J. For example:

>13


> 21
6 22 rows. . . E ...

>13 > 21

12 7
> 154 rows

. . .
...E . . .
...

12 7︸ ︷︷ ︸
×( 7

12 +ε)

I We then use an edge-weighted version of the excess.
I An easy extension of the Caro-Tuza result covers edge-weighted

multigraphs.



Improving the d < r − λ bound

I Sometimes this same idea can improve our original d < r − λ bound.
I It can help to weight the columns of AAT − J. For example:

>13


> 21
6 22 rows. . . E ...

>13 > 21

12 7
> 154 rows

. . .
...E . . .
...

12 7︸ ︷︷ ︸
×( 7

12 +ε)

I We then use an edge-weighted version of the excess.
I An easy extension of the Caro-Tuza result covers edge-weighted

multigraphs.



Improving the d < r − λ bound

I Sometimes this same idea can improve our original d < r − λ bound.
I It can help to weight the columns of AAT − J. For example:

>13


> 21
6 22 rows. . . E ...

>13 > 21

12 7
> 154 rows

. . .
...E . . .
...

12 7︸ ︷︷ ︸
×( 7

12 +ε)

I We then use an edge-weighted version of the excess.

I An easy extension of the Caro-Tuza result covers edge-weighted
multigraphs.



Improving the d < r − λ bound

I Sometimes this same idea can improve our original d < r − λ bound.
I It can help to weight the columns of AAT − J. For example:

>13


> 21
6 22 rows. . . E ...

>13 > 21

12 7
> 154 rows

. . .
...E . . .
...

12 7︸ ︷︷ ︸
×( 7

12 +ε)

I We then use an edge-weighted version of the excess.
I An easy extension of the Caro-Tuza result covers edge-weighted

multigraphs.



The improvements

I These improvements produce better bounds.

I The bounds are closed form, but ugly.

I For d > r − λ we can find infinite families of improvements over the
Schönheim bound.

I For d < r − λ we can find infinite families of improvements over our
simple bound.
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Part 3
Upper bounds and exact covering numbers



Bounds for subsymmetric (v,10,1)-coverings
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A construction for coverings

Coverings constructed like this sometimes meet our new bounds. We get
new infinite families of covering numbers.



A construction for coverings

Coverings constructed like this sometimes meet our new bounds. We get
new infinite families of covering numbers.



A construction for coverings

Coverings constructed like this sometimes meet our new bounds. We get
new infinite families of covering numbers.



A construction for coverings

Coverings constructed like this sometimes meet our new bounds. We get
new infinite families of covering numbers.



A construction for coverings

Coverings constructed like this sometimes meet our new bounds. We get
new infinite families of covering numbers.



A construction for coverings

Coverings constructed like this sometimes meet our new bounds. We get
new infinite families of covering numbers.



Bounds for (v,48,1)-coverings (v 6 250)
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Conclusion
Some final things



What about packings?

I prove very similar results for packings.

For λ = 1 these results are weaker than the second Johnson bound.

They’re still of interest for λ > 2, however.
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Further stuff

Improving these bounds:
I Better results on m-independent sets in multigraphs translate immediately to

improved bounds.
I With Francetić, Herke and Singh I’m working on a procedural bound for the

size of an m-independent set and on special cases where d = r − λ.

Exact covering numbers:
I I’d like to find more situations in which we can construct coverings to meet

these bounds.

Symmetric coverings:
I I’ve looked at these with Bryant, Buchanan, Maenhaut and Scharaschkin and

with Francetić and Herke.
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Thanks.


