Alspach's cycle decomposition problem for multigraphs

Daniel Horsley (Monash University)

Joint work with Darryn Bryant, Barbara Maenhaut and Ben Smith (University of Queensland)

Part 1:

Alspach's problem

A (7, 6, 4, 4)-decomposition of K_7

A (7,6,4,4)-decomposition of K_7

A (7,6,4,4)-decomposition of K_7

A (7,6,4,4)-decomposition of K_7

A (7,6,4,4)-decomposition of K_7

cycle decomposition: set of cycles in a graph such that each edge of the graph appears in exactly one cycle.

A (7, 6, 4, 4)-decomposition of K_7

My lists of cycle lengths will always be non-increasing.

If there exists an (m_1, m_2, \dots, m_t) -decomposition of K_n then

- (1) *n* is odd;
- (2) $n \geqslant m_1, m_2, \dots, m_t \geqslant 3$; and
- (3) $m_1 + m_2 + \cdots + m_t = \binom{n}{2}$.

If there exists an (m_1, m_2, \ldots, m_t) -decomposition of K_n then

- (1) *n* is odd;
- (2) $n \geqslant m_1, m_2, \dots, m_t \geqslant 3$; and
- (3) $m_1 + m_2 + \cdots + m_t = \binom{n}{2}$.

Alspach's cycle decomposition problem (1981): Prove (1), (2) and (3) are also sufficient for an (m_1, m_2, \dots, m_t) -decomposition of K_n .

If there exists an (m_1, m_2, \dots, m_t) -decomposition of K_n then

- (1) *n* is odd;
- (2) $n \geqslant m_1, m_2, \dots, m_t \geqslant 3$; and
- (3) $m_1 + m_2 + \cdots + m_t = \binom{n}{2}$.

Alspach's cycle decomposition problem (1981): Prove (1), (2) and (3) are also sufficient for an (m_1, m_2, \dots, m_t) -decomposition of K_n .

Alspach also posed the equivalent problem for $K_n - I$ when n is even.

History (fixed cycle length)

When does there exist an (m, m, ..., m)-decomposition of K_n ?

History (fixed cycle length)

When does there exist an (m, m, ..., m)-decomposition of K_n ?

Kirkman (1846): solution for m = 3

Walecki (1890): solution for m = n

Kotzig (1965): solution for $n \equiv 1 \pmod{2m}$, $m \equiv 0 \pmod{4}$

Rosa (1966): solution for $n \equiv 1 \pmod{2m}$, $m \equiv 2 \pmod{4}$

Rosa (1966): solution for m = 5 and m = 7

Rosa, Huang (1975): solution for m = 6

Bermond, Huang, Sotteau (1978): reduction of the problem for even m

Hoffman, Lindner, Rodger (1989): reduction of the problem for odd *m*

Alspach, Gavlas, Šajna (2001–2002): solution for each m

History (varied cycle lengths)

When does there exist an (m_1, \ldots, m_t) -decomposition of K_n ?

History (varied cycle lengths)

When does there exist an (m_1, \ldots, m_t) -decomposition of K_n ?

(1969+): results on Oberwolfach problem etc.

Heinrich, Horák, Rosa (1989): solution for $\{m_1, \dots, m_t\} \subseteq \{2^k, 2^{k+1}\}, \{3, 4, 6\}, \{n-2, n-1, n\}$

Adams, Bryant, Khodkar (1998): solution for $m_1 \leq 10$ and $|\{m_1, \ldots, m_t\}| \leq 2$

Balister (2001): solution for $\{m_1, ..., m_t\} \subseteq \{3, 4, 5\}$

Balister (2001): solution for n large and $m_1 \leqslant \lfloor \frac{n-112}{20} \rfloor$

Bryant, Maenhaut (2004): solution for $\{m_1, \ldots, m_t\} \subseteq \{3, n\}$

Bryant, Horsley (2009): solution for $m_t \geqslant \frac{n+5}{2}$

Bryant, Horsley (2010): solution for $m_1 \leqslant \frac{n-1}{2}$ and $m_1 \leqslant 2m_2$

Bryant, Horsley (2010): solution for large n

Remember $m_1 \geqslant m_2 \geqslant \cdots \geqslant m_t$.

The solution to Alspach's problem

The solution to Alspach's problem

Theorem. There is an (m_1, m_2, \dots, m_t) -decomposition of K_n if and only if

- (1) n is odd;
- (2) $n \ge m_1, m_2, \dots, m_t \ge 3$; and
- (3) $m_1 + m_2 + \cdots + m_t = \binom{n}{2}$.

The analogous result for $K_n - I$ when n is even also holds.

- Bryant, Horsley, Pettersson (2014)

Part 2:

Generalisation to multigraphs

A (8 3 , 3 10 , 2)-decomposition of 2 K_8

A (8 3 , 3 10 , 2)-decomposition of 2 K_8

A (8 3 ,3 10 ,2)-decomposition of 2 K_8

A (8 3 ,3 10 ,2)-decomposition of 2 K_8

When does there exist an (m, m, ..., m)-decomposition of λK_n ?

When does there exist an (m, m, ..., m)-decomposition of λK_n ?

Hanani (1961): solution for m = 3

Huang, Rosa (1973): solution for m = 4

Huang, Rosa (1975): solution for m = 5 and m = 6

Bermond, Sotteau (1977): solution for m = 7.

Bermond, Huang, Sotteau (1978): solution for $m \in \{8, 10, 12, 14\}$

Smith (2010): solution for $m = \lambda$

Bryant, Horsley, Maenhaut, Smith (2011): solution for each m

When does there exist an (m, m, ..., m)-decomposition of λK_n ?

Hanani (1961): solution for m = 3

Huang, Rosa (1973): solution for m = 4

Huang, Rosa (1975): solution for m = 5 and m = 6

Bermond, Sotteau (1977): solution for m = 7.

Bermond, Huang, Sotteau (1978): solution for $m \in \{8, 10, 12, 14\}$

Smith (2010): solution for $m = \lambda$

Bryant, Horsley, Maenhaut, Smith (2011): solution for each m

Very little work on the case of varied cycle lengths.

The solution to Alspach's problem for multigraphs

Theorem. There is an (m_1, m_2, \dots, m_t) -decomposition of λK_n if and only if

- (1) $\lambda(n-1)$ is even;
- (2) $n \geqslant m_1, m_2, \ldots, m_t \geqslant 2$;
- (3) $m_1 + m_2 + \cdots + m_t = \lambda \binom{n}{2}$;
- (4) $|\{i: m_i = 2\}| \leq \frac{\lambda 1}{2} {n \choose 2}$ if λ is odd; and
- (5) $m_1 \leq 2 + \sum_{i=2}^{t} (m_i 2)$ if λ is even.

The analogous result for $\lambda K_n - I$ when $\lambda (n - 1)$ is odd also holds.

- Bryant, Horsley, Maenhaut, Smith (2015+)

Remember $m_1 \geqslant m_2, \ldots, m_t$.

Why is $|\{i: m_i = 2\}| \leqslant \frac{\lambda - 1}{2} \binom{n}{2}$ necessary when λ is odd?

Why is $|\{i: m_i = 2\}| \leqslant \frac{\lambda - 1}{2} \binom{n}{2}$ necessary when λ is odd?

There is no $(5,3,2^{11})$ -decomposition of $3K_5$

Why is $|\{i: m_i = 2\}| \leqslant \frac{\lambda - 1}{2} \binom{n}{2}$ necessary when λ is odd?

There is no $(5,3,2^{11})$ -decomposition of $3K_5$

There is no $(6,4,2^{23})$ -decomposition of $2K_8$

There is no $(6,4,2^{23})$ -decomposition of $2K_8$

There is no $(6,4,2^{23})$ -decomposition of $2K_8$

For this to exist there would have to be a graph G with 5 edges such that 2G has a (6,4)-decomposition.

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

Lemma. If there is a (m_1, \ldots, m_t) -decomposition of 2G for some (multi)graph G, then $m_1 \leq 2 + \sum_{i=2}^t (m_i - 2)$.

An (18, 8, 6, 5, 4, 3)-decomposition of 2*G*

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

An (18, 8, 6, 5, 4, 3)-decomposition of 2G

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

An (18, 8, 6, 5, 4, 3)-decomposition of 2G

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

An (18, 8, 6, 5, 4, 3)-decomposition of 2G

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

An (18, 8, 6, 5, 4, 3)-decomposition of 2G

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

An (18, 8, 6, 5, 4, 3)-decomposition of 2G

In general, the cycles of length greater than 2 must decompose 2G for some (multi)graph G.

An (18, 8, 6, 5, 4, 3)-decomposition of 2G

Reduction lemma. If there is a decomposition of λK_n for each (λ, n) -ancestor list, then our main theorem holds for λK_n .

Reduction lemma. If there is a decomposition of λK_n for each (λ, n) -ancestor list, then our main theorem holds for λK_n .

 (λ, n) -ancestor lists are of the form $(n^{\alpha}, k, 3^{\beta}, 2^{\gamma})$.

Reduction lemma. If there is a decomposition of λK_n for each (λ, n) -ancestor list, then our main theorem holds for λK_n .

 (λ, n) -ancestor lists are of the form $(n^{\alpha}, k, 3^{\beta}, 2^{\gamma})$.

 λ -induction lemma. If our main theorem holds for K_n and $2K_n$, then there is a decomposition of λK_n for each (λ, n) -ancestor list.

Reduction lemma. If there is a decomposition of λK_n for each (λ, n) -ancestor list, then our main theorem holds for λK_n .

 (λ, n) -ancestor lists are of the form $(n^{\alpha}, k, 3^{\beta}, 2^{\gamma})$.

 λ -induction lemma. If our main theorem holds for K_n and $2K_n$, then there is a decomposition of λK_n for each (λ, n) -ancestor list.

Many n's lemma. There is a decomposition of $2K_n$ for each (λ, n) -ancestor list containing at least $\frac{n-3}{2}$ occurrences of n.

Reduction lemma. If there is a decomposition of λK_n for each (λ, n) -ancestor list, then our main theorem holds for λK_n .

 (λ, n) -ancestor lists are of the form $(n^{\alpha}, k, 3^{\beta}, 2^{\gamma})$.

 λ -induction lemma. If our main theorem holds for K_n and $2K_n$, then there is a decomposition of λK_n for each (λ, n) -ancestor list.

Many n's lemma. There is a decomposition of $2K_n$ for each (λ, n) -ancestor list containing at least $\frac{n-3}{2}$ occurrences of n.

Few n's **lemma.** If our main theorem holds for $2K_{n-1}$, then there is a decomposition of $2K_n$ for each (λ, n) -ancestor list containing less than $\frac{n-3}{2}$ occurrences of n.

Reduction lemma. If there is a decomposition of λK_n for each (λ, n) -ancestor list, then our main theorem holds for λK_n .

 (λ, n) -ancestor lists are of the form $(n^{\alpha}, k, 3^{\beta}, 2^{\gamma})$.

 λ -induction lemma. If our main theorem holds for K_n and $2K_n$, then there is a decomposition of λK_n for each (λ, n) -ancestor list.

Many n's lemma. There is a decomposition of $2K_n$ for each (λ, n) -ancestor list containing at least $\frac{n-3}{2}$ occurrences of n.

Few n's **lemma.** If our main theorem holds for $2K_{n-1}$, then there is a decomposition of $2K_n$ for each (λ, n) -ancestor list containing less than $\frac{n-3}{2}$ occurrences of n.

The solution to Alspach's problem for multigraphs

Theorem. There is an $(m_1, m_2, ..., m_t)$ -decomposition of λK_n if and only if

- (1) $\lambda(n-1)$ is even;
- (2) $n \geqslant m_1, m_2, \ldots, m_t \geqslant 2$;
- (3) $m_1 + m_2 + \cdots + m_t = \lambda \binom{n}{2}$;
- (4) $|\{i: m_i = 2\}| \leq \frac{\lambda 1}{2} \binom{n}{2}$ if λ is odd; and
- (5) $m_1 \leq 2 + \sum_{i=2}^{t} (m_i 2)$ if λ is even.

The analogous result for $\lambda K_n - I$ when $\lambda (n - 1)$ is odd also holds.

- Bryant, Horsley, Maenhaut, Smith (2015+)

The solution to Alspach's problem for multigraphs

Theorem. There is an (m_1, m_2, \dots, m_t) -decomposition of λK_n if and only if

- (1) $\lambda(n-1)$ is even;
- (2) $n \geqslant m_1, m_2, \ldots, m_t \geqslant 2$;
- (3) $m_1 + m_2 + \cdots + m_t = \lambda \binom{n}{2}$;
- (4) $|\{i: m_i = 2\}| \leq \frac{\lambda 1}{2} {n \choose 2}$ if λ is odd; and
- (5) $m_1 \leq 2 + \sum_{i=2}^{t} (m_i 2)$ if λ is even.

The analogous result for $\lambda K_n - I$ when $\lambda (n - 1)$ is odd also holds.

- Bryant, Horsley, Maenhaut, Smith (2015+)

Remember $m_1 \geqslant m_2, \ldots, m_t$.

That's all.