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If there exists an (m1,m2, . . . ,mt)-decomposition of Kn then

(1) n is odd;

(2) n > m1,m2, . . . ,mt > 3; and

(3) m1 + m2 + · · ·+ mt =
(n

2
)

.

Alspach’s cycle decomposition problem (1981): Prove (1), (2) and (3) are
also sufficient for an (m1,m2, . . . ,mt)-decomposition of Kn.

Alspach also posed the equivalent problem for Kn − I when n is even.
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History (fixed cycle length)

When does there exist an (m,m, . . . ,m)-decomposition of Kn?

Kirkman (1846): solution for m = 3

Walecki (1890): solution for m = n

Kotzig (1965): solution for n ≡ 1 (mod 2m), m ≡ 0 (mod 4)

Rosa (1966): solution for n ≡ 1 (mod 2m), m ≡ 2 (mod 4)

Rosa (1966): solution for m = 5 and m = 7

Rosa, Huang (1975): solution for m = 6

Bermond, Huang, Sotteau (1978): reduction of the problem for even m

Hoffman, Lindner, Rodger (1989): reduction of the problem for odd m

Alspach, Gavlas, Šajna (2001–2002): solution for each m
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History (varied cycle lengths)

When does there exist an (m1, . . . ,mt)-decomposition of Kn?

(1969+): results on Oberwolfach problem etc.

Heinrich, Horák, Rosa (1989): solution for {m1, . . . ,mt} ⊆ {2k , 2k+1}, {3, 4, 6},
{n− 2, n− 1, n}

Adams, Bryant, Khodkar (1998): solution for m1 6 10 and |{m1, . . . ,mt}| 6 2

Balister (2001): solution for {m1, . . . ,mt} ⊆ {3, 4, 5}

Balister (2001): solution for n large and m1 6 b n−112
20 c

Bryant, Maenhaut (2004): solution for {m1, . . . ,mt} ⊆ {3, n}

Bryant, Horsley (2009): solution for mt > n+5
2

Bryant, Horsley (2010): solution for m1 6 n−1
2 and m1 6 2m2

Bryant, Horsley (2010): solution for large n

Remember m1 > m2 > · · · > mt .
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Part 2:

Generalisation to multigraphs
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History (complete multigraphs)

When does there exist an (m,m, . . . ,m)-decomposition of λKn?

Hanani (1961): solution for m = 3

Huang, Rosa (1973): solution for m = 4

Huang, Rosa (1975): solution for m = 5 and m = 6

Bermond, Sotteau (1977): solution for m = 7.

Bermond, Huang, Sotteau (1978): solution for m ∈ {8,10,12,14}

Smith (2010): solution for m = λ

Bryant, Horsley, Maenhaut, Smith (2011): solution for each m

Very little work on the case of varied cycle lengths.
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The solution to Alspach’s problem for multigraphs

Theorem. There is an (m1,m2, . . . ,mt)-decomposition of λKn if and only if

(1) λ(n− 1) is even;

(2) n > m1,m2, . . . ,mt > 2;

(3) m1 + m2 + · · ·+ mt = λ
(n

2
)

;

(4) |{i : mi = 2}| 6 λ−1
2
(n

2
)

if λ is odd; and

(5) m1 6 2 +
∑t

i=2(mi − 2) if λ is even.

The analogous result for λKn − I when λ(n− 1) is odd also holds.

– Bryant, Horsley, Maenhaut, Smith (2015+)
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i=2(mi − 2) necessary when λ is even?

For this to exist there would have to be a graph G with 5 edges such that 2G
has a (6,4)-decomposition.
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Proof of sufficiency

Reduction lemma. If there is a decomposition of λKn for each
(λ,n)-ancestor list, then our main theorem holds for λKn.

(λ,n)-ancestor lists are of the form (nα, k,3β ,2γ).

λ-induction lemma. If our main theorem holds for Kn and 2Kn, then there
is a decomposition of λKn for each (λ,n)-ancestor list.

Many n’s lemma. There is a decomposition of 2Kn for each
(λ,n)-ancestor list containing at least n−3

2 occurrences of n.

Few n’s lemma. If our main theorem holds for 2Kn−1, then there is a
decomposition of 2Kn for each (λ,n)-ancestor list containing less than n−3

2
occurrences of n.
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That’s all.


