# Perfect 1-Factorisations of Cubic Graphs

Rosie Hoyte Honours project at The University of Queensland Supervisor: Dr Barbara Maenhaut

#### Outline

- Definitions and background
- The complete graph
- Cubic graphs
  - General results
  - Small examples

#### **Definitions**

- A 1-factor of a graph G is a 1-regular spanning subgraph of G.
- A 1-factorisation of a graph is a partition of the edges in the graph into 1-factors.

#### Example:



#### **Definitions**

- A 1-factorisation of a graph is perfect (P1F) if the union of any two 1-factors is a Hamilton cycle of the graph.
- A graph is cubic if every vertex has degree 3.

#### Example:





## The Complete Graph

#### Conjecture (Kotzig 1960s):

The complete graph  $K_{2n}$  has a P1F for all  $n \geq 2$ .

- $2n \le 52$ .
- 2n = p + 1 and 2n = 2p for odd prime p.
- Lots of sporadic examples.

#### Open Problem (Kotzig 1960s):

Given a cubic graph, determine whether it has a P1F.

- There exists a cubic graph with a P1F on  $2n \ge 4$  vertices.
- Results for some classes of graphs:
  - $\circ$  Generalised Peterson graph, GP(n, k).
  - Cubic circulant graphs,  $Circ(2n, \{a, n\})$ .
- Other partial results and simplifications.

#### Cubic Graphs - Small Examples

Connected cubic graphs on ≤ 10 vertices:



Theorem (Kotzig, Labelle 1978):

For r > 2, if G is a bipartite r-regular graph that has a P1F then  $|V(G)| \equiv 2 \pmod{4}$ .

• A bipartite cubic graph on 0 (*mod* 4) vertices does not have a P1F.

• Generalised Petersen graph GP(n,k),  $1 \le k \le \left\lfloor \frac{n}{2} \right\rfloor$ 

$$\circ \ V = \{u_0, u_1, \dots, u_{n-1}\} \cup \{v_0, v_1, \dots, v_{n-1}\}$$

$$\circ E = \{u_i u_{i+1}, u_i v_i, v_i v_{i+k} : 0 \le i \le n-1\}$$

 $\circ$  GP(5,2)



#### Theorem (Bonvicini, Mazzuocolo 2011):

- 1. GP(n, 1) has a P1F iff n = 3;
- 2. GP(n, 2) has a P1F iff  $n \equiv 3, 4 \pmod{6}$ ; and
- 3. GP(n, 3) has a P1F iff n = 9.
- Completely solved for  $1 \le k \le 3$  (given here).
- Partial results for other values of n and k.

• Cubic circulant graphs:  $Circ(2n, \{a, n\})$ , where  $a \in \{1, 2\}$ 

$$\circ V = \{u_0, u_1, \dots, u_{2n-1}\}$$

$$o$$
  $E = \{u_i u_{i+a}, u_i u_{i+n} : 0 \le i \le 2n-1\}$ 

Example:  $Circ(6, \{1, 3\})$ :



Theorem (Herke, Maenhaut 2013): For an integer  $n \ge 2$  and  $a \in \{1,2\}$ ,  $Circ(2n,\{a,n\})$  has a P1F iff it is isomorphic to one of following:

- 1.  $Circ(4,\{1,2\});$
- 2.  $Circ(6, \{a, 3\}), a \in \{1, 2\};$
- 3.  $Circ(2n, \{1, n\})$  for 2n > 6 and n odd.

Apply results for generalised Petersen and cubic circulant graphs:



GP(n,k)

Circ  $(2n,\{a,n\})$ 

#### Lemma 1a:

If a cubic graph on more than 4 vertices has a P1F then any 4-cycles must be factorised as:



Must have all three 1-factors in the 4-cycle (otherwise not Hamilton cycle).

#### Lemma 1b:

If a cubic graph on more than 6 vertices has a P1F then any two 4-cycles that share an edge must be factorised as:



Lemma 2: Let *G* be a cubic graph that has a P1F.

• If |V(G)| > 4, then



is not a subgraph.

• If |V(G)| > 7, then



is not a subgraph.

• If |V(G)| > 6, then



is not a subgraph.

"Forbidden subgraphs"

Graphs with 'forbidden subgraphs do not have P1Fs:



#### Forbidden subgraphs:



Y-reduction operation.



Lemma: A cubic graph has a P1F if and only if its Y-reduction has a P1F.



• Construct a P1F from P1F of Y-reduced graph



Some cubic graphs that have P1Fs

• K<sub>4</sub> (C1):

• *Circ*(6, {1,3}) (C3):



• Apply Y-reductions where possible:



 $K_4$  Circ(6, {1, 3})

• C11: P1F constructed using 4-cycle lemmas



C19, C26 also have P1Fs

• Connected cubic graphs on ≤ 10 vertices:



#### Summary

#### Open Problem (Kotzig 1960s):

Given a cubic graph, determine whether it has a P1F.

- GP(n,k) solved for  $k \leq 3$  and some values of n and k
- Cubic circulant graphs  $Circ(2n, \{a, n\})$  solved
- Y-reduction operation
- 4-cycles and 'forbidden subgraphs'
- There were still a few graphs that needed examples

#### References

- 1. S. Bonvicini and G. Mazzuoccolo, Perfect one-factorizations in generalized Petersen graphs, Ars Combinatoria, **99** (2011), 33-43.
- 2. S. Herke, B. Maenhaut, Perfect 1-factorisations of circulants with small degree, Electronic Journal of Combinatorics, **20** (2013), P58.
- 3. G. Mazzuoccolo, Perfect one-factorizations in line-graphs and planar graphs, Australasian Journal of Combinatorics, **41** (2008), 227-233.
- 4. E. Seah, Perfect one-factorizations of the complete graph a survey, Bulletin of the Institute of Combinatorics and its Applications, 1 (1991), 59-70.