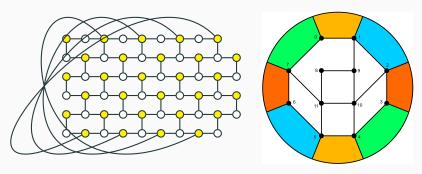
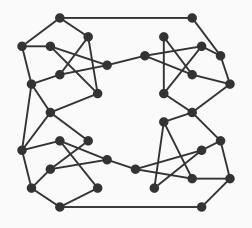
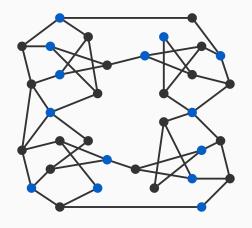
Stable Sets in Graphs with Bounded Odd Cycle Packing Number



Tony Huynh (Monash) joint with Michele Conforti, Samuel Fiorini, Gwenaël Joret, and Stefan Weltge





Problem

Given a graph G and $w:V(G)\to\mathbb{R}_{\geqslant 0}$, compute a maximum weight stable set (MWSS) of G.

Problem

Given a graph G and $w:V(G)\to\mathbb{R}_{\geqslant 0}$, compute a maximum weight stable set (MWSS) of G.

Theorem

For every $\epsilon > 0$, it is NP-hard to approximate maximum stable set within a factor of $n^{1-\epsilon}$.

Theorem

MWSS can be solved on bipartite graphs in polynomial time.

Theorem

MWSS can be solved on bipartite graphs in polynomial time.

$$\max \sum_{v \in V(G)} w(v)x_{v} \qquad \max \sum_{v \in V(G)} w(v)x_{v}$$

$$\text{s.t.} \quad x_{u} + x_{v} \leqslant 1 \quad \forall uv \in E(G) \qquad \text{s.t.} \quad Mx \leqslant \mathbf{1}$$

$$x \in \{0, 1\}^{V(G)} \qquad x \in \{0, 1\}^{V(G)}$$

Theorem

MWSS can be solved on bipartite graphs in polynomial time.

$$\max \sum_{v \in V(G)} w(v)x_{v} \qquad \max \sum_{v \in V(G)} w(v)x_{v}$$
s.t. $x_{u} + x_{v} \leq 1 \quad \forall uv \in E(G)$

$$x \in [0, 1]^{V(G)} \qquad \text{s.t.} \quad Mx \leq \mathbf{1}$$

$$x \in [0, 1]^{V(G)}$$

Theorem

MWSS can be solved on bipartite graphs in polynomial time.

$$\max \sum_{v \in V(G)} w(v)x_{v} = \max \sum_{v \in V(G)} w(v)x_{v}$$

$$\text{s.t.} \quad x_{u} + x_{v} \leqslant 1 \quad \forall uv \in E(G) \qquad \text{s.t.} \quad Mx \leqslant \mathbf{1}$$

$$x \in [0, 1]^{V(G)} \qquad \qquad x \in [0, 1]^{V(G)}$$

If G is **bipartite**, then M is a **totally unimodular** matrix.

Integer Programming

Conjecture

Fix $k \in \mathbb{N}$. Integer Linear Programming can be solved in strongly polynomial time when all subdeterminants of the constraint matrix are in $\{-k, \ldots, k\}$.

Integer Programming

Conjecture

Fix $k \in \mathbb{N}$. Integer Linear Programming can be solved in strongly polynomial time when all subdeterminants of the constraint matrix are in $\{-k, \ldots, k\}$.

Theorem (Artmann, Weismantel, Zenklusen '17)

True for k = 2. Bimodular Integer Programming can be solved in strongly polynomial time.

Integer Programming

Conjecture

Fix $k \in \mathbb{N}$. Integer Linear Programming can be solved in strongly polynomial time when all subdeterminants of the constraint matrix are in $\{-k, \ldots, k\}$.

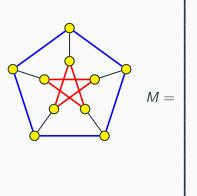
Theorem (Artmann, Weismantel, Zenklusen '17)

True for k = 2. Bimodular Integer Programming can be solved in strongly polynomial time.

Open for $k \geqslant 3$.

M = M(G) edge-vertex incidence matrix of graph G

M = M(G) edge-vertex incidence matrix of graph G



/	1	1	0	0	0	0	0	0	0	0 `
	0	1	1	0	0	0	0	0	0	0
	0	0	1	1	0	0	0	0	0	0
	0	0	0	1	1	0	0	0	0	0
	1	0	0	0	1	0	0	0	0	0
	1	0	0	0	0	1	0	0	0	0
	0	1	0	0	0	0	1	0	0	0
	0	0	1	0	0	0	0	1	0	0
	0	0	0	1	0	0	0	0	1	0
	0	0	0	0	1	0	0	0	0	1
	0	0	0	0	0	1	1	0	0	0
	0	0	0	0	0	0	1	1	0	0
	0	0	0	0	0	0	0	1	1	0
	0	0	0	0	0	0	0	0	1	1
	0	0	0	0	0	1	0	0	0	1

Observation

 $\max |\textit{sub-determinant of } M(\textit{G})| = 2^{OCP(\textit{G})}$

Observation

 $\max |sub$ -determinant of $M(G)| = 2^{OCP(G)}$

Corollary

MWSS can be solved in polynomial time in graphs without two vertex-disjoint odd cycles.

Observation

 $\max |sub\text{-}determinant of }M(G)| = 2^{OCP(G)}$

Corollary

MWSS can be solved in polynomial time in graphs without two vertex-disjoint odd cycles.

Conjecture

Fix $k \in \mathbb{N}$. **MWSS** can be solved in polynomial time in graphs without k vertex-disjoint odd cycles.

POLYNOMIAL TIME APPROXIMATION SCHEMES

Theorem (Bock, Faenza, Moldenhauer, Ruiz-Vargas '14) For every fixed $k \in \mathbb{N}$, MWSS on graphs with $OCP(G) \leq k$ has a PTAS.

POLYNOMIAL TIME APPROXIMATION SCHEMES

Theorem (Bock, Faenza, Moldenhauer, Ruiz-Vargas '14) For every fixed $k \in \mathbb{N}$, MWSS on graphs with $OCP(G) \leqslant k$ has a PTAS.

Theorem (Tazari '10)

For every **fixed** $k \in \mathbb{N}$, **MWSS** and Minimum Vertex Cover on graphs with $OCP(G) \leq k$ has a PTAS.

EXTENSION COMPLEXITY

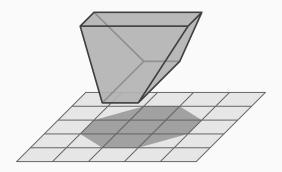
Definition

A polytope $Q \subseteq \mathbb{R}^p$ is an *extension* of a polytope $P \subseteq \mathbb{R}^d$ if there exists an affine map $\pi : \mathbb{R}^p \to \mathbb{R}^d$ with $\pi(Q) = P$. The *extension complexity* of P, denoted $\operatorname{xc}(P)$, is the minimum number of facets of any extension of P.

EXTENSION COMPLEXITY

Definition

A polytope $Q \subseteq \mathbb{R}^p$ is an *extension* of a polytope $P \subseteq \mathbb{R}^d$ if there exists an affine map $\pi : \mathbb{R}^p \to \mathbb{R}^d$ with $\pi(Q) = P$. The *extension complexity* of P, denoted $\operatorname{xc}(P)$, is the minimum number of facets of any extension of P.



Theorem (Edmonds '71)

Let G = (V, E) be a graph. Then $x \in \mathbb{T}(G)$ if and only if

Theorem (Edmonds '71)

Let G = (V, E) be a graph. Then $x \in \mathbb{T}(G)$ if and only if

• $x \geqslant 0$,

Theorem (Edmonds '71)

Let G = (V, E) be a graph. Then $x \in \mathbb{T}(G)$ if and only if

- $x \geqslant 0$,
- x(E) = |V| 1,

Theorem (Edmonds '71)

Let G = (V, E) be a graph. Then $x \in \mathbb{T}(G)$ if and only if

- $x \geqslant 0$,
- x(E) = |V| 1,
- $x(E[U]) \leq |U| 1$, for all non-empty $U \subseteq V$.

Theorem (Wong '80 and Martin '91)

For every connected graph G = (V, E), $xc(\mathbb{T}(G)) = O(|V| \cdot |E|)$.

Lower Bounds

Theorem (Fiorini, Massar, Pokutta, Tiwary, and de Wolf '12)

There is no extended formulation of \mathbb{TSP}_n of polynomial size.

Lower Bounds

Theorem (Fiorini, Massar, Pokutta, Tiwary, and de Wolf '12)

There is no extended formulation of \mathbb{TSP}_n of polynomial size.

Theorem (Rothvoß '14)

The extension complexity of $\mathbb{M}(K_n)$ is exponential in n.

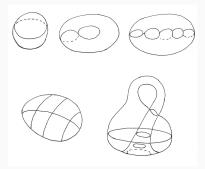
SURFACES

Classification of Surfaces:

- orientable ≅ sphere with h handles = Sh
- **non-orientable** \cong sphere with c cross-caps $= \mathbb{N}_c$

Euler genus:

- $g(\mathbb{S}_h) = 2h$
- $g(\mathbb{N}_c) = c$



OUR MAIN RESULTS

Theorem (Conforti, Fiorini, H, Weltge '19)

If $OCP(G) \leq 1$ then STAB(G) has a size- $O(n^2)$ extended formulation.

OUR MAIN RESULTS

Theorem (Conforti, Fiorini, H, Weltge '19)

If $OCP(G) \leq 1$ then STAB(G) has a size- $O(n^2)$ extended formulation.

Theorem (Conforti, Fiorini, H, Joret, Weltge '19)

Fix $k, g \in \mathbb{N}$. Then for every graph G with $OCP(G) \leqslant k$ and **Euler genus** $\leqslant g$, **MWSS** can be solved in polynomial time and STAB(G) has a polynomial-size extended formulation.

OCP = 1 GRAPHS

Theorem (Lovász)

Let G be a 4-connected graph. Then $OCP(G) \leqslant 1$ iff

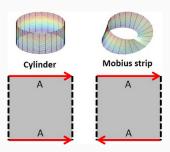
- G X is bipartite for some $X \subseteq V(G)$ with $|X| \leq 3$
- G has a nice embedding in the projective plane

Definition

Let G be a graph embedded in a surface S. A cycle of G is 1-sided if it has a neighborhood that is a **Möbius strip**, and 2-sided if it has a neighborhood that is a **cylinder**.

Definition

Let G be a graph embedded in a surface S. A cycle of G is 1-sided if it has a neighborhood that is a **Möbius strip**, and 2-sided if it has a neighborhood that is a **cylinder**.



Definition

A graph G is **nicely embedded** in a surface $\mathbb S$ if every odd cycle in G is 1-sided.

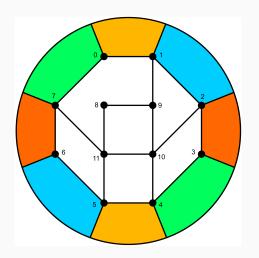
Definition

A graph G is **nicely embedded** in a surface $\mathbb S$ if every odd cycle in G is 1-sided.

Lemma

If G is nicely embedded on a surface of Euler genus k, then $OCP(G) \leqslant k$.

NICELY EMBEDDED GRAPHS



The Erdős-Pósa Theorem

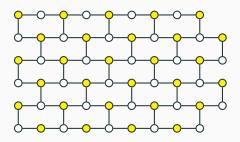
Theorem (Erdős and Pósa, '65)

Every graph has one of the following:

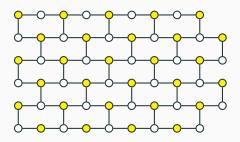
- k vertex-disjoint cycles;
- a feedback vertex set of size $O(k \log k)$.

Theorem (Thomassen '88)

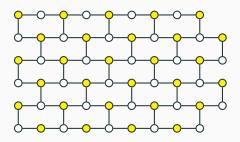
Theorem (Thomassen '88)



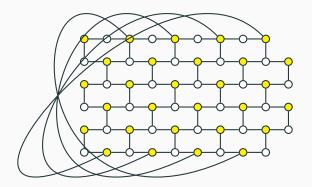
Theorem (Thomassen '88)



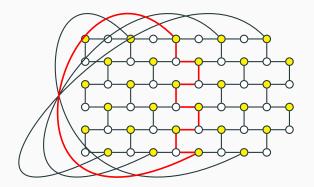
Theorem (Thomassen '88)



Theorem (Thomassen '88)



Theorem (Thomassen '88)



An Erdős-Pósa Theorem for 2-sided Odd Cycles

Theorem (CFHJW)

There exists a computable function f(g,k) such that for all graphs G embedded in a surface with Euler genus g and with no k+1 node-disjoint 2-sided odd cycles, there exists $X \subseteq V(G)$ with $|X| \leqslant f(g,k)$ such that G-X does not contain a 2-sided odd cycle. Furthermore, there is such a set X of size at most $19^{g+1} \cdot k$ if the surface is orientable.

An Erdős-Pósa Theorem for 2-sided Odd Cycles

Theorem (CFHJW)

There exists a computable function f(g,k) such that for all graphs G embedded in a surface with Euler genus g and with no k+1 node-disjoint 2-sided odd cycles, there exists $X\subseteq V(G)$ with $|X|\leqslant f(g,k)$ such that G-X does not contain a 2-sided odd cycle. Furthermore, there is such a set X of size at most $19^{g+1} \cdot k$ if the surface is orientable.

Theorem (Kawarabayashi and Nakamoto '07)

Odd cycles satisfy the Erdős-Pósa property in graphs embedded in a fixed orientable surface

Dropping Nonnegativity Constraints

Let
$$P(G) = \operatorname{conv}\{x \in \mathbb{Z}^{V(G)} \mid Mx \leq 1\}.$$

Dropping Nonnegativity Constraints

Let
$$P(G) = \operatorname{conv}\{x \in \mathbb{Z}^{V(G)} \mid Mx \leq 1\}.$$

Theorem

For every graph G we have $STAB(G) = P(G) \cap [0,1]^{V(G)}$.

• Node space:

$$x_v = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{otherwise} \end{cases}$$

• Node space:

$$x_{v} = \begin{cases} 1 & \text{if } v \in S \\ 0 & \text{otherwise} \end{cases}$$

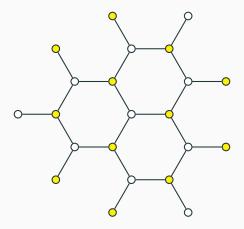
• Slack space:

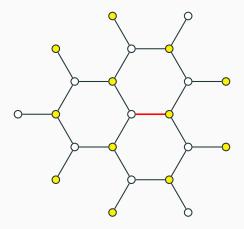
$$y_{uv} = \begin{cases} 1 & \text{if } u, v \notin S \\ 0 & \text{otherwise} \end{cases}$$

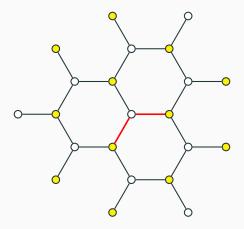
THE DUAL GRAPH

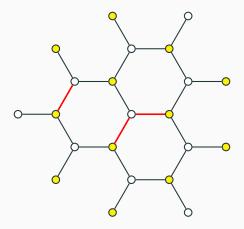
Theorem

If G is a nicely embedded, then the edges of the dual graph G^* can be oriented such in the local cyclic order of the edges incident to each dual node f, the edges alternatively leave and enter f. We call such an orientation alternating and denote it by D.

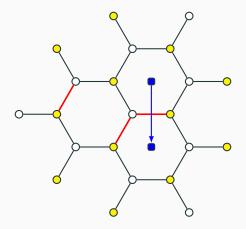


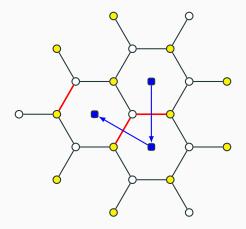


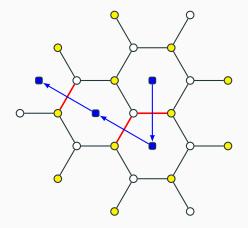












• For $x \in \mathbb{R}^{V(G)}$, let $y := \mathbf{1} - Mx \in \mathbb{R}^{E(G)}$

- For $x \in \mathbb{R}^{V(G)}$, let $y := \mathbf{1} Mx \in \mathbb{R}^{E(G)}$
- So $y_{uv} = 1 x_u x_v$ for all edges $uv \in E(G)$

- For $x \in \mathbb{R}^{V(G)}$, let $y := \mathbf{1} Mx \in \mathbb{R}^{E(G)}$
- So $y_{uv} = 1 x_u x_v$ for all edges $uv \in E(G)$
- Slack map $\sigma: \mathbb{R}^{V(G)} \to \mathbb{R}^{E(G)}: x \mapsto y = \sigma(x) := \mathbf{1} Mx$

Lemma

The image $\sigma(\mathbb{R}^{V(G)})$ of the slack map is the linear subspace of $\mathbb{R}^{E(G)}$ defined by

$$\sum_{i=1}^{2k} (-1)^{i-1} y_{e_i} = 0 \quad \forall even \ cycles \ C = (e_1, e_2, \dots, e_{2k})$$

Lemma

The image $\sigma(\mathbb{R}^{V(G)})$ of the slack map is the linear subspace of $\mathbb{R}^{E(G)}$ defined by

$$\sum_{i=1}^{2k} (-1)^{i-1} y_{e_i} = 0 \quad \forall even \ cycles \ C = (e_1, e_2, \dots, e_{2k})$$

THE DUAL GRAPH

Observation

By **Euler's formula**, in $\mathbb{S} \cong \mathbb{N}_{\mathfrak{g}}$,

$$|E(G)| - |V(G)| = (|V(G^*)| - 1) + (g - 1)$$

THE DUAL GRAPH

Observation

By **Euler's formula**, in $\mathbb{S} \cong \mathbb{N}_g$,

$$|E(G)| - |V(G)| = (|V(G^*)| - 1) + (g - 1)$$

Observation

If G is nicely embedded in \mathbb{S} then,

 $\sigma(\mathbb{R}^{V(G)}) = \{\text{circulations in } G^* \text{ subject to } g-1 \text{ extra constraints}\}$

27 / 32

Homology

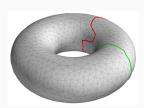
Definition

Two integer circulations y, y' in G^* are homologous if y - y' is a sum of **facial** circulations.

HOMOLOGY

Definition

Two integer circulations y, y' in G^* are homologous if y - y' is a sum of **facial** circulations.



Homology

Definition

The first homology group $H_1(\mathbb{S}; \mathbb{Z})$ is the additive group of all integer circulations in G^* quotiented by the **zero**-homologous circulations.

Homology

Definition

The first homology group $H_1(\mathbb{S}; \mathbb{Z})$ is the additive group of all integer circulations in G^* quotiented by the **zero**-homologous circulations.

Fact

$$H_1(\mathbb{N}_g; \mathbb{Z}) \cong \mathbb{Z}_2 \times \mathbb{Z}^{g-1}$$

$$\begin{array}{llll} \max & \sum_{v \in V(G)} w(v) x_v & \min & \sum_{e \in E(G)} c(e) y_e \\ \text{s.t.} & \textit{Mx} \leqslant \mathbf{1} & \\ & x \geqslant \mathbf{0} & \\ & x \in \mathbb{Z}^{V(G)} & y \geqslant \mathbf{0} \\ & & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & & \\ & & &$$

where $c \in \mathbb{R}_+^{\mathcal{E}(G)}$ is such that $c(\delta(v)) = w(v)$ for all $v \in V(G)$

Theorem (Chambers, Erickson, Nayyeri '10)

Given a graph G embedded on a surface of Euler genus g, a cost function $c: E(G) \to \mathbb{R}$, and a circulation $\theta: E(G) \to \mathbb{R}$, a minimum-cost circulation homologous to θ can be computed in time $g^{O(g)} n^{3/2}$.

Theorem (Chambers, Erickson, Nayyeri '10)

Given a graph G embedded on a surface of Euler genus g, a cost function $c: E(G) \to \mathbb{R}$, and a circulation $\theta: E(G) \to \mathbb{R}$, a minimum-cost circulation homologous to θ can be computed in time $g^{O(g)} n^{3/2}$.

Theorem (Malnič and Mohar '92)

Suppose G is embedded in a surface S with Euler genus $g\geqslant 1$. If C_1,\ldots,C_ℓ are vertex-disjoint directed cycles in G whose homology classes are mutually distinct, then $\ell\leqslant 6g$.

Summary

Theorem (Conforti, Fiorini, H, Weltge '19)

If $OCP(G) \le 1$ then STAB(G) has a size- $O(n^2)$ extended formulation.

Summary

Theorem (Conforti, Fiorini, H, Weltge '19)

If $OCP(G) \leq 1$ then STAB(G) has a size- $O(n^2)$ extended formulation.

Theorem (Conforti, Fiorini, H, Joret, Weltge '19)

Fix $k, g \in \mathbb{N}$. Then for every graph G with $OCP(G) \leq k$ and **Euler genus** $\leq g$, **MWSS** can be solved in polynomial time and STAB(G) has a polynomial-size extended formulation.

Summary

Theorem (Conforti, Fiorini, H, Weltge '19)

If $OCP(G) \leq 1$ then STAB(G) has a size- $O(n^2)$ extended formulation.

Theorem (Conforti, Fiorini, H, Joret, Weltge '19)

Fix $k, g \in \mathbb{N}$. Then for every graph G with $OCP(G) \leq k$ and **Euler genus** $\leq g$, **MWSS** can be solved in polynomial time and STAB(G) has a polynomial-size extended formulation.

Thank you!