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Maximum Weight Stable Set

Problem

Given a graph G and w : V (G )→ R>0, compute a maximum

weight stable set (MWSS) of G.
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Maximum Weight Stable Set

Problem

Given a graph G and w : V (G )→ R>0, compute a maximum

weight stable set (MWSS) of G.

Theorem

For every ε > 0, it is NP-hard to approximate maximum stable

set within a factor of n1−ε.
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Bipartite Graphs

Theorem

MWSS can be solved on bipartite graphs in polynomial time.

max
∑

v∈V (G)

w(v)xv

s.t. xu + xv 6 1 ∀uv ∈ E (G )

x ∈ [0, 1]V (G)

≡

max
∑

v∈V (G)

w(v)xv

s.t. Mx 6 1

x ∈ [0, 1]V (G)

If G is bipartite, then M is a totally unimodular matrix.
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Integer Programming

Conjecture

Fix k ∈ N. Integer Linear Programming can be solved in strongly

polynomial time when all subdeterminants of the constraint

matrix are in {−k , . . . , k}.

Theorem (Artmann, Weismantel, Zenklusen ’17)

True for k = 2. Bimodular Integer Programming can be solved in

strongly polynomial time.

Open for k > 3.
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Odd Cycle Packing Number

M = M(G ) edge-vertex incidence matrix of graph G

M =



1 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0

0 1 0 0 0 0 1 0 0 0

0 0 1 0 0 0 0 1 0 0

0 0 0 1 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 0 0 1


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Odd Cycle Packing Number

Observation

max |sub-determinant of M(G )| = 2OCP(G)

Corollary

MWSS can be solved in polynomial time in graphs without two

vertex-disjoint odd cycles.

Conjecture

Fix k ∈ N. MWSS can be solved in polynomial time in graphs

without k vertex-disjoint odd cycles.
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Polynomial Time Approximation Schemes

Theorem (Bock, Faenza, Moldenhauer, Ruiz-Vargas ’14)

For every fixed k ∈ N, MWSS on graphs with OCP(G ) 6 k has

a PTAS.

Theorem (Tazari ’10)

For every fixed k ∈ N, MWSS and Minimum Vertex Cover on

graphs with OCP(G ) 6 k has a PTAS.
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Extension Complexity

Definition

A polytope Q ⊆ Rp is an extension of a polytope P ⊆ Rd if there

exists an affine map π : Rp → Rd with π(Q) = P. The extension

complexity of P, denoted xc(P), is the minimum number of

facets of any extension of P.
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Spanning Tree Polytope

Theorem (Edmonds ’71)

Let G = (V ,E ) be a graph. Then x ∈ T(G ) if and only if

• x > 0,

• x(E ) = |V | − 1,

• x(E [U]) 6 |U| − 1, for all non-empty U ⊆ V .

Tony Huynh Stable Sets in Graphs with Bounded Odd Cycle Packing Number 9 / 32



Spanning Tree Polytope

Theorem (Edmonds ’71)

Let G = (V ,E ) be a graph. Then x ∈ T(G ) if and only if

• x > 0,

• x(E ) = |V | − 1,

• x(E [U]) 6 |U| − 1, for all non-empty U ⊆ V .

Tony Huynh Stable Sets in Graphs with Bounded Odd Cycle Packing Number 9 / 32



Spanning Tree Polytope

Theorem (Edmonds ’71)

Let G = (V ,E ) be a graph. Then x ∈ T(G ) if and only if

• x > 0,

• x(E ) = |V | − 1,

• x(E [U]) 6 |U| − 1, for all non-empty U ⊆ V .

Tony Huynh Stable Sets in Graphs with Bounded Odd Cycle Packing Number 9 / 32



Spanning Tree Polytope

Theorem (Edmonds ’71)

Let G = (V ,E ) be a graph. Then x ∈ T(G ) if and only if

• x > 0,

• x(E ) = |V | − 1,

• x(E [U]) 6 |U| − 1, for all non-empty U ⊆ V .

Tony Huynh Stable Sets in Graphs with Bounded Odd Cycle Packing Number 9 / 32



Spanning Tree Polytope

Theorem (Wong ’80 and Martin ’91)

For every connected graph G = (V ,E ), xc(T(G )) = O(|V | · |E |).
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Lower bounds

Theorem (Fiorini, Massar, Pokutta, Tiwary, and de Wolf

’12)

There is no extended formulation of TSPn of polynomial size.

Theorem (Rothvoß ’14)

The extension complexity of M(Kn) is exponential in n.
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Surfaces

Classification of Surfaces:

• orientable ∼= sphere with h

handles = Sh
• non-orientable ∼= sphere

with c cross-caps = Nc

Euler genus:

• g(Sh) = 2h

• g(Nc) = c
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Our Main Results

Theorem (Conforti, Fiorini, H, Weltge ’19)

If OCP(G ) 6 1 then STAB(G ) has a size-O(n2) extended

formulation.

Theorem (Conforti, Fiorini, H, Joret, Weltge ’19)

Fix k, g ∈ N. Then for every graph G with OCP(G ) 6 k and

Euler genus 6 g, MWSS can be solved in polynomial time and

STAB(G ) has a polynomial-size extended formulation.
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OCP = 1 Graphs

Theorem (Lovász)

Let G be a 4-connected graph. Then OCP(G ) 6 1 iff

• G − X is bipartite for some X ⊆ V (G ) with |X | 6 3

• G has a nice embedding in the projective plane
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Nicely Embedded Graphs

Definition

Let G be a graph embedded in a surface S. A cycle of G is

1-sided if it has a neighborhood that is a Möbius strip, and

2-sided if it has a neighborhood that is a cylinder.
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Nicely Embedded Graphs

Definition

A graph G is nicely embedded in a surface S if every odd cycle

in G is 1-sided.

Lemma

If G is nicely embedded on a surface of Euler genus k, then

OCP(G ) 6 k.
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Nicely Embedded Graphs
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The Erdős-Pósa Theorem

Theorem (Erdős and Pósa, ’65)

Every graph has one of the following:

• k vertex-disjoint cycles;

• a feedback vertex set of size O(k log k).
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Escher Walls

Theorem (Thomassen ’88)

The Erdős-Pósa Property does not hold for odd cycles.
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The Erdős-Pósa Property does not hold for odd cycles.

Tony Huynh Stable Sets in Graphs with Bounded Odd Cycle Packing Number 19 / 32



Escher Walls

Theorem (Thomassen ’88)
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An Erdős-Pósa Theorem for 2-sided Odd Cycles

Theorem (CFHJW)

There exists a computable function f (g , k) such that for all

graphs G embedded in a surface with Euler genus g and with no

k + 1 node-disjoint 2-sided odd cycles, there exists X ⊆ V (G )

with |X | 6 f (g , k) such that G − X does not contain a 2-sided

odd cycle. Furthermore, there is such a set X of size at most

19g+1 · k if the surface is orientable.

Theorem (Kawarabayashi and Nakamoto ’07)

Odd cycles satisfy the Erdős-Pósa property in graphs embedded

in a fixed orientable surface
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Dropping Nonnegativity Constraints

Let P(G ) = conv{x ∈ ZV (G) | Mx ≤ 1}.

Theorem

For every graph G we have STAB(G ) = P(G ) ∩ [0, 1]V (G).
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Slack Space

• Node space: xv =

1 if v ∈ S

0 otherwise

• Slack space: yuv =

1 if u, v /∈ S

0 otherwise
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The Dual Graph

Theorem

If G is a nicely embedded, then the edges of the dual graph G ∗

can be oriented such in the local cyclic order of the edges incident

to each dual node f , the edges alternatively leave and enter f .

We call such an orietation alternating and denote it by D.
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Slack Space
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The Slack Map

• For x ∈ RV (G), let y := 1−Mx ∈ RE(G)

• So yuv = 1− xu − xv for all edges uv ∈ E (G )

• Slack map σ : RV (G) → RE(G) : x 7→ y = σ(x) := 1−Mx
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The Slack Map

Lemma

The image σ(RV (G)) of the slack map is the linear subspace of

RE(G) defined by

2k∑
i=1

(−1)i−1yei = 0 ∀even cycles C = (e1, e2, . . . , e2k)

it
i
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The Dual Graph

Observation

By Euler’s formula, in S ∼= Ng ,

|E (G )| − |V (G )| = (|V (G ∗)| − 1) + (g − 1)

Observation

If G is nicely embedded in S then,

σ(RV (G)) = {circulations in G ∗ subject to g−1 extra constraints}
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Homology

Definition

Two integer circulations y , y ′ in G ∗ are homologous if y − y ′ is a

sum of facial circulations.
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Homology

Definition

The first homology group H1(S;Z) is the additive group of all

integer circulations in G ∗ quotiented by the zero-homologous

circulations.

Fact

H1(Ng ;Z) ∼= Z2 × Zg−1
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Minimum Cost Homology Flow

max
∑

v∈V (G)

w(v)xv

s.t. Mx 6 1

x > 0

x ∈ ZV (G)

 

min
∑

e∈E(G)

c(e)ye

s.t. y circulation in G ∗

[y ] = (1, 0, . . . , 0)

y > 0

y ∈ ZE(G)

where c ∈ RE(G)
+ is such that c(δ(v)) = w(v) for all v ∈ V (G )

Tony Huynh Stable Sets in Graphs with Bounded Odd Cycle Packing Number 30 / 32



Minimum Cost Homology Flow

max
∑

v∈V (G)

w(v)xv

s.t. Mx 6 1

x > 0

x ∈ ZV (G)

 

min
∑

e∈E(G)

c(e)ye

s.t. y circulation in G ∗

[y ] = (1, 0, . . . , 0)

y > 0

y ∈ ZE(G)

where c ∈ RE(G)
+ is such that c(δ(v)) = w(v) for all v ∈ V (G )

Tony Huynh Stable Sets in Graphs with Bounded Odd Cycle Packing Number 30 / 32



Minimum Cost Homology Flow

Theorem (Chambers, Erickson, Nayyeri ’10)

Given a graph G embedded on a surface of Euler genus g, a cost

function c : E (G )→ R, and a circulation θ : E (G )→ R, a

minimum-cost circulation homologous to θ can be computed in

time gO(g)n3/2.

Theorem (Malnič and Mohar ’92)

Suppose G is embedded in a surface S with Euler genus g > 1. If

C1, . . . , C` are vertex-disjoint directed cycles in G whose

homology classes are mutually distinct, then ` 6 6g.
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C1, . . . , C` are vertex-disjoint directed cycles in G whose

homology classes are mutually distinct, then ` 6 6g.
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Summary

Theorem (Conforti, Fiorini, H, Weltge ’19)

If OCP(G ) 6 1 then STAB(G ) has a size-O(n2) extended

formulation.

Theorem (Conforti, Fiorini, H, Joret, Weltge ’19)

Fix k, g ∈ N. Then for every graph G with OCP(G ) 6 k and

Euler genus 6 g, MWSS can be solved in polynomial time and

STAB(G ) has a polynomial-size extended formulation.

Thank you!
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