Enumeration. Martingales. Random graphs.

Mikhail Isaev

School of Mathematical Sciences, Monash University

Discrete Maths Research Group talk

August 28, 2017

Introduction

Cumulant expansion

Asymptotic enumeration

Expectation of the exponential function

We are interested in estimates for $\mathbb{E}e^{Z}$, where Z is a complex random variable.

$$\mathbb{E}e^{Z} \approx e^{\mathbb{E}Z}$$
 and $\mathbb{E}e^{Z} \approx e^{\mathbb{E}Z + \frac{1}{2}\mathbb{E}(Z - \mathbb{E}Z)^{2}}$.

We are interested in estimates for $\mathbb{E}^{\mathbb{Z}}$, where Z is a complex random variable.

$$\mathbb{E}e^{Z} \approx e^{\mathbb{E}Z}$$
 and $\mathbb{E}e^{Z} \approx e^{\mathbb{E}Z + \frac{1}{2}\mathbb{E}(Z - \mathbb{E}Z)^{2}}$.

It is clear for the following cases:

- when Z is small;
- when $Z = X_1 + \cdots + X_n$, where X_1, \ldots, X_n are independent and small.

Expectation of the exponential function

We are interested in estimates for $\mathbb{E}e^{Z}$, where Z is a complex random variable.

$$\mathbb{E}e^{Z} \approx e^{\mathbb{E}Z}$$
 and $\mathbb{E}e^{Z} \approx e^{\mathbb{E}Z + \frac{1}{2}\mathbb{E}(Z - \mathbb{E}Z)^{2}}$.

It is clear for the following cases:

- when Z is small;
- when $Z = X_1 + \cdots + X_n$, where X_1, \ldots, X_n are independent and small.

For our purposes we needed:

- when $Z = f(X_1, \ldots, X_n)$, where X_1, \ldots, X_n are independent;
- when Z is a complex martingale.

Random vectors with independent components

Theorem (I., McKay, 2017)

Let $X = (X_1, \ldots, X_n)$ be a random vector with independent components taking values in $\Omega = \Omega_1 \times \cdots \times \Omega_n$. Let $f: \Omega \to \mathbb{C}$. Suppose, for any $1 \le j \ne k \le n$,

$$\begin{split} \sup_{x,x^j} |f(x) - f(x^j)| & \leq \alpha, \\ \sup_{x,x^j,x^k,x^{jk}} |f(x) - f(x^j) - f(x^k) + f(x^{jk})| & \leq \Delta, \end{split}$$

where the suprema is over all $x, x^j, x^k, x^{jk} \in \Omega$ such that

- x, x^j and x^k, x^{jk} differ only in the j-th coordinate,
- x, x^k and x^j, x^{jk} differ only in the k-th coordinate.

(A) If
$$\alpha = o(n^{-1/2})$$
, then $\mathbb{E}e^{f(X)} = e^{\mathbb{E}f(X)} (1 + O(n\alpha^2))$.

(B) If $\alpha = o(n^{-1/3})$ and $\Delta = o(n^{-4/3})$, then

$$\mathbb{E} e^{f(X)} = e^{\mathbb{E} f + \frac{1}{2}\mathbb{E} (f - \mathbb{E} f)^2} \left(1 + O(n \boldsymbol{\alpha}^3 + n^2 \boldsymbol{\alpha}^2 \boldsymbol{\Delta}) \, e^{\frac{1}{2} \operatorname{Var} \Im f(X)} \right).$$

Random permutations

Theorem (Greenhill, I., McKay, 2017+)

Let $X = (X_1, ..., X_n)$ be a uniform random element of S_n and $f : S_n \to \mathbb{C}$. Suppose, for any distinct $j, a \in \{1, ..., n\}$,

$$\sup_{\boldsymbol{\omega} \in S_{n}} |f(\boldsymbol{\omega}) - f(\boldsymbol{\omega} \circ (ja))| \leq \alpha,$$

and, for any distinct $j, k, a, b \in \{1, \ldots, n\}$,

$$\sup_{\boldsymbol{\omega} \in \mathbb{S}_n} |f(\boldsymbol{\omega}) - f(\boldsymbol{\omega} \circ (ja)) - f(\boldsymbol{\omega} \circ (kb)) + f(\boldsymbol{\omega} \circ (ja)(kb))| \leq \boldsymbol{\Delta},$$

- (A) If $\alpha = o(n^{-1/2})$, then $\mathbb{E}e^{f(X)} = e^{\mathbb{E}f(X)} (1 + O(n\alpha^2))$.
- (B) If $\alpha = o(n^{-1/3})$ and $\Delta = o(n^{-4/3})$, then

$$\mathbb{E} e^{f(X)} = e^{\mathbb{E} f + \frac{1}{2}\mathbb{E} (f - \mathbb{E} f)^2} \left(1 + O(n\alpha^3 + n^2\alpha^2\Delta) \, e^{\frac{1}{2} \, \text{Var Sf}(X)} \right).$$

4□ ト 4団 ト 4 豆 ト 4 豆 ト 豆 め 9 ○

Random subsets

Let $B_{n,m}$ denote the set of subsets of $\{1,\ldots,n\}$ of size m.

Theorem (Greenhill, I., McKay, 2017+)

Let X be a uniform random element of $B_{n,m}$, $m \leq n/2$, and $f : B_{n,m} \to \mathbb{C}$. Suppose, for any $A \in B_{n,m}$ and $a \in A, j \notin A$,

$$|f(A) - f(A \oplus \{j, a\})| \le \alpha,$$

and, for any distinct a, b \in A, j, k \notin A,

$$|f(A) - f(A \oplus \{j,a\}) - f(A \oplus \{k,b\}) + f(A \oplus \{j,k,a,b\})| \le \Delta,$$

- (A) If $\alpha = o(m^{-1/2})$, then $\mathbb{E}e^{f(X)} = e^{\mathbb{E}f(X)} (1 + O(m\alpha^2))$.
- (B) If $\alpha = o(m^{-1/3})$ and $\Delta = o(m^{-4/3})$, then

$$\mathbb{E} e^{f(X)} = e^{\mathbb{E} f + \frac{1}{2}\mathbb{E}(f - \mathbb{E} f)^2} \left(1 + O(m\alpha^3 + m^2\alpha^2\Delta) \, e^{\frac{1}{2} \operatorname{Var} \operatorname{\mathfrak{S}f}(X)} \right).$$

《日》《問》《臣》《臣》 臣。

• Concentration results.

Concentration results. For a real random variable X, by the Markov inequality,

$$\Pr(X>c) = \Pr(e^{tX}>e^{tc}) \leq e^{-tc}\mathbb{E}e^{tX}\dots$$

Concentration results. For a real random variable X, by the Markov inequality,

$$\Pr(X>c) = \Pr(e^{tX}>e^{tc}) \leq e^{-tc}\mathbb{E}e^{tX} \dots$$

Asymptotic normality.

Concentration results. For a real random variable X, by the Markov inequality,

$$\Pr(X>c) = \Pr(e^{tX}>e^{tc}) \leq e^{-tc}\mathbb{E}e^{tX} \dots$$

2 Asymptotic normality. Let $Z = it \frac{X - \mathbb{E}X}{\sqrt{V_{ar} X}}$, $\phi(t) = \mathbb{E} \exp\left(it \frac{X - \mathbb{E}X}{\sqrt{V_{ar} X}}\right)$. Then, $\mathbb{E}e^{Z} = \phi(t)$ and $e^{\mathbb{E}Z + \frac{1}{2}\mathbb{E}(Z - \mathbb{E}Z)^2} = e^{-t^2/2}$.

Concentration results. For a real random variable X, by the Markov inequality,

$$Pr(X > c) = Pr(e^{tX} > e^{tc}) \le e^{-tc} \mathbb{E}e^{tX} \dots$$

2 Asymptotic normality. Let $Z = it \frac{X - \mathbb{E}X}{\sqrt{Var X}}$, $\phi(t) = \mathbb{E} \exp\left(it \frac{X - \mathbb{E}X}{\sqrt{Var X}}\right)$. Then,

$$\mathbb{E}e^{Z} = \phi(t)$$
 and $e^{\mathbb{E}Z + \frac{1}{2}\mathbb{E}(Z - \mathbb{E}Z)^2} = e^{-t^2/2}$.

- Subgraph counts in random graphs with given degrees.
- Asymptotic enumeration by complex-analytic methods.

Random variables of our interest

- 1. Fix a graphical degree sequence $\vec{d} = (d_1, \dots, d_n)$.
- 2. Take a uniform random labelled graph $\mathcal{G}_{\vec{d}}$ with degrees d.
- 3. Count the number $N_P(\mathcal{G}_{\vec{d}})$ of occurrences of a given pattern P.

We want an asymptotic formula for
$$\mathbb{E}N_P(\mathcal{G}_{\vec{d}})$$
 as $n \to \infty$, where $P = P(n)$ and $\vec{d} = \vec{d}(n)$.

Let d denote the average degree. Define

$$\lambda = \frac{d}{n-1}$$
 and $R = \frac{1}{n} \sum_{j=1}^{n} (d_j - d)^2$.

From probabilities to subgraph counts

We employ formulae from [McKay, 1985], [McKay, 2011] for the probability of a certain pattern P (subgraph or induced subgraph) to occur at a particular place in our random graph $\mathcal{G}_{\vec{d}}$:

$$\mathbf{Pr}(\mathbf{P} \text{ occurs in } \mathcal{G}_{\vec{\mathbf{d}}} \text{ at location L}) = \mathbf{factor}(\mathbf{P}, \boldsymbol{\lambda}) \times \mathbf{e}^{\mathbf{stuff}(\mathbf{P}, \mathbf{L}, \vec{\mathbf{d}}) + o(1)}.$$

The only thing to do is to sum up over all possible locations L.

For example, for copies of a given subgraph it is reduced to estimating

$$\sum_{\sigma \in S_n} e^{f(\sigma)} = n! \mathbb{E}e^{f(X)},$$

where X is a uniform random permutation.

Perfect matchings and cycles

Suppose $\min\{d, n-1-d\} \ge cn/\log n$ and $|d_i-d| \le n^{1/2+\varepsilon}$. Then, we have

• the expected number of perfect matchings in $\mathcal{G}_{\vec{d}}$ (for even n) is

$$\frac{n!}{(n/2)!2^{n/2}}\boldsymbol{\lambda}^{n/2}\exp\left(\frac{1-\boldsymbol{\lambda}}{4\boldsymbol{\lambda}}-\frac{R}{2\boldsymbol{\lambda}^2n}+o(1)\right);$$

• the expected number of q-cycles in $\mathcal{G}_{\vec{d}}$ (for $3 \leq q \leq n$) is

$$\frac{n!}{2q(n-q)!} \boldsymbol{\lambda}^q \exp\left(-\frac{(1-\boldsymbol{\lambda})q(n-q)}{\boldsymbol{\lambda}n^2} + \frac{Rq(n-2q)}{\boldsymbol{\lambda}^2n^3} + o(1)\right).$$

These expressions for the regular case (R = 0) were also given in [McKay, 2011].

Subgraphs isomorphic to a given one

For a given graph H with degree sequence (h_1, \ldots, h_n) denote $\mu_t = \frac{1}{n} \sum_{i=1}^n h_i^t$.

Theorem 1 (Greenhill, I., McKay, 2017+).

Suppose $\min\{d, n-1-d\} \ge cn/\log n$ and $|d_j-d| \le n^{1/2+\varepsilon}$. Let H be a graph with degrees (h_1, \ldots, h_n) and $m = O(n^{1+2\varepsilon})$ edges such that, for all $1 \le j \le n$,

$$h_j = O(n^{1/2+\varepsilon}), \qquad \frac{(d_j - d)^3 \mu_3}{\lambda^3} = o(n^2).$$

Then, the expected number of subgraphs in $\mathcal{G}_{\vec{d}}$ isomorphic to H is

$$egin{split} rac{\mathrm{n!}}{|\mathrm{Aut}(\mathrm{H})|} oldsymbol{\lambda}^{\mathrm{m}} \expigg(-rac{1-oldsymbol{\lambda}}{4oldsymbol{\lambda}} (2oldsymbol{\mu}_2 - oldsymbol{\mu}_1^2 - 2oldsymbol{\mu}_1) + rac{\mathrm{R}}{2oldsymbol{\lambda}^2 \mathrm{n}} (oldsymbol{\mu}_2 - oldsymbol{\mu}_1^2 - oldsymbol{\mu}_1) \ -rac{1-oldsymbol{\lambda}^2}{6oldsymbol{\lambda}^2 \mathrm{n}} oldsymbol{\mu}_3 - rac{1-oldsymbol{\lambda}}{oldsymbol{\lambda} \mathrm{n}^2} \sum_{\mathrm{ik} \in \mathrm{E}(\mathrm{H})} \mathrm{h}_\mathrm{j} \mathrm{h}_\mathrm{k} + \mathrm{o}(1) igg), \end{split}$$

where Aut(H) is the automorphism group of H.

A similar result holds for the number of induced copies of H.

Spanning trees

Let $\tau_{\vec{d}}$ denote the number of spanning trees in $\mathcal{G}_{\vec{d}}$.

Theorem (Greenhill, I., McKay, 2017+)

Suppose $\min\{d, n-1-d\} \ge cn/\log n$ and $|d_i-d| \le n^{1/2+\epsilon}$, then

$$\mathbb{E} \boldsymbol{\tau}_{\vec{d}} = n^{n-2} \boldsymbol{\lambda}^{n-1} \exp \left(-\frac{1-\boldsymbol{\lambda}}{2\boldsymbol{\lambda}} - \frac{R}{2\boldsymbol{\lambda}^2 n} + o(1) \right).$$

Theorem (Greenhill, I., McKay, Kwan, 2017)

Suppose that number of edges is at least $n + \frac{1}{2}d_{\max}^4$ (i.e. $d_{\max}^4 \leq (d-2)n$), then

$$\begin{split} \mathbb{E}\tau_{\vec{d}} = & \frac{(d-1)^{1/2}}{(d-2)^{3/2}n} \left(\prod_{j=1}^n d_j \right) \left(\frac{(d-1)^{d-1}}{d^{d/2}(d-2)^{d/2-1}} \right)^n \times \\ & \exp\left(\frac{6d^2 - 14d + 7}{4(d-1)^2} + \frac{R}{2(d-1)^3} + \frac{(2d^2 - 4d + 1)R^2}{4(d-1)^3d^2} + o(1) \right). \end{split}$$

Complex-analytic approach

1. We write combinatorial counts in terms of multivariate generation functions.

Example: the number of d-regular graphs on n vertices

$$RG(n,d) = [x_1^d \cdots x_n^d] \prod_{1 \le j < k \le n} (1 + x_j x_k).$$

Complex-analytic approach

1. We write combinatorial counts in terms of multivariate generation functions.

Example: the number of d-regular graphs on n vertices

$$RG(n,d) = [x_1^d \cdots x_n^d] \prod_{1 \leq j < k \leq n} (1 + x_j x_k).$$

2. The coefficient is extracted by complex integration (Fourier inversion).

Example:

$$RG(n,d) = \frac{1}{(2\pi i)^n} \oint \cdots \oint \frac{\prod_{1 \leq j < k \leq n} (1+z_j z_k)}{z_1^{d+1} \cdots z_n^{d+1}} \, dz_1 \cdots, dz_n.$$

Complex-analytic approach

1. We write combinatorial counts in terms of multivariate generation functions.

Example: the number of d-regular graphs on n vertices

$$RG(n,d) = [x_1^d \cdots x_n^d] \prod_{1 \leq j < k \leq n} (1 + x_j x_k).$$

2. The coefficient is extracted by complex integration (Fourier inversion).

Example:

$$RG(n,d) = \frac{1}{(2\pi i)^n} \oint \cdots \oint \frac{\prod_{1 \leq j < k \leq n} (1+z_j z_k)}{z_1^{d+1} \cdots z_n^{d+1}} \, dz_1 \cdots, dz_n.$$

3. By choosing appropriate contours, we approximate the value of the integral which is mostly given by small neighbourhoods of concentration points.

Integrals we work with

Typically the problem is reduced to the estimation of integrals of the following form:

$$\int_{\mathbf{R}} \exp(-\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{f}(\mathbf{x})) d\mathbf{x} = c \mathbb{E} e^{\mathbf{f}(\mathbf{X}_{\mathbf{B}})},$$

where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, f is a multi-variable polynomial of low degree with complex coefficients and X_B is a gaussian random variable truncated to B.

Integrals we work with

Typically the problem is reduced to the estimation of integrals of the following form:

$$\int_{\mathbf{R}} \exp(-\mathbf{x}^{\mathrm{T}} \mathbf{A} \mathbf{x} + \mathbf{f}(\mathbf{x})) d\mathbf{x} = \mathbf{c} \mathbb{E} \mathbf{e}^{\mathbf{f}(\mathbf{X}_{\mathbf{B}})},$$

where $x = (x_1, \dots, x_n) \in \mathbb{R}^n$, f is a multi-variable polynomial of low degree with complex coefficients and X_B is a gaussian random variable truncated to B.

Example: if nd is even and $\min\{d, n-1-d\}$ grows sufficiently fast as $n \to \infty$

$$RG(n,d) \approx \frac{2 \left(2 \pi\right)^{-n}}{\left(\boldsymbol{\lambda}^{\boldsymbol{\lambda}} (1-\boldsymbol{\lambda})^{1-\boldsymbol{\lambda}}\right)^{\binom{n}{2}}} \int\limits_{\|\boldsymbol{x}\|_{\infty} \leq \frac{n^{\varepsilon}}{\left(\boldsymbol{\lambda}(1-\boldsymbol{\lambda})\boldsymbol{x}\right)^{1/2}}} \exp \left(\sum_{\ell=2}^{\ell_{\max}} \sum_{j < k} c_{\ell} (\boldsymbol{x}_{j} + \boldsymbol{x}_{k})^{\ell}\right) d\boldsymbol{x},$$

where $\lambda = d/(n-1)$ is the density of such a graph and $c_2 = -\frac{1}{2}\lambda(1-\lambda)$.

4□ > 4□ > 4 = > 4 = > = 90

The β -model of random graph

A random graph model with independent adjacencies

$$p_{jk} = \frac{e^{\beta_j + \beta_k}}{1 + e^{\beta_j + \beta_k}}.$$

is known as β -model, where $\beta = (\beta_1, \ldots, \beta_n) \in \mathbb{R}^n$.

Let \mathcal{G}_{β} denote the β -model where β is the solution of the system

$$\sum_{k: i \neq k} p_{jk} = d_j, \qquad (1 \leq j \leq n).$$

for a given degree sequence $\vec{d} = (d_1, \dots, d_n)$.

The model \mathcal{G}_{β} behaves similar to $\mathcal{G}_{\vec{d}}$ in many ways.

Some corollaries

Using the formula $\mathbb{E}e^{f(X)} \approx e^{\mathbb{E}f(X) + \frac{1}{2}\mathbb{E}(f(X) - \mathbb{E}f(X))^2}$ it was obtained in [I., McKay, 2017] that (for the dense case):

• Models \mathcal{G}_{β} and $\mathcal{G}_{\vec{d}}$ agree for small subgraph probabilities.

$$P_{\vec{d}}(H^+, H^-) \approx \prod_{jk \in H^+} p_{jk} \prod_{jk \in H^-} (1 - p_{jk}).$$

Let

$$X_{\vec{d}} = |\mathcal{G}_{\vec{d}} \cap Y|$$
 and $X_{\beta} = |\mathcal{G}_{\beta} \cap Y|$,

where Y is a set of edges. Then, we have

$$\Pr(|X_{\vec{d}} - \mathbb{E}X_{\beta}| > t|Y|^{1/2}) \le ce^{-2t \min\{t, n^{1/6} (\log n)^{-3}\}}.$$

Moments and cumulants

One could use series $\mathbb{E}e^{tZ}=\sum_{s=0}^{\infty}\frac{t^r}{r!}\mathbb{E}Z^r$. However, for $Z=f(X_B)$, we would need to estimate a big number of moments, before they become negligible.

Moments and cumulants

One could use series $\mathbb{E}e^{tZ} = \sum_{s=0}^{\infty} \frac{t^r}{r!} \mathbb{E}Z^r$. However, for $Z = f(X_B)$, we would need to estimate a big number of moments, before they become negligible.

Instead, we employ the cumulant expansion

$$\mathbb{E}\mathrm{e}^{\mathrm{t}\mathrm{Z}} = \exp\left(\sum_{\mathrm{r}=1}^{\infty}rac{\mathrm{t}^{\mathrm{r}}}{\mathrm{r}!}\kappa_{\mathrm{r}}(\mathrm{Z})
ight).$$

Recall that cumulants $\kappa_{\rm r}({\rm Z})$ could be defined by

$$\kappa_r(Z) = \sum_{\boldsymbol{\pi}} (|\boldsymbol{\pi}| - 1)! (-1)^{|\boldsymbol{\pi}| - 1} \prod_{P \in \boldsymbol{\pi}} \mathbb{E} Z^{|P|},$$

where the sum is over all partitions π of $\{1, \ldots, n\}$. For example,

$$\kappa_1(\mathbf{Z}) = \mathbb{E}\mathbf{Z}, \quad \kappa_2(\mathbf{Z}) = \mathbb{E}\mathbf{Z}^2 - (\mathbb{E}\mathbf{Z})^2 = \mathbb{E}(\mathbf{Z} - \mathbb{E}\mathbf{Z})^2,$$

$$\kappa_3(\mathbf{Z}) = \mathbb{E}\mathbf{Z}^3 - 3(\mathbb{E}\mathbf{Z}^2)(\mathbb{E}\mathbf{Z}) + 2(\mathbb{E}\mathbf{Z})^3 = \mathbb{E}(\mathbf{Z} - \mathbb{E}\mathbf{Z})^3,$$

$$\kappa_4(\mathbf{Z}) = \mathbb{E}\mathbf{Z}^4 - 4(\mathbb{E}\mathbf{Z}^3)(\mathbb{E}\mathbf{Z}) - 3(\mathbb{E}\mathbf{Z}^2)^2 + 12(\mathbb{E}\mathbf{Z}^2)(\mathbb{E}\mathbf{Z})^2 - 6(\mathbb{E}\mathbf{Z})^4.$$

Overview of specifics

For enumeration of regular graphs we have $f(x) = \sum_{\ell=3}^{\ell_{\max}} \sum_{i < k} c_{\ell}(x_j + x_k)^{\ell}$.

Main difficulties:

- $Z = f(X_B)$ is not a sum of independent random variables.
- The dimension n is the parameter that goes to infinity.
- The multi-variable polynomial f is complex-valued.

Overview of specifics

For enumeration of regular graphs we have $f(x) = \sum_{\ell=3}^{\ell_{\max}} \sum_{i < k} c_{\ell}(x_j + x_k)^{\ell}$.

Main difficulties:

- $Z = f(X_B)$ is not a sum of independent random variables.
- The dimension n is the parameter that goes to infinity.
- The multi-variable polynomial f is complex-valued. In particular, the following bound of error terms is not good enough:

$$|\mathbb{E}(We^{Z})| \le ||W||_{\infty} \mathbb{E}|e^{Z}| = ||W||_{\infty} \mathbb{E}e^{\Re Z},$$

because $\mathbb{E}e^{\Re Z}$ could be much bigger than $\mathbb{E}e^{Z}$.

Overview of specifics

For enumeration of regular graphs we have $f(x) = \sum_{\ell=3}^{\ell_{\max}} \sum_{i < k} c_{\ell}(x_j + x_k)^{\ell}$.

Main difficulties:

- $Z = f(X_B)$ is not a sum of independent random variables.
- The dimension n is the parameter that goes to infinity.
- The multi-variable polynomial f is complex-valued.

 In particular, the following bound of error terms is not good enough:

$$|\mathbb{E}(We^{Z})| \le ||W||_{\infty} \mathbb{E}|e^{Z}| = ||W||_{\infty} \mathbb{E}e^{\Re Z},$$

because $\mathbb{E}e^{\Re Z}$ could be much bigger than $\mathbb{E}e^{Z}$.

In all previous works the method is limited to the "dense" range (where $\mathbb{E}e^{\Re Z}$ is of the same order as $\mathbb{E}e^Z$) and the formulae $\mathbb{E}e^Z\approx e^{\mathbb{E}Z}$ and $\mathbb{E}e^Z\approx e^{\mathbb{E}Z+\frac{1}{2}\mathbb{V}Z}$ are used.

The gap between sparse and dense

Conjecture [McKay, Wormald, 1991]

Suppose dn is even and 0 < d < n-1, then the number of d-regular graphs on n vertices is

$$RG(n,d) = \left(\lambda^{\lambda} (1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}} \binom{n-1}{d}^{n} \sqrt{2} e^{1/4+o(1)}$$

as $n \to \infty$, where $\lambda = \frac{d}{n-1}$.

We know it is true for the following cases:

- $\min\{d, n-1-d\} = o(n^{1/2})$ (McKay and Wormald, 1991).
- $\min\{d, n-1-d\} \ge c \frac{n}{\log n}$ (McKay and Wormald, 1990).

The gap between sparse and dense

Conjecture [McKay, Wormald, 1991] Theorem [Liebenau, Wormald, 2017+]

Suppose dn is even and 0 < d < n - 1, then the number of d-regular graphs on n vertices is

$$RG(n,d) = \left(\lambda^{\lambda} (1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}} \binom{n-1}{d}^{n} \sqrt{2} e^{1/4+o(1)}$$

as $n \to \infty$, where $\lambda = \frac{d}{n-1}$.

We used to know only it is true for the following cases:

- $\min\{d, n-1-d\} = o(n^{1/2})$ (McKay and Wormald, 1991).
- $\min\{d, n-1-d\} \ge c \frac{n}{\log n}$ (McKay and Wormald, 1990).

Let
$$L = \lambda(1 - \lambda) = \frac{d(n-1-d)}{(n-1)^2}$$
 and define $\delta(n, d)$ by

$$RG(n,d) = \left(\lambda^{\lambda} (1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}} \binom{n-1}{d}^n \sqrt{2} e^{1/4+\delta(n,d)}.$$

Let
$$L = \lambda(1 - \lambda) = \frac{d(n-1-d)}{(n-1)^2}$$
 and define $\delta(n, d)$ by

$$RG(n,d) = \left(\boldsymbol{\lambda}^{\boldsymbol{\lambda}} (1-\boldsymbol{\lambda})^{1-\boldsymbol{\lambda}}\right)^{\binom{n}{2}} \binom{n-1}{d}^n \sqrt{2} \, e^{1/4+\delta(n,d)}.$$

Theorem (I., McKay)

Suppose dn is even and $n^{1/7+\varepsilon} \le d \le \frac{n-1}{2}$, then (up to the error term $O(n/d^7)$)

$$\delta(n, d) = O(n^{-1})$$

Let
$$L = \lambda(1 - \lambda) = \frac{d(n-1-d)}{(n-1)^2}$$
 and define $\delta(n,d)$ by

$$RG(n,d) = \left(\lambda^{\lambda} (1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}} \binom{n-1}{d}^{n} \sqrt{2} e^{1/4+\delta(n,d)}.$$

Theorem (I., McKay)

Suppose dn is even and $n^{1/7+\varepsilon} \le d \le \frac{n-1}{2}$, then (up to the error term $O(n/d^7)$)

$$\delta(n,d) = O(n^{-1}) = -\frac{1}{4n} + O\left(\frac{1}{dn}\right)$$

Let
$$L = \lambda(1 - \lambda) = \frac{d(n-1-d)}{(n-1)^2}$$
 and define $\delta(n, d)$ by

$$RG(n,d) = \left(\boldsymbol{\lambda}^{\boldsymbol{\lambda}} (1-\boldsymbol{\lambda})^{1-\boldsymbol{\lambda}}\right)^{\binom{n}{2}} \binom{n-1}{d}^n \sqrt{2} e^{1/4+\delta(n,d)}.$$

Theorem (I., McKay)

Suppose dn is even and $n^{1/7+\varepsilon} \le d \le \frac{n-1}{2}$, then (up to the error term $O(n/d^7)$)

$$\delta(n, d) = O(n^{-1}) = -\frac{1}{4n} + O\left(\frac{1}{dn}\right)$$
$$= -\frac{1}{4n} + \frac{2 - 23L}{24Ln^2} + O\left(\frac{1}{dn^2}\right)$$

Let
$$L = \lambda(1 - \lambda) = \frac{d(n-1-d)}{(n-1)^2}$$
 and define $\delta(n, d)$ by

$$RG(n,d) = \left(\lambda^{\lambda} (1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}} \binom{n-1}{d}^{n} \sqrt{2} e^{1/4+\delta(n,d)}.$$

Theorem (I., McKay)

Suppose dn is even and $n^{1/7+\epsilon} \le d \le \frac{n-1}{2}$, then (up to the error term $O(n/d^7)$)

$$\delta(n, d) = O(n^{-1}) = -\frac{1}{4n} + O\left(\frac{1}{dn}\right)$$

$$= -\frac{1}{4n} + \frac{2 - 23L}{24Ln^2} + O\left(\frac{1}{dn^2}\right)$$

$$= -\frac{1}{4n} + \frac{2 - 23L}{24Ln^2} + \frac{22 - 129L}{24Ln^3} + O\left(\frac{1}{d^2n^2}\right)$$

Let
$$L = \lambda(1 - \lambda) = \frac{d(n-1-d)}{(n-1)^2}$$
 and define $\delta(n, d)$ by

$$RG(n,d) = \left(\lambda^{\lambda} (1-\lambda)^{1-\lambda}\right)^{\binom{n}{2}} \binom{n-1}{d}^n \sqrt{2} e^{1/4+\delta(n,d)}.$$

Theorem (I., McKay)

Suppose dn is even and $n^{1/7+\epsilon} \leq d \leq \frac{n-1}{2}$, then (up to the error term $O(n/d^7)$)

$$\begin{split} \delta(\mathbf{n}, \mathbf{d}) &= O(\mathbf{n}^{-1}) = -\frac{1}{4\mathbf{n}} + O\left(\frac{1}{d\mathbf{n}}\right) \\ &= -\frac{1}{4\mathbf{n}} + \frac{2 - 23L}{24L\mathbf{n}^2} + O\left(\frac{1}{d\mathbf{n}^2}\right) \\ &= -\frac{1}{4\mathbf{n}} + \frac{2 - 23L}{24L\mathbf{n}^2} + \frac{22 - 129L}{24L\mathbf{n}^3} + O\left(\frac{1}{d^2\mathbf{n}^2}\right) \\ &= -\frac{1}{4\mathbf{n}} + \frac{2 - 23L}{24L\mathbf{n}^2} + \frac{22 - 129L}{24L\mathbf{n}^3} - \frac{3 - 115L + 483L^2}{12L^2\mathbf{n}^4} + O\left(\frac{1}{d^2\mathbf{n}^3}\right). \end{split}$$

August 28, 2017

Cumulant expansion

Regular graphs on 4, 5, 6 vertices

$$RG(4,1) = RG(4,2) = 3.$$

$$RG(5,2) = 12.$$

$$RG(6,1) = RG(6,4) = 15.$$

$$RG(6,2) = RG(6,3) = 70.$$

Regular graphs on 4, 5, 6 vertices

$$RG(4,1) = RG(4,2) = 3.$$

$$F0 = 3.23, F1 = 3.03, F2 = 2.92, F3 = 2.87, F4 = 2.84.$$

$$RG(5,2) = 12.$$

$$F0 = 13.79, F1 = 13.11, F2 = 12.79, F3 = 12.61, F4 = 12.50.$$

$$RG(6,1) = RG(6,4) = 15.$$

$$F0 = 15.60, F1 = 14.96, F2 = 14.78, F3 = 14.80, F4 = 14.91.$$

$$RG(6,2) = RG(6,3) = 70.$$

$$F0 = 74.96, F1 = 71.90, F2 = 70.68, F3 = 70.18, F4 = 69.92.$$

Plots of $\log_{10} \left(\frac{|Fx-RG|}{RG} \right)$ for n = 20, 21, 22

n = 20.

n = 21.

n = 22.

◆ □ ト ◆ 豆 ト ◆ 豆 ・ り Q ○

Plots of $\log_{10} \left(\frac{|Fx-RG|}{RG} \right)$ for n = 23, 24, 25

n = 23.

n = 24.

n = 25.

4 ₱ > 4 Ē > 4 Ē > Ē 9 Q ↔

Note that
$$RG(2k, 1) = (2k - 1)(2k - 3) \cdots 1 = \frac{(2k)!}{2^k k!}$$
.

Note that
$$RG(2k, 1) = (2k - 1)(2k - 3) \cdots 1 = \frac{(2k)!}{2^k k!}$$
.

For example, RG(100,1) = 2725392139750729502980713245400918633290796330545803413734328823443106201171875.

Note that
$$RG(2k, 1) = (2k - 1)(2k - 3) \cdots 1 = \frac{(2k)!}{2^k k!}$$
.

For example, RG(100,1) = 2725392139750729502980713245400918633290796330545803413734328823443106201171875.

$$F0 = 2.73002 \cdot 10^{78}.$$

$$F1 = 2.72320 \cdot 10^{78}.$$

$$F2 = 2.72521 \cdot 10^{78}.$$

$$F3 = 2.72545 \cdot 10^{78}.$$

$$F4 = 2.72540 \cdot 10^{78}.$$

Note that
$$RG(2k, 1) = (2k - 1)(2k - 3) \cdots 1 = \frac{(2k)!}{2^k k!}$$
.

For example, RG(100,1) = 2725392139750729502980713245400918633290796330545803413734328823443106201171875.

$$F0 = 2.73002 \cdot 10^{78}.$$

$$F1 = 2.72320 \cdot 10^{78}.$$

$$F2 = 2.72521 \cdot 10^{78}.$$

$$F3 = 2.72545 \cdot 10^{78}.$$

$$F4 = 2.72540 \cdot 10^{78}.$$

Conclusion: the cumulant expansion not only helps to extend the range of complex analytic-methods, but also give more accurate approximations.

Thank you for your attention!