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Expectation of the exponential function

We are interested in estimates for Ee?, where Z is a complex random variable.

E EZ+ LE(Z—EZ)>
Ee? =~ ¢ and FEe? ~ of4TzEE—E27
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Expectation of the exponential function

We are interested in estimates for Ee?, where Z is a complex random variable.

E EZ+ LE(Z—EZ)>
Ee? =~ ¢ and FEe? ~ of4TzEE—E27

It is clear for the following cases:
@ when Z is small;

@ when Z =Xy + -+ + Xy, where X4,...,X, are independent and small.
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Expectation of the exponential function

We are interested in estimates for Ee?, where Z is a complex random variable.

; oy . Ez4 1E(7_E7)2
Ee? =~ ¢ and FEe? ~ of4TzEE—E27

It is clear for the following cases:
@ when Z is small;

@ when Z = X; + -+ + X;, where Xy,...,X, are independent and small.

For our purposes we needed:

@ when Z = {(X4,...,Xys), where X4,...,X, are independent;

@ when Z is a complex martingale.

August 28, 2017 3/ 29



Mikhail Isaev (Monash University)

Introduction Subgraph counts Asymptotic enumeration

Random vectors with independent components

Theorem (I., McKay, 2017)

LetX:(Xl,..
valuesin 2 =21 X +--

sup [f(x) — ()| < a,

X,xJ

sup |f(x) — f(x') — £(x") + £(x)| < A,

x,xd ,xK, xik
where the suprema is over all x, x/, x*, x’* € 2 such that

@ x,x and x¥,x* differ only in the j-th coordinate,

@ x,x" and x), x* differ only in the k-th coordinate.

(A) If @ = o(n™/2), then Eef®) = ) (1 + O(na?)).
(B) If @« = o(n™'/?) and A = o(n"*/?), then

2 < <3
Eef ) — e]Ef—i—%]E(f—]Ef) (1 + O(na3 + n2a2A) e% Var \ef(X)) .

Cumulant expansion

., Xn) be a random vector with independent components taking
X §2,. Let { : 2 — C. Suppose, for any 1 < j# k < n,
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Random permutations

Theorem (Greenhill, 1., McKay, 2017+)

Let X = (X4,...,X,) be a uniform random element of S, and f : S, — C.
Suppose, for any distinct j,a € {1,...,n},

sup [f(w) — f(w o ()| <

and, for any distinct j,k,a,b € {1,...,n},
sup [f(w) —f(w o (ja)) — f(w o (kb)) +f(w o (a) (kb)) < A,
wESy

(A) If @ = o(n™/2), then Eef®) = ) (1 + O(na?)).

(B) If @« = o(n™'/?) and A = o(n"*/?), then

Fef ) — e]Ef—i—%]E(f—]Ef)?‘ (1 + O(na3 + n2a2A) e% Var Sf(X)> .
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Random subsets

Let By,m denote the set of subsets of {1,...,n} of size m.
Theorem (Greenhill, I., McKay, 2017+)

Let X be a uniform random element of Ba,m, m < n/2, and f : By,m — C. Suppose,
forany A € Bamanda € A, j &€ A,

lf(A) — (A @ {i,a})| < o,
and, for any distinct a,b € A, j,k € A,

If(A) — (A & {j,a}) — (A D {k,b}) + (A @ {j,k,a,b})| < A,

(A) If @ = o(m™*/?), then Eef(X) = E1(X) (1 4+ O(ma?)).
(B) If & = o(m™*/?) and A = o(m~*/?), then

Bt — eIEf+%]E(f—]Ef)2 (1 + O(ma3 + m2a2A) e% Var Sf(X)) .
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Four applications in the random graph theory
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Four applications in the random graph theory

@ Concentration results. For a real random variable X, by the Markov inequality,

Pr(X > ¢) = Pr(c™ > ') < e "“Ee™ ...
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Four applications in the random graph theory

@ Concentration results. For a real random variable X, by the Markov inequality,

Pr(X > ¢) = Pr(c™ > ') < e "“Ee™ ...

@ Asymptotic normality.
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Four applications in the random graph theory

@ Concentration results. For a real random variable X, by the Markov inequality,

Pr(X > ¢) = Pr(c™ > ') < e "“Ee™ ...

. . . —E i X—EX
@ Asymptotic normality. Let 7 = 1t\/X\T:; , ¢(t) = Eexp (1t ﬁ) Then,

Ee? = ¢(t) and eTEZ"'%IE(Z_EZ)2 = e_t2/2.
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Four applications in the random graph theory

@ Concentration results. For a real random variable X, by the Markov inequality,

Pr(X > ¢) = Pr(c™ > ') < e "“Ee™ ...

@ Asymptotic normality. Let 7 = 1t§% ¢(t) = Eexp <1t :/‘i> Then,

Ee? = ¢(t) and eTEZ"'%F‘(Z_EZ)2 = e_t2/2.

@ Subgraph counts in random graphs with given degrees.

@ Asymptotic enumeration by complex-analytic methods.
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Subgraphs counts
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Random variables of our interest

1. Fix a graphical degree sequence d = (di, ..., dy).
2. Take a uniform random labelled graph Gy with degrees d.

3. Count the number Np(G5) of occurrences of a given pattern P.

We want an asymptotic formula for ENp(G3) as n — oo,
where P = P(n) and d = d(n).

Let d denote the average degree. Define

d

n —

1 n
A= d R=- d; — d)2.
an n;(J )
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From probabilities to subgraph counts

We employ formulae from [McKay, 1985], [McKay, 2011] for the
probability of a certain pattern P (subgraph or induced subgraph) to
occur at a particular place in our random graph Gz

Pr(P occurs in G5 at location L) = factor(P, A) X SR Ld)+o(1)

The only thing to do is to sum up over all possible locations L.

For example, for copies of a given subgraph it is reduced to estimating

Z ef(@) = n1 Eef ),
oE€Sy

where X is a uniform random permutation.
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Perfect matchings and cycles

Suppose min{d,n — 1 — d} > cn/logn and |d; — d| < n'/?*<. Then, we have
@ the expected number of perfect matchings in G5 (for even n) is

n! n/2 1—A R .
(11/2)!2n/2A exp < - n + 0(1)) 9

@ the expected number of q-cycles in Gz (for 3 < g < n) is

n! a (1 —=Xam—q) , Ra(n —2q)
m)\ exp (— 2 + N + (1)>

These expressions for the regular case (R = 0) were also given in [McKay, 2011].
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Subgraphs isomorphic to a given one

For a given graph H with degree sequence (hi,...,h,) denote py = + Zl_l
Theorem 1 (Greenhill, 1., McKay, 2017+).

Suppose min{d,n — 1 — d} > cn/logn and |d; — d| < n'/?*<. Let H be a graph
with degrees (hp,...,h,) and m = O(n'T2°) edges such that, for all 1 < j < n,

)3 ‘
b= 0@/, T ),

Then, the expected number of subgraphs in G5 isomorphic to H is

n! m 1—A 2 R 2
L — = (2> — —9 - — —
[Aut ()| exp ( By 2u2 — pi n) + N2 (2 — pi — p1)

1=X 1—A
o M T e Z hjhy -|-o(1)>

JjkEE(H)

where Aut(H) is the automorphism group of H.

A similar result holds for the number of induced copies of H.
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Spanning trees

Let 73 denote the number of spanning trees in G3.
Theorem (Greenhill, 1., McKay, 2017+)

Suppose min{d,n — 1 — d} > cn/logn and |d; — d| < n'/**¢ then

__ .n—2yn—1 _1 - A _ R
Er; =n"""A"" exp ( =% axn + 0(1)> .

Theorem (Greenhill, 1., McKay, Kwan, 2017)

Suppose that number of edges is at least n + %dfnax (i.e. dfax < (d — 2)n), then

_(d=n'? [ (d -1 B
B8 =(d—2)%7n E Y )\ Gr@=piri) X
6d? — 14d + 7 R (2d® — 4d + 1)R?
ox ( d—12 Taa—1p T d@d—nse T 0(1)) :

v
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Asymptotic enumeration
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Complex-analytic approach

1. We write combinatorial counts in terms of multivariate generation functions.

Example: the number of d-regular graphs on n vertices

RG(n,d) = [x§ -+ -x7] H (1 + xjxx).

1<j<k<n

Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 15 / 29



Introduction Subgraph counts Asymptotic enumeration Cumulant expansion

Complex-analytic approach

1. We write combinatorial counts in terms of multivariate generation functions.

Example: the number of d-regular graphs on n vertices

RG(n,d) = [x§ -+ -x7] H (1 + xjxx).

1<j<k<n

2. The coefficient is extracted by complex integration (Fourier inversion).

Example:
RG(H d) 1 H1<j<k<n(1 + ijk) d
| — - cee = — AR Zin e
’ d+1 d+1 ’
(27i)m | ) Z1+ coagdt
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Complex-analytic approach

1. We write combinatorial counts in terms of multivariate generation functions.
Example: the number of d-regular graphs on n vertices

RG(n,d) = [x{---xq]  [] (14 x0).

1<j<k<n

2. The coefficient is extracted by complex integration (Fourier inversion).
Example:

1 .'.. H1§j<kgn(1 +ijk) s eee dy
(27Ti)n . ) chl—‘,-l .. Zg—‘,-l 1 9 ne

RG(n,d) =

3. By choosing appropriate contours, we approximate the value of the integral which
is mostly given by small neighbourhoods of concentration points.
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Integrals we work with

Typically the problem is reduced to the estimation of integrals of the following form:

/ exp(—x"Ax 4 f(x))dx = cEef*8),
B

where x = (X1,...,%Xn) € R”, f is a multi-variable polynomial of low degree with

complex coefficients and Xg is a gaussian random variable truncated to B.
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Integrals we work with

Typically the problem is reduced to the estimation of integrals of the following form:

/ exp(—x"Ax + f(x))dx = ¢ Ee' %)
B

where x = (X1,...,%Xn) € R”, f is a multi-variable polynomial of low degree with
complex coefficients and Xg is a gaussian random variable truncated to B.

Example: if nd is even and min{d,n — 1 — d} grows sufficiently fast as n — oo

i
9 (970) " max
RG(n,d) = (2m) — / exp Z ZCZ(XJ' +xi)¢ | dx,
(1 = 2)-2)6E) . = i<
[Ixlloo < ()\(1:;)“)1/2
where A = d/(n — 1) is the density of such a graph and ca = —$A(1 — A).
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The B-model of random graph

A random graph model with independent adjacencies

eBi+Bx

Pjk = 1+ eBitBe’

is known as B-model, where 8 = (B1,...,0n) € R™.

Let Gg denote the B-model where 3 is the solution of the system

> pik = dj, (1<j<n).
kij£k

for a given degree sequence d = (di,...,dy).

The model Gg behaves similar to QJ in many ways.
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Some corollaries

Using the formula Fe () ~ B () +3E(I () —Ef(X))?

[I., McKay, 2017] that (for the dense case):

e Models Gg and ga agree for small subgraph probabilities.

P;(H',HT) = H Pjk H (1 — pjk)-

jkem+  jkeH—

o Let
Xa* = |g(—{ﬂY| and Xg = |g5 ﬂYl,

where Y is a set of edges. Then, we have

Pr(|X; — EXg| > t|Y['/?) < ce™™ min{t,n!/% (log n) =3}

Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017
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Cumulant expansion
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Moments and cumulants

One could use series Ee'” = 350 ©EZ*. However, for Z = {(Xz), we would need
to estimate a big number of moments, before they become negligible.
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Moments and cumulants

One could use series Ee'” = 350 ©EZ*. However, for Z = {(Xz), we would need
to estimate a big number of moments, before they become negligible.
Instead, we employ the cumulant expansion

oo r

Ee'” = exp (Z E!nr(Z)) .

r=1
Recall that cumulants ,(Z) could be defined by
re(Z) = Z(lﬂl — )=t I ez,
PE®

where the sum is over all partitions 7 of {1,...,n}. For example,

k1(Z) =EZ, ko(Z) =FEZ* — (EZ)’ = E(Z — EZ)?,

k3(Z) = EZ® — 3(EZ%)(EZ) + 2(EZ)® = E(Z — EZ)?,

k4(Z) = EZ* — 4(EZ*)(EZ) — 3(EZ%)* + 12(EZ?)(EZ)* — 6(EZ)".
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Overview of specifics

For enumeration of regular graphs we have f(x) = Zﬁ:ﬁ;" S colx; + xx)b
i<k

Main difficulties:

o Z = f(Xp) is not a sum of independent random variables.
@ The dimension n is the parameter that goes to infinity.

@ The multi-variable polynomial f is complex-valued.
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Overview of specifics

For enumeration of regular graphs we have f(x) = Zﬁ:’;" S colx; + xx)b
i<k

Main difficulties:

o Z = f(Xp) is not a sum of independent random variables.
@ The dimension n is the parameter that goes to infinity.

@ The multi-variable polynomial f is complex-valued.

In particular, the following bound of error terms is not good enough:
[E(We?)| < [[WllooEle”| = [[W||ooEe™,

because Ee®” could be much bigger than Ee?.
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Overview of specifics

For enumeration of regular graphs we have f(x) = Zﬁ:’;" S colx; + xx)b
i<k

Main difficulties:

e 7 = f{(Xp) is not a sum of independent random variables.
o The dimension n is the parameter that goes to infinity.

@ The multi-variable polynomial f is complex-valued.
In particular, the following bound of error terms is not good enough:

[E(We”)| < |W]looEle”| = [[W]|ooEe™,

because Ee®” could be much bigger than Ee?.

In all previous works the method is limited to the “dense” range (where Ee®? is of
I g

1y
the same order as Ee?) and the formulae Ee? =~ e®* and Ee? =~ e"727% are used.
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The gap between sparse and dense

Conjecture [McKay, Wormald, 1991]

Suppose dn is even and 0 < d < n — 1, then the number of d-regular graphs on n
vertices is

RG(n,d) = (A*(l - )\)1—*)(3) (n ; 1) V3 el/4Fo(D)

as n — oo, where A = ﬁ

We know it is true for the following cases:
@ min{d,n — 1 — d} = o(n!/?) (McKay and Wormald, 1991).
® min{d,n — 1 — d} > cay (McKay and Wormald, 1990).
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The gap between sparse and dense

Conjecture{MelKay, Wormald; 1994 Theorem [Liebenau, Wormald, 2017+]

Suppose dn is even and 0 < d < n — 1, then the number of d-regular graphs on n
vertices is

RG(n,d) = (A*(l - )\)1—*)(3) (n ; 1) V3 el/4Fo(D)

as n — oo, where A = ﬁ

We used to know only it is true for the following cases:
@ min{d,n — 1 — d} = o(n!/?) (McKay and Wormald, 1991).
® min{d,n — 1 — d} > cay (McKay and Wormald, 1990).
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Our results for d-regular graphs

Let L = A(1 — A) = 20=1=D anq define 8(n, d) by

(n—1)2

RG(n,d) = (A1 - A)l—*)(g) (n 1 1) V3 6!/ 4+ @)

Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017
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Our results for d-regular graphs

Let L= A(1 — A) = “@=150 and define §(n,d) by

RG(n,d) — (Ak(l _ A)l—)\) (;) <Il ; 1) \/561/4+5(n,d)'

Theorem (I., McKay)

Suppose dn is even and n'/71° < 4 < “;1, then (up to the error term O(n/d"))

d(n,d) =0

4
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Our results for d-regular graphs

Let L= A(1 — A) = “@=150 and define §(n,d) by

RG(n,d) — (Ak(l _ A)l—)\) (;) <Il ; 1) \/561/4+5(n,d)'

Theorem (I., McKay)

Suppose dn is even and n'/71° < 4 < “;1, then (up to the error term O(n/d"))

8(n,d) =0(™") = _ﬁ 10 (i)

4
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Our results for d-regular graphs

Let L= A(1 — A) = “@=150 and define §(n,d) by

RG(H, d) — (Ak(l _ A)l—)\) (121) <I1 ; 1) \/561/4+5(n,d).

Theorem (I., McKay)

Suppose dn is even and n'/71° < 4 < “;1, then (up to the error term O(n/d"))

8(n,d) =0(™") = _ﬁ 10 (i)

1, 2—23L 1
= " T 2w +O(dn2)

4
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Our results for d-regular graphs

Let L= A(1 — A) = “@=150 and define §(n,d) by

RG(H, d) — (Ak(l _ A)l—A) (;) <I1 ; 1) \/561/4+5(n,d).

Theorem (I., McKay)

Suppose dn is even and nl/7+€

5(n,d) = O(n~") = _in 410 (L)

(up to the error term O(n/d"))

dn
— 23L 1
T 4n + atm2 O (@)
1 2 —23L 22 — 129L 1
=—— 0
4n + 24Ln? + 24Ln3 + (d2n2)
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Our results for d-regular graphs

Let L=X(1—X) = % and define §(n, d) by

RG(n,d) = (A*(l — A)l—*)(g) (n ; 1) V3 L/ AHmd)

Theorem (I., McKay)

Suppose dn is even and n'/7t <

§(n,d) =0(n™") =—1-40 (dln)

— 23L 1
I+ 24102 +O(@)

(up to the error term O(n/d"))

1, 2—23L , 22— 129L 1
" T 2w T satwe 7O (d2n2>
1 ,2-23L  22—120L 3—115L4483L° /1
4 24Ln2 24Ln3 12L2n* d2n3

)-
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Regular graphs on 4, 5, 6 vertices

RG(4,1) = RG(4,2) = 3.

RG(5,2) =12.

RG(6,1) = RG(6,4) =15.

RG(6,2) = RG(6,3) =70.
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Regular graphs on 4, 5, 6 vertices

RG(4,1) = RG(4,2) = 3.
FO = 3.23, F1 = 3.03, F2 = 2.92, F3 — 2.87, F4 — 2.84.
RG(5,2) =12.
FO = 13.79, F1 = 13.11, F2 = 12.79, F3 = 12.61, F4 = 12.50.
RG(6,1) = RG(6,4) =15.
FO = 15.60, F1 = 14.96, F2 = 14.78, F3 = 14.80, F4 = 14.91.
RG(6,2) = RG(6,3) =70.

FO = 74.96, F1 = 71.90, F2 = 70.68, F3 = 70.18, F4 = 69.92.
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Plots of logy, (291 for n = 20, 21, 22
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Plots of logy, (%) for n = 23, 24, 25
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Perfect matchings

2k)!
Note that RG(2k,1) = (2k —1)(2k = 3)---1 = (Qkk)! :
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Perfect matchings

2k)!
Note that RG(2k,1) = (2k —1)(2k = 3)---1 = (Qkk)! :

For example, RG(100,1) = 27253921397507295029807132454009186332907963305458
03413734328823443106201171875.
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Perfect matchings

2k)!
Note that RG(2k,1) = (2k —1)(2k = 3)---1 = (Qkk)! :

For example, RG(100,1) = 27253921397507295029807132454009186332907963305458
03413734328823443106201171875.

FO = 2.73002 - 10"°.
F1 = 2.72320 - 107%.
F2 = 2.72521 - 107°.
F3 = 2.72545 - 10™%.
F4 = 2.72540 - 1075,

Mikhail Isaev (Monash University) Discrete Maths talk August 28, 2017 27 / 29



Introduction Subgraph counts Asymptotic enumeration

Perfect matchings

Note that RG(2k,1) = (2k — 1)(2k — 3) ---1 =

_(2K)!
2kk!

Cumulant expansion

For example, RG(100,1) = 27253921397507295029807132454009186332907963305458
03413734328823443106201171875.

F0 = 2.73002 -
F1 = 2.72320 -
F2 = 2.72521 -
F3 = 2.72545 -
F4 = 2.72540 -

1078,
1078,

Conclusion: the cumulant expansion not only helps to extend the range of complex

analytic-methods, but also give more accurate approximations.
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Thank you for your attention!
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