

The sandwich conjecture of random regular graphs and more

Mikhail Isaev

(joint work with P. Gao and B.D. McKay)

Discrete Maths Group talk, Monash University

April 30, 2018

Introduction

Introduction

Random graphs

Introduction

The parameter n is the number of vertices. All graphs are labelled.

- $\mathcal{G}(n, p)$ model: every pair of vertices is connected in the graph with probability p independently from every other edge.
- G(n, m) model: we take a uniform random element of the set of graphs on n vertices with m edges.
- R(n, d) model: we take a uniform random element of the set of d-regular graphs on n vertices (we always assume dn is even).

...and more

The sandwich conjecture

Introduction

Conjecture (by Kim and Vu in [Advances in Math., 2004])

For $d \gg \log n$, there is a random triple (G_1, R, G_2) of graphs on nvertices which marginal distributions are

$$G_1 \sim \mathcal{G}(n, p_1), \qquad R \sim \mathcal{R}(n, d), \qquad G_2 \sim \mathcal{G}(n, p_2),$$

for some $p_1 = \frac{d}{a}(1 - o(1))$ and $p_2 = \frac{d}{a}(1 + o(1))$, and

$$\Pr(G_1 \subseteq R \subseteq G_2) = 1 - o(1).$$

Kim and Vu managed to prove the sandwich conjecture for the range $\log n \ll d < n^{1/3-o(1)}$ with a defect in one side: $\mathcal{R}(n,d)$ is not completely contained in $\mathcal{G}(n, p_2)$.

Recent progress towards the sandwich conjecture

Dudek, Frieze, Ruciński, abd Šileikis [J. Comb. Theory B, 2017] showed that, for all d = o(n), $\mathcal{G}(n, (1 - o(1)) \frac{d}{n}) \subseteq \mathcal{R}(n, d)$ a.a.s.

Two key ideas

Theorem (Gao, I., McKay)

Let ε be any positive constant. Then the following holds a.a.s.

- (i) For $d > n^{2/3+\varepsilon}$ the sandwich conjecture holds.
- (ii) For $d \geq n^{1/2}$ we have $\mathcal{R}(n,d) \subseteq \mathcal{G}(n,\varepsilon \frac{d}{n}\log n)$.
- (iii) For $d < n^{1/2}$ we have $\mathcal{R}(n,d) \subset \mathcal{G}(\varepsilon n^{-1/2} \log n)$.

...and more

Another way to generate $\mathcal{G}(n,p)$

Coupling procedure

Procedure M(n, m).

- 1. Take $M := \emptyset$.
- 2. Repeat m times: take jk uniformly at random from K_n and add it to M (in case the edge jk was not in M yet).
- 3. Return M.

If
$$D \sim \operatorname{Po}(\lambda)$$
 then $M(n,D) \sim \mathcal{G}(n,p)$ with $p=1-e^{-\lambda/\binom{n}{2}}$.

Let $M_{\varepsilon}(n,m)$ be the random graph defined similarly to M(n,m) but with some rejection probability ξ at Step 2. Then,

$$M_{\xi}(n,D) \sim \mathcal{G}(n,p_{\xi})$$
 with $p_{\xi} = 1 - e^{-\lambda(1-\xi)/\binom{n}{2}}$.

Kim and Vu relied on the algorithm of [Steger and Wormald, Combin.Probab. Comput., 1999] and the asymptotic formula for the number of d-regular graphs.

Coupling $\mathcal{G}(n,p) \subset \mathcal{R}(n,d)$.

Procedure R(n, d).

- 1. Take $R := \emptyset$.
- 2. Repeat until **R** is **d**-regular: take **ik** uniformly at random from K_n and add it to **R** with probability

$$\frac{\Pr(jk \in \mathcal{R}(n,d) \mid R \subset \mathcal{R}(n,d))}{\max_{jk \notin R} \Pr(jk \in \mathcal{R}(n,d) \mid R \subset \mathcal{R}(n,d))}$$
(1)

(in case the edge ik was not in R yet).

3. Return R.

Idea: to achieve $M_{\mathcal{E}}(n,D) \subset R(n,d)$ we only need to show that a.a.s. (1) is bounded below by $1 - \xi$ for the first **D** iterations of Step 2.

Let $S \sim \mathcal{G}(n, p)$. Take a **t**-factor $T \subset S$ uniformly at random.

Toy problem

Introduction

For which values of \boldsymbol{p} and \boldsymbol{t} we can show a.a.s.

$$\Pr_{S}(uv \in T) = (1 + o(1))\frac{t}{pn}$$

simultaneusly for all edges $uv \in S$?

During the coupling procedure, **p** ranges from 1 to $1 - \frac{d}{a}$ and **t** ranges from **d** to **0**.

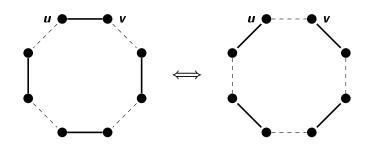
It is fairly easy to resolve the toy problem for d = o(n) which gives us $\mathcal{G}(n, \frac{d}{n}(1-o(1))) \subseteq \mathcal{R}(n, d)$, see [Dudek et al., 2017].

The containment $\mathcal{R}(n,d) \subseteq \mathcal{G}(n,\frac{d}{n}(1-o(1)))$ is equivalent to $\mathcal{G}(n, 1 - \frac{d}{n} - o(\frac{d}{n})) \subseteq \mathcal{R}(n, n - d)$. So we need p = o(1) for that. Introduction

TWO KEY IDEAS

Switchings

Introduction



The number of ways to switch \implies is $p^4t^3n^3(1+o(1))$.

The number of ways to switch \iff is $p^3t^4n^2(1+o(1))$.

This works for $p \ge \varepsilon n^{-1/2} \log n$ and t = o(pn).

Complex-analytic approach

The probability can be expressed as a ratio of two integrals:

$$\Pr_{S}(uv \in T) = \frac{t}{pn}(1+o(1)) \frac{\oint \cdots \oint \frac{\prod_{jk \in S-uv}(1+z_{j}z_{k})}{z_{1}^{d+1}\cdots z_{n}^{d+1}/z_{u}z_{v}} dz_{1} \dots dz_{n}}{\oint \cdots \oint \frac{\prod_{jk \in S}(1+z_{j}z_{k})}{z_{1}^{d+1}\cdots z_{n}^{d+1}} dz_{1} \dots dz_{n}}.$$

Then, we estimate these multidimensional complex integrals using the machinery of [I., McKay, Random Struct. Algor., 2017] and get that

$$\frac{\frac{1}{(2\pi)^{n/2}|Q_{S}|}e^{\mathbb{E}g(X)-\frac{1}{2}\mathbb{E}h(X)^{2}+o(1)}}{\frac{1}{(2\pi)^{n/2}|Q_{S-uv}|}e^{\mathbb{E}\tilde{g}(\tilde{X})-\frac{1}{2}\mathbb{E}\tilde{h}(\tilde{X})^{2}+o(1)}}=1+o(1).$$

This works for $p > n^{-1/3+\varepsilon}$ and $\min\{t, pn-t\} \gg pn/\log n$.

Coupling procedure

Introduction

Two key ideas

...and more

...AND MORE

More sandwiches

1) Our result actually covers random graphs with given degree sequence (d_1, \ldots, d_n) that $d_i = d(1 + o(1))$.

Two key ideas

- 2) Similar sandwiching results holds for the model G_n and random subgraph of \boldsymbol{G} with given degrees (chosen uniformly).
- 3) There are immediate corollaries of the form $\mathcal{R}(n,d_1) \subset \mathcal{R}(n,d_2)$.

...and more

THANK YOU FOR YOUR ATTENTION!