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Graphs

All graphs are loopless. Parallel edges are considered to be
different.

Figure: A simple graph and a graph with parallel edges
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What is an ℓ-link?

An ℓ-link is a walk of length ℓ > 0 such that consecutive
edges are different.

0-link 1-link

3-link

Figure: vertices, edges, paths are all ℓ-links
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Some complicated ℓ-links

An ℓ-link is a walk of length ℓ > 0 such that consecutive
edges are different.

a 2-link a 4-link

Figure: ℓ-links with repeated vertices
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More complicated ℓ-links

An ℓ-link is a walk of length ℓ > 0 such that consecutive
edges are different.

a 3-link a 4-link

Figure: ℓ-links with repeated edges
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Counterexamples

An ℓ-link is a walk of length ℓ > 0 such that consecutive
edges are different.

a 5-walk a 4-walk

Figure: Walks that are not ℓ-links
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Shunting ℓ-links

An ℓ-link can be shunted to another ℓ-link in one step
through an (ℓ+ 1)-link.

•

two 0-links a 1-link
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Shunting ℓ-links

An ℓ-link can be shunted to another ℓ-link in one step
through an (ℓ+ 1)-link.

• two 0-links a 1-link

•

two 1-links a 2-link
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Shunting ℓ-links

An ℓ-link can be shunted to another ℓ-link in one step
through an (ℓ+ 1)-link.

• two 0-links a 1-link

•

two 1-links a 2-link

•

two 2-links a 3-link
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ℓ-link simple graphs

The ℓ-link simple graph of a graph G is the graph with

• vertices the ℓ-links of G; two ℓ-links are adjacent if
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ℓ-link simple graphs

The ℓ-link simple graph of a graph G is the graph with

• vertices the ℓ-links of G; two ℓ-links are adjacent if

• one can be shunted onto the other through an
(ℓ+ 1)-link of G.
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ℓ-link simple graphs

The ℓ-link simple graph of a graph G is the graph with

• vertices the ℓ-links of G; two ℓ-links are adjacent if

• one can be shunted onto the other through an
(ℓ+ 1)-link of G.

•
0-link graph
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ℓ-link simple graphs

The ℓ-link simple graph of a graph G is the graph with

• vertices the ℓ-links of G; two ℓ-links are adjacent if

• one can be shunted onto the other through an
(ℓ+ 1)-link of G.

•
0-link graph

•

1-link graph
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ℓ-link simple graphs

The ℓ-link simple graph of a graph G is the graph with

• vertices the ℓ-links of G; two ℓ-links are adjacent if

• one can be shunted onto the other through an
(ℓ+ 1)-link of G.

•
0-link graph

•

1-link graph

•

2-link graph
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ℓ-link graphs

• Two ℓ-links L and R of a graph G might be shunted to
each other through µG(L,R) different (ℓ+ 1)-links.
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ℓ-link graphs

• Two ℓ-links L and R of a graph G might be shunted to
each other through µG(L,R) different (ℓ+ 1)-links.

•

0-link graphe

f

e

f
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ℓ-link graphs

• Two ℓ-links L and R of a graph G might be shunted to
each other through µG(L,R) different (ℓ+ 1)-links.

•

0-link graphe

f

e

f

•

1-link graph

e

f f

e

L R

e

f
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ℓ-link graphs

• Two ℓ-links L and R of a graph G might be shunted to
each other through µG(L,R) different (ℓ+ 1)-links.

•

0-link graphe

f

e

f

•

1-link graph

e

f f

e

L R

e

f

• For any two ℓ-links L and R of G, there are µG(L,R)
parallel edges between them in the ℓ-link graph Lℓ(G)
of G.
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Path graphs

In the definition of ℓ-link simple graph, if the vertices are
ℓ-paths of G, then the constructed graph is the ℓ-path graph
Pℓ(G) introduced by Broersma and Hoede in 1989.

• By definition L0(G) = G and P1(G) = L(G) (Broersma
and Hoede, 1989).
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Path graphs

In the definition of ℓ-link simple graph, if the vertices are
ℓ-paths of G, then the constructed graph is the ℓ-path graph
Pℓ(G) introduced by Broersma and Hoede in 1989.

• By definition L0(G) = G and P1(G) = L(G) (Broersma
and Hoede, 1989).

• If ℓ ∈ {0,1}, then Pℓ(G) is isomorphic to the underlying
simple graph of Lℓ(G).
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Path graphs

In the definition of ℓ-link simple graph, if the vertices are
ℓ-paths of G, then the constructed graph is the ℓ-path graph
Pℓ(G) introduced by Broersma and Hoede in 1989.

• By definition L0(G) = G and P1(G) = L(G) (Broersma
and Hoede, 1989).

• If ℓ ∈ {0,1}, then Pℓ(G) is isomorphic to the underlying
simple graph of Lℓ(G).

• If ℓ > 2, then Pℓ(G) is an induced subgraph of Lℓ(G).
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Path graphs

In the definition of ℓ-link simple graph, if the vertices are
ℓ-paths of G, then the constructed graph is the ℓ-path graph
Pℓ(G) introduced by Broersma and Hoede in 1989.

• By definition L0(G) = G and P1(G) = L(G) (Broersma
and Hoede, 1989).

• If ℓ ∈ {0,1}, then Pℓ(G) is isomorphic to the underlying
simple graph of Lℓ(G).

• If ℓ > 2, then Pℓ(G) is an induced subgraph of Lℓ(G).

• If G is simple and ℓ ∈ {0,1,2}, then Pℓ(G) = Lℓ(G).
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Path graphs

In the definition of ℓ-link simple graph, if the vertices are
ℓ-paths of G, then the constructed graph is the ℓ-path graph
Pℓ(G) introduced by Broersma and Hoede in 1989.

• By definition L0(G) = G and P1(G) = L(G) (Broersma
and Hoede, 1989).

• If ℓ ∈ {0,1}, then Pℓ(G) is isomorphic to the underlying
simple graph of Lℓ(G).

• If ℓ > 2, then Pℓ(G) is an induced subgraph of Lℓ(G).

• If G is simple and ℓ ∈ {0,1,2}, then Pℓ(G) = Lℓ(G).

• If girth(G) > ℓ > 2 then Pℓ(G) = Lℓ(G).
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ℓ-arc graphs

Godsil and Royle [Algebraic graph theory] defined the ℓ-arc
graph Aℓ(G) of G as the digraph with vertices the ℓ-arcs of
G. If an ℓ-arc ~L can be shunted to another ~R in one step,
then there is an arc from ~L to ~R in Aℓ(G).

e1 e2 e3

u

v

(u, e1, v)
e1

e2e3

(v, e1, u)

[u, e1, v, e2, u][u, e1, v, e3, u]

(u, e2, v) (v, e2, u)

(u, e3, v) (v, e3, u)

[v, e2, u, e3, v]

[v, e1, u, e3, v]
[v, e1, u, e2, v]

[u, e2, v, e3, u]

(u, e3, v, e1, u)

(v, e2, u, e3, v)

(u, e1, v, e3, u)

(v, e2, u, e1, v)

(v, e3, u, e1, v)

(u, e2, v, e1, u)

(u, e2, v, e3, u)

(v, e1, u, e3, v)

(a) (b) (c)

Figure: A multigraph, its 1-arc graph, and 1-link graph
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Incidence patterns

Introduced by Grünbaum (1969), an incidence pattern is a
function that maps given graphs or similar objects to graphs.
So the constructions of line graphs, ℓ-path graphs, ℓ-arc
graphs and ℓ-link graphs are all incidence patterns. Two
general problems have been proposed by Grunbaum as the
characterization of constructed graphs and the
determination of original graphs.
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R&D problems

Grünbaum’s general problems for incidence pattern can be
stated more precisely for ℓ-link graphs. For each integer
ℓ > 0 and every finite graph H:

Recognition problem Decide whether H is an ℓ-link graph.

Determination problem Find the set of ℓ-roots of H.
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0-link graph

• Each simple graph is a 0-path graph of itself.

Figure: It is worthy to define the ℓ-link graphs to be multigraphs
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0-link graph

• Each simple graph is a 0-path graph of itself.

• The 0-path graph of a graph G is the underlying simple
graph of G.

Figure: It is worthy to define the ℓ-link graphs to be multigraphs
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0-link graph

• Each simple graph is a 0-path graph of itself.

• The 0-path graph of a graph G is the underlying simple
graph of G.

• Each graph is a 0-link graph of itself.

Figure: It is worthy to define the ℓ-link graphs to be multigraphs
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Line graph
[J. Krausz, 1943] A graph is a line graph of some simple
graph if and only if it is simple and admits a partition of
edges in which each part induces a complete subgraph so
that every vertex lies in at most two of these subgraphs.

Figure: Characterization of line graphs
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Line graph
[J. Krausz, 1943] A graph is a line graph of some simple
graph if and only if it is simple and admits a partition of
edges in which each part induces a complete subgraph so
that every vertex lies in at most two of these subgraphs.

• The statement may be false for multigraphs.

Figure: Characterization of line graphs
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1-link graph
A graph H is a 1-link graph if and only if

• E(H) can be partitioned such that each part induces a
complete simple subgraph of H;

Figure: A line graph is a underlying simple graph of a 1-link graph
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1-link graph
A graph H is a 1-link graph if and only if

• E(H) can be partitioned such that each part induces a
complete simple subgraph of H;

• and each vertex of H is in at most two such subgraphs.

Figure: A line graph is a underlying simple graph of a 1-link graph
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line graphs VS 1-link graphs

Let H be a simple graph. The following are equivalent:

• H is a line graph (introduced by Whitney, 1932).
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line graphs VS 1-link graphs

Let H be a simple graph. The following are equivalent:

• H is a line graph (introduced by Whitney, 1932).

• H is a 1-path graph (Defined by Broersma and Hoede,
1989).
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line graphs VS 1-link graphs

Let H be a simple graph. The following are equivalent:

• H is a line graph (introduced by Whitney, 1932).

• H is a 1-path graph (Defined by Broersma and Hoede,
1989).

• By duplicating some edges of H we can obtain a 1-link
graph.
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line graphs VS 1-link graphs

Let H be a simple graph. The following are equivalent:

• H is a line graph (introduced by Whitney, 1932).

• H is a 1-path graph (Defined by Broersma and Hoede,
1989).

• By duplicating some edges of H we can obtain a 1-link
graph.

• By duplicating some edges we can obtain a graph H ′

which admits an edge partition such that each part
induces a complete simple subgraph of H ′, and that
each vertex of H ′ is in at most two such subgraphs.
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Whitney’s isomorphism theorem

The line graphs of K3 and K1,3 are isomorphic to K3. The
line graphs of K0 and K1 are isomorphic to K0. These are
the only pairs of nonisomorphic connected graphs with
isomorphic line graphs.
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Whitney’s isomorphism theorem

The line graphs of K3 and K1,3 are isomorphic to K3. The
line graphs of K0 and K1 are isomorphic to K0. These are
the only pairs of nonisomorphic connected graphs with
isomorphic line graphs.

• We characterised all nonisomorphic pairs with
isomorphic 1-link graphs.

e1

e2 e3

e4
f1

f2

e

e1

e2 e3

e4

f1
f2

e

e1 f1 e4

f2e2 e3

e

X X’ The 1-link graph of X (X’)

Figure: A pair of connected graphs with isomorphic 1-link graphs
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From multigraphs to simple graphs

For s > 1 and each graph G, (Lℓ(G))〈s〉 ∼= Lℓs(G〈s〉).
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From multigraphs to simple graphs

For s > 1 and each graph G, (Lℓ(G))〈s〉 ∼= Lℓs(G〈s〉).

• (L1(G))〈s〉 ∼= Ls(G〈s〉).
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From multigraphs to simple graphs

For s > 1 and each graph G, (Lℓ(G))〈s〉 ∼= Lℓs(G〈s〉).

• (L1(G))〈s〉 ∼= Ls(G〈s〉).

• This projects multigraphs to simple graphs.

X<2> X ′<2> The 2-link graph of X<2> (X ′<2>)

Figure: A pair of connected graphs with isomorphic 2-link
(2-path) graphs
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Applications of Whitney’s theorem

Xueliang Li and Yan Liu proved that there exists no triple of
nonnull connected simple graphs with isomorphic
connected 2-path graphs.
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Applications of Whitney’s theorem

Xueliang Li and Yan Liu proved that there exists no triple of
nonnull connected simple graphs with isomorphic
connected 2-path graphs.

• (L1(G))〈2〉 ∼= L2(G〈2〉).
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Applications of Whitney’s theorem

Xueliang Li and Yan Liu proved that there exists no triple of
nonnull connected simple graphs with isomorphic
connected 2-path graphs.

• (L1(G))〈2〉 ∼= L2(G〈2〉).

• There exists no triple of connected graphs with
isomorphic 1-link graphs.
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Uniqueness of original graphs

Xueliang Li proved that simple graphs of minimum degree
> 3 are isomorphic if and only if their 2-path graphs are
isomorphic. Li also conjectured that the assertion is true
when minimum degree is 2, which was shown to be false by
Aldred et al.



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

Uniqueness of original graphs

Xueliang Li proved that simple graphs of minimum degree
> 3 are isomorphic if and only if their 2-path graphs are
isomorphic. Li also conjectured that the assertion is true
when minimum degree is 2, which was shown to be false by
Aldred et al.

• (L1(G))〈ℓ〉 ∼= Lℓ(G〈ℓ〉).
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Uniqueness of original graphs

Xueliang Li proved that simple graphs of minimum degree
> 3 are isomorphic if and only if their 2-path graphs are
isomorphic. Li also conjectured that the assertion is true
when minimum degree is 2, which was shown to be false by
Aldred et al.

• (L1(G))〈ℓ〉 ∼= Lℓ(G〈ℓ〉).

• For each ℓ > 2, there are infinitely many pairs of simple
graphs of minimum degree 2 with isomorphic ℓ-link
(and ℓ-path) graphs.
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Uniqueness of original graphs

Let ℓ, s > 2, and G and X be connected graphs of δ(G) > 3
such that G is simple and Lℓ(G) ∼= Ls(X ). In each of the
following cases, ℓ = s, G ∼= X , Aut(G) ∼= Aut(Lℓ(G)), and
every isomorphism from Lℓ(G) to Ls(X ) is induced by an
isomorphism from G to X :
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Uniqueness of original graphs

Let ℓ, s > 2, and G and X be connected graphs of δ(G) > 3
such that G is simple and Lℓ(G) ∼= Ls(X ). In each of the
following cases, ℓ = s, G ∼= X , Aut(G) ∼= Aut(Lℓ(G)), and
every isomorphism from Lℓ(G) to Ls(X ) is induced by an
isomorphism from G to X :

• ∆(G) > 4.
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Uniqueness of original graphs

Let ℓ, s > 2, and G and X be connected graphs of δ(G) > 3
such that G is simple and Lℓ(G) ∼= Ls(X ). In each of the
following cases, ℓ = s, G ∼= X , Aut(G) ∼= Aut(Lℓ(G)), and
every isomorphism from Lℓ(G) to Ls(X ) is induced by an
isomorphism from G to X :

• ∆(G) > 4.

• G contains a triangle.
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Uniqueness of original graphs

Let ℓ, s > 2, and G and X be connected graphs of δ(G) > 3
such that G is simple and Lℓ(G) ∼= Ls(X ). In each of the
following cases, ℓ = s, G ∼= X , Aut(G) ∼= Aut(Lℓ(G)), and
every isomorphism from Lℓ(G) to Ls(X ) is induced by an
isomorphism from G to X :

• ∆(G) > 4.

• G contains a triangle.

• girth(G) > 5 and X contains an (s − 1)-link whose end
vertices are of degree at least 3.
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Recognition and determination
algorithms

Roussopoulos (1973) gave an max{m,n}-time algorithm for
determining the simple graph G from its line graph H.
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Recognition and determination
algorithms

Roussopoulos (1973) gave an max{m,n}-time algorithm for
determining the simple graph G from its line graph H.

• A graph is a 1-link graph if and only if it is the induced
subgraph of the strong product of the line graph of a
simple graph and some K 2

t .
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Recognition and determination
algorithms

Roussopoulos (1973) gave an max{m,n}-time algorithm for
determining the simple graph G from its line graph H.

• A graph is a 1-link graph if and only if it is the induced
subgraph of the strong product of the line graph of a
simple graph and some K 2

t .

• It costs linear time O(m) to decide if H is a 1-link graph,
and to find all its 1-roots.
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Recognition and determination
algorithms

Roussopoulos (1973) gave an max{m,n}-time algorithm for
determining the simple graph G from its line graph H.

• A graph is a 1-link graph if and only if it is the induced
subgraph of the strong product of the line graph of a
simple graph and some K 2

t .

• It costs linear time O(m) to decide if H is a 1-link graph,
and to find all its 1-roots.

• For each finite graph H, it costs linear time O(m) to
decide whether there exists an integer ℓ > 1 and a
graph G with δ(G) > 3, such that H ∼= Lℓ(G).
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Recognition and determination
algorithms

Roussopoulos (1973) gave an max{m,n}-time algorithm for
determining the simple graph G from its line graph H.

• A graph is a 1-link graph if and only if it is the induced
subgraph of the strong product of the line graph of a
simple graph and some K 2

t .

• It costs linear time O(m) to decide if H is a 1-link graph,
and to find all its 1-roots.

• For each finite graph H, it costs linear time O(m) to
decide whether there exists an integer ℓ > 1 and a
graph G with δ(G) > 3, such that H ∼= Lℓ(G).

• All such pairs (G, ℓ) can be obtained in linear time
O(m).
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2-link graph
Let H be a 2-link graph. Then it has a vertex partition V and
an edge partition E such that

• Each part of V is an independent set of H;

G

2-link graph of G

Figure: A 2-link graph of a simple graph is a 2-path graph
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2-link graph
Let H be a 2-link graph. Then it has a vertex partition V and
an edge partition E such that

• Each part of V is an independent set of H;
• Each part of E induces a complete bipartite graph.

G

2-link graph of G

Figure: A 2-link graph of a simple graph is a 2-path graph
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Standard partition

(V, E) is called a standard partition of H if further:

independent sets

complete bipartite subgraph

Figure: The ℓ-link graph of a cycle is itself
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Standard partition

(V, E) is called a standard partition of H if further:

independent sets

complete bipartite subgraph

Figure: The ℓ-link graph of a cycle is itself
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Standard partition

(V, E) is called a standard partition of H if further:

• Each part of E is incident to exactly two parts of V.

independent sets

complete bipartite subgraph

Figure: The ℓ-link graph of a cycle is itself
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Standard partition

(V, E) is called a standard partition of H if further:

• Each part of E is incident to exactly two parts of V.

• Each vertex of H is incident to exactly two parts of E .

independent sets

complete bipartite subgraph

Figure: The ℓ-link graph of a cycle is itself
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Characterization of 2-link graphs
A graph is a 2-link graph of some graph of minimum degree
at least 2 if and only if it admits a standard partition (V, E)
such that:

Figure: The 2-link graph of K4
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Characterization of 2-link graphs
A graph is a 2-link graph of some graph of minimum degree
at least 2 if and only if it admits a standard partition (V, E)
such that:

• If E ,F ∈ E are incident to some V ∈ V, then they are
incident to exactly one vertex of V .

Figure: The 2-link graph of K4
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Characterization of 2-link graphs
A graph is a 2-link graph of some graph of minimum degree
at least 2 if and only if it admits a standard partition (V, E)
such that:

• If E ,F ∈ E are incident to some V ∈ V, then they are
incident to exactly one vertex of V .

Figure: The 2-link graph of K4

• H ∼= L2(G), where G := H(V ,E).
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Reduction of ℓ-links

• Let ℓ ≥ 2. Then an ℓ-link of G corresponds to a 2-link of
the (ℓ− 2)-link graph of G.
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Reduction of ℓ-links

• Let ℓ ≥ 2. Then an ℓ-link of G corresponds to a 2-link of
the (ℓ− 2)-link graph of G.

•
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Reduction of ℓ-links

• Let ℓ ≥ 2. Then an ℓ-link of G corresponds to a 2-link of
the (ℓ− 2)-link graph of G.

•

• But not vice versa.
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Reduction of ℓ-links

• Let ℓ ≥ 2. Then an ℓ-link of G corresponds to a 2-link of
the (ℓ− 2)-link graph of G.

•

• But not vice versa.

• Lℓ(G) is an induced subgraph of the 2-link graph of
Lℓ−2(G).
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Characterization of 3-links graphs
Let H be a graph. Then H is a 3-link graph of some graph of
minimum degree at least 2 if and only if there is a standard
partition (V, E) of H and a partition K of E such that:

• H(V ,E) is a 1-link graph with an edge partition K.

Figure: We only choose 2-links with two different colors
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Characterization of 3-links graphs
Let H be a graph. Then H is a 3-link graph of some graph of
minimum degree at least 2 if and only if there is a standard
partition (V, E) of H and a partition K of E such that:

• H(V ,E) is a 1-link graph with an edge partition K.
• If E ,F ∈ E are incident to V ∈ V in H(V ,E),

Figure: We only choose 2-links with two different colors
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Characterization of 3-links graphs
Let H be a graph. Then H is a 3-link graph of some graph of
minimum degree at least 2 if and only if there is a standard
partition (V, E) of H and a partition K of E such that:

• H(V ,E) is a 1-link graph with an edge partition K.
• If E ,F ∈ E are incident to V ∈ V in H(V ,E),
• then they are incident in H if and only if E and F are in

different parts of K.

Figure: We only choose 2-links with two different colors
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Characterization of ℓ-link graphs
Let ℓ ≥ 4 be an integer. Then a graph H is an ℓ-link graph of
a graph of minimum degree at least 2 if and only if H admits
a standard partition (V, E) such that:

• H(V ,E) is an (ℓ− 2)-link graph of a graph of minimum
degree at least 2, with a standard partition (Vℓ−2, Eℓ−2).

Figure: We only choose 2-links with two different colors
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Characterization of ℓ-link graphs
Let ℓ ≥ 4 be an integer. Then a graph H is an ℓ-link graph of
a graph of minimum degree at least 2 if and only if H admits
a standard partition (V, E) such that:

• H(V ,E) is an (ℓ− 2)-link graph of a graph of minimum
degree at least 2, with a standard partition (Vℓ−2, Eℓ−2).

• For any two different parts E ,F of E and any part V of
V, E ,F and V are incident at one vertex of H if and
only if EE and FE are incident to VV , and correspond to
two edges of H(V ,E) that are in different parts of Eℓ−2.

Figure: We only choose 2-links with two different colors
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Chromatic number

Recall that the chromatic number χ(G) of G is the smallest
integer t ≥ 0 such that V (G) can be colored by t colors and
any two adjacent vertices are assigned to different colors.
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Coloring 2-link graphs
Let H be a 2-link graph of G. Then

• H is homomorphic to G.

1

3
2

4

1

3 2

4

Figure: H inherits a coloring from G
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Coloring 2-link graphs

Let H be a 2-link graph of G. Then

• H is homomorphic to G.

• So H can be colored by {1,2, . . . , χ := χ(G)}.

1

3
2

4

1

3 2

4

Figure: H inherits a coloring from G
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Every vertex of H is adjacent to at most two parts of V.

• For each v ∈ V (H) colored by χ,

1

3
2

4

1

3 2

4
1
4

Figure: Change a color to the smallest possible integer
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Every vertex of H is adjacent to at most two parts of V.

• For each v ∈ V (H) colored by χ,

• the color of v can be replaced by one of {1,2,3}.

1

3
2

4

1

3 2

4
1
4

Figure: Change a color to the smallest possible integer
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H is homomorphic to G, so H can be colored by the color
set {1,2, . . . , χ(G)}. For each v ∈ V (H) colored by χ, the
color of v can be replaced by one of {1,2,3}.

1

3
2

4

1

3 2

2
1
4

Figure: Change a color to the smallest possible integer
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Let χℓ := χ(Lℓ(G)).

• Repeat the process we obtain χ2 ≤ ⌊2χ
3 ⌋+ 1.

1

3
2

4

1

3 2

2
1
3

Figure: Change a color to the smallest possible integer
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Let χℓ := χ(Lℓ(G)).

• Repeat the process we obtain χ2 ≤ ⌊2χ
3 ⌋+ 1.

• Note Lℓ(G) is a subgraph of the 2-link graph of
Lℓ−2(G).

1

3
2

4

1

3 2

2
1
3

Figure: Change a color to the smallest possible integer
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Let χℓ := χ(Lℓ(G)).

• Repeat the process we obtain χ2 ≤ ⌊2χ
3 ⌋+ 1.

• Note Lℓ(G) is a subgraph of the 2-link graph of
Lℓ−2(G).

• So χℓ ≤ ⌊
2χℓ−2

3 ⌋+ 1.

1

3
2

4

1

3 2

2
1
3

Figure: Change a color to the smallest possible integer
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Let G be a graph with maximum degree ∆, chromatic
number χ and edge chromatic number χ′. Let ℓ ≥ 0 be an
integer and χℓ be the chromatic number of the ℓ-link graph
of G. Then

• If ℓ ≥ 0 is even, then χℓ ≤ min{χ, ⌊(2
3 )

ℓ/2(χ− 3)⌋+ 3}.
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Let G be a graph with maximum degree ∆, chromatic
number χ and edge chromatic number χ′. Let ℓ ≥ 0 be an
integer and χℓ be the chromatic number of the ℓ-link graph
of G. Then

• If ℓ ≥ 0 is even, then χℓ ≤ min{χ, ⌊(2
3 )

ℓ/2(χ− 3)⌋+ 3}.

• If ℓ ≥ 1 is odd, then χℓ ≤ min{χ′, ⌊(2
3 )

ℓ−1
2 (χ′ − 3)⌋+ 3}.
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Let G be a graph with maximum degree ∆, chromatic
number χ and edge chromatic number χ′. Let ℓ ≥ 0 be an
integer and χℓ be the chromatic number of the ℓ-link graph
of G. Then

• If ℓ ≥ 0 is even, then χℓ ≤ min{χ, ⌊(2
3 )

ℓ/2(χ− 3)⌋+ 3}.

• If ℓ ≥ 1 is odd, then χℓ ≤ min{χ′, ⌊(2
3 )

ℓ−1
2 (χ′ − 3)⌋+ 3}.

• If ℓ ≥ 2, then χℓ ≤ χℓ−2.



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

Let G be a graph with maximum degree ∆, chromatic
number χ and edge chromatic number χ′. Let ℓ ≥ 0 be an
integer and χℓ be the chromatic number of the ℓ-link graph
of G. Then

• If ℓ ≥ 0 is even, then χℓ ≤ min{χ, ⌊(2
3 )

ℓ/2(χ− 3)⌋+ 3}.

• If ℓ ≥ 1 is odd, then χℓ ≤ min{χ′, ⌊(2
3 )

ℓ−1
2 (χ′ − 3)⌋+ 3}.

• If ℓ ≥ 2, then χℓ ≤ χℓ−2.

• Recall that χ′ ≤ 3
2∆ (Shannon, 1949).

• If ℓ 6= 1, then χℓ ≤ ∆+ 1.
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Let G be a graph with maximum degree ∆, chromatic
number χ and edge chromatic number χ′. Let ℓ ≥ 0 be an
integer and χℓ be the chromatic number of the ℓ-link graph
of G. Then

• If ℓ ≥ 0 is even, then χℓ ≤ min{χ, ⌊(2
3 )

ℓ/2(χ− 3)⌋+ 3}.

• If ℓ ≥ 1 is odd, then χℓ ≤ min{χ′, ⌊(2
3 )

ℓ−1
2 (χ′ − 3)⌋+ 3}.

• If ℓ ≥ 2, then χℓ ≤ χℓ−2.

• Recall that χ′ ≤ 3
2∆ (Shannon, 1949).

• If ℓ 6= 1, then χℓ ≤ ∆+ 1.

• Lℓ(G) is tripartite for all ℓ > 5 ln(∆− 2) + 3.
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Let G be a graph with maximum degree ∆, chromatic
number χ and edge chromatic number χ′. Let ℓ ≥ 0 be an
integer and χℓ be the chromatic number of the ℓ-link graph
of G. Then

• If ℓ ≥ 0 is even, then χℓ ≤ min{χ, ⌊(2
3 )

ℓ/2(χ− 3)⌋+ 3}.

• If ℓ ≥ 1 is odd, then χℓ ≤ min{χ′, ⌊(2
3 )

ℓ−1
2 (χ′ − 3)⌋+ 3}.

• If ℓ ≥ 2, then χℓ ≤ χℓ−2.

• Recall that χ′ ≤ 3
2∆ (Shannon, 1949).

• If ℓ 6= 1, then χℓ ≤ ∆+ 1.

• Lℓ(G) is tripartite for all ℓ > 5 ln(∆− 2) + 3.

• χℓ ≤ 6 if ℓ > 5 ln(∆− 2)− 3.8.
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Edge Contraction

u

w

v u v

w

u(v)

w

Figure: Contracting the edge uv
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Graph minors

Let G be a finite graph.

• A graph is said to be a minor of G if it can be obtained
from a subgraph of G by contracting edges.
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Graph minors

Let G be a finite graph.

• A graph is said to be a minor of G if it can be obtained
from a subgraph of G by contracting edges.

• The Hadwiger number η(G) is the maximal number t
such that G has Kt as a minor.
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Hadwiger and chromatic numbers

1

1

2

2

3

2

3

3

Hadwiger number

Chromatic number

• In the above examples, we have η(G) ≥ χ(G).
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Hadwiger and chromatic numbers

1

1

2

2

3

2

3

3

Hadwiger number

Chromatic number

• In the above examples, we have η(G) ≥ χ(G).

• Hadwiger’s conjecture states that:
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Hadwiger and chromatic numbers

1

1

2

2

3

2

3

3

Hadwiger number

Chromatic number

• In the above examples, we have η(G) ≥ χ(G).

• Hadwiger’s conjecture states that:

• For every finite graph G, η(G) ≥ χ(G).
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Graph minors of link graphs

Let G be a graph of δ(G) > 2, and X be a connected
subgraph of G containing at least one ℓ-link. Then
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Graph minors of link graphs

Let G be a graph of δ(G) > 2, and X be a connected
subgraph of G containing at least one ℓ-link. Then

• For any two ℓ-links of X , one can be shunted to the
other under the restriction that



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

Graph minors of link graphs

Let G be a graph of δ(G) > 2, and X be a connected
subgraph of G containing at least one ℓ-link. Then

• For any two ℓ-links of X , one can be shunted to the
other under the restriction that

• the middle vertices or edges of the images are inside X .
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Graph minors of link graphs

Let G be a graph of δ(G) > 2, and X be a connected
subgraph of G containing at least one ℓ-link. Then

• For any two ℓ-links of X , one can be shunted to the
other under the restriction that

• the middle vertices or edges of the images are inside X .

•
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Clique minors

If G contains an (ℓ, t)-system, then the ℓ-link graph of G
contains a Kt -minor.

Figure: An (ℓ, 10)-system implies a K10-minor
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Hadwiger’s conjecture

• So far the best progress in Hadwiger’s conjecture is
achieved by Robertson, Seymour and Thomas in 1993.
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Hadwiger’s conjecture

• So far the best progress in Hadwiger’s conjecture is
achieved by Robertson, Seymour and Thomas in 1993.

• They proved the conjecture is true for all graphs G of
χ(G) ≤ 6.
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Hadwiger’s conjecture

• So far the best progress in Hadwiger’s conjecture is
achieved by Robertson, Seymour and Thomas in 1993.

• They proved the conjecture is true for all graphs G of
χ(G) ≤ 6.

• In 2004, Reed and Seymour proved that the conjecture
is true for all line graphs,
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Hadwiger’s conjecture

• So far the best progress in Hadwiger’s conjecture is
achieved by Robertson, Seymour and Thomas in 1993.

• They proved the conjecture is true for all graphs G of
χ(G) ≤ 6.

• In 2004, Reed and Seymour proved that the conjecture
is true for all line graphs,

• which is equivalent to say, Hadwiger’s conjecture is true
for all 1-link graphs.
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Our results

Hadwiger’s conjecture for 0-link graphs is equivalent to the
conjecture itself. We proved the conjecture for ℓ-link graphs
of a graph G such that:

• ℓ > 5 ln(∆(G)− 2)− 3.8.
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Our results

Hadwiger’s conjecture for 0-link graphs is equivalent to the
conjecture itself. We proved the conjecture for ℓ-link graphs
of a graph G such that:

• ℓ > 5 ln(∆(G)− 2)− 3.8.

• δ(G) ≥ 3 and ℓ ≥ 1.
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Our results

Hadwiger’s conjecture for 0-link graphs is equivalent to the
conjecture itself. We proved the conjecture for ℓ-link graphs
of a graph G such that:

• ℓ > 5 ln(∆(G)− 2)− 3.8.

• δ(G) ≥ 3 and ℓ ≥ 1.

• ℓ ≥ 2 is an even integer.
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Our results

Hadwiger’s conjecture for 0-link graphs is equivalent to the
conjecture itself. We proved the conjecture for ℓ-link graphs
of a graph G such that:

• ℓ > 5 ln(∆(G)− 2)− 3.8.

• δ(G) ≥ 3 and ℓ ≥ 1.

• ℓ ≥ 2 is an even integer.

• G is biconnected and ℓ ≥ 1.
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Our results

Hadwiger’s conjecture for 0-link graphs is equivalent to the
conjecture itself. We proved the conjecture for ℓ-link graphs
of a graph G such that:

• ℓ > 5 ln(∆(G)− 2)− 3.8.

• δ(G) ≥ 3 and ℓ ≥ 1.

• ℓ ≥ 2 is an even integer.

• G is biconnected and ℓ ≥ 1.

• Another interesting result we obtained was that, if G
contains a cycle, then η(Lℓ(G)) ≥ η(G) for all ℓ ≥ 0.
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Minimal roots of cycles
Let Rℓ(H) be the set of ℓ-roots of H; that is, minimal graphs
G such that Lℓ(G) ∼= H.
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Minimal roots of cycles
Let Rℓ(H) be the set of ℓ-roots of H; that is, minimal graphs
G such that Lℓ(G) ∼= H.

• By Whitney, R1(K3) = {K3,K1,3}.
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Minimal roots of cycles
Let Rℓ(H) be the set of ℓ-roots of H; that is, minimal graphs
G such that Lℓ(G) ∼= H.

• By Whitney, R1(K3) = {K3,K1,3}.

• |Rℓ(O)| ∈ {1,2}.
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Minimal roots of cycles
Let Rℓ(H) be the set of ℓ-roots of H; that is, minimal graphs
G such that Lℓ(G) ∼= H.

• By Whitney, R1(K3) = {K3,K1,3}.

• |Rℓ(O)| ∈ {1,2}.

• Cycles with two minimal ℓ-roots
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Minimal 0,1,2-roots of 2K1

• R0(2K1) = 2K1.
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Minimal 0,1,2-roots of 2K1

• R0(2K1) = 2K1.

• R1(2K1) = 2K2.
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Minimal 0,1,2-roots of 2K1

• R0(2K1) = 2K1.

• R1(2K1) = 2K2.

• R2(2K1) = 2P2.
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Minimal 3-roots of 2K1

|R3(2K1)| = 2

2K1 ∪K2
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Minimal 4-roots of 2K1

|R4(2K1)| = 2

3K1
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Minimal 5-roots of 2K1

|R5(2K1)| = 3. In general, |Rℓ(2K1)| is 1 if ℓ = 0, and is
⌊ ℓ+1

2 ⌋ if ℓ > 1.



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

Minimal 5-roots of a tree
The 5-link graph of the whole tree TP is the black subtree T.
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Minimal 5-roots of a tree
L5(T P) ∼= T . Every 5-link has a unique black end; Every
black node is the end of a unique 5-link. This gives a
bijection between the 5-links of the whole tree TP and the
nodes of the black subtree T.
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TP1
L5(T P1) ∼= T .
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TP2

L5(T P2) ∼= T .
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TP3
L5(T P3) ∼= T .
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TP4
L5(T P4) ∼= T .
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Minimal 5-roots of a tree

L5(T P) ∼= T .
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Minimal ℓ-roots of a tree

For fixed ℓ > 4 and any given number k , there exists a tree
T with |Rℓ(T )| > k .
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Bounding minimal roots

Let ℓ > 0 be an integer, and H be a finite graph. Then the
maximum degree, order, size, and total number of minimal
ℓ-roots of H are finite and bounded by functions of H and ℓ.
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Bounding minimal roots

Let ℓ > 0 be an integer, and H be a finite graph. Then the
maximum degree, order, size, and total number of minimal
ℓ-roots of H are finite and bounded by functions of H and ℓ.

• If the order and size are bounded, then other
parameters above are trivially bounded.
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Bounding minimal roots

Let ℓ > 0 be an integer, and H be a finite graph. Then the
maximum degree, order, size, and total number of minimal
ℓ-roots of H are finite and bounded by functions of H and ℓ.

• If the order and size are bounded, then other
parameters above are trivially bounded.

• However, we improve the upper bounds by further
investigating the structure of ℓ-link graphs.
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Bounding minimal roots

Let ℓ > 0 be an integer, and H be a finite graph. Then the
maximum degree, order, size, and total number of minimal
ℓ-roots of H are finite and bounded by functions of H and ℓ.

• If the order and size are bounded, then other
parameters above are trivially bounded.

• However, we improve the upper bounds by further
investigating the structure of ℓ-link graphs.

• This is important in proving that the recognition problem
belongs to NP .
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Minimal path roots

We say G is an ℓ-path root of H if Pℓ(G) ∼= H. Let Qℓ(H) be
the set of minimal ℓ-path roots of H.
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Minimal path roots

We say G is an ℓ-path root of H if Pℓ(G) ∼= H. Let Qℓ(H) be
the set of minimal ℓ-path roots of H.

• Xueliang Li (1996) proved that H has at most one
simple 2-path root of minimum degree at least 3.
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Minimal path roots

We say G is an ℓ-path root of H if Pℓ(G) ∼= H. Let Qℓ(H) be
the set of minimal ℓ-path roots of H.

• Xueliang Li (1996) proved that H has at most one
simple 2-path root of minimum degree at least 3.

• Prisner (2000) showed that Qℓ(H) contains at most one
simple graph of minimum degree greater than ℓ.
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Minimal path roots

We say G is an ℓ-path root of H if Pℓ(G) ∼= H. Let Qℓ(H) be
the set of minimal ℓ-path roots of H.

• Xueliang Li (1996) proved that H has at most one
simple 2-path root of minimum degree at least 3.

• Prisner (2000) showed that Qℓ(H) contains at most one
simple graph of minimum degree greater than ℓ.

• Li and Yan Liu (2008) proved that, if H is connected and
nonnull, then Q2(H) contains at most two simple
graphs.
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Minimal path roots

We say G is an ℓ-path root of H if Pℓ(G) ∼= H. Let Qℓ(H) be
the set of minimal ℓ-path roots of H.

• Xueliang Li (1996) proved that H has at most one
simple 2-path root of minimum degree at least 3.

• Prisner (2000) showed that Qℓ(H) contains at most one
simple graph of minimum degree greater than ℓ.

• Li and Yan Liu (2008) proved that, if H is connected and
nonnull, then Q2(H) contains at most two simple
graphs.

• The finite graphs having exactly two simple minimal
2-path roots have been characterised by Aldred,
Ellingham, Hemminger and Jipsen (1997).
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Bounding minimal path roots

Let ℓ > 0 be an integer, and H be a finite graph. We prove
the following:
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Bounding minimal path roots

Let ℓ > 0 be an integer, and H be a finite graph. We prove
the following:

• The order, size, and total number of minimal ℓ-path
roots of H are finite and bounded by functions of H and
ℓ.
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Infiniteness of ℓ-roots

The maximum degree, order, size, and total number of
ℓ-roots of a finite graph might be infinite.
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Infiniteness of ℓ-roots

The maximum degree, order, size, and total number of
ℓ-roots of a finite graph might be infinite.

• The ℓ-roots of K0 are trees of diameter at most ℓ− 1.
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Infiniteness of ℓ-roots

The maximum degree, order, size, and total number of
ℓ-roots of a finite graph might be infinite.

• The ℓ-roots of K0 are trees of diameter at most ℓ− 1.

• ....... .......

Figure: All stars are 3-roots of K0
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4-roots of K1

The maximum degree, order, size, and total number of
ℓ-roots of a finite graph might be infinite.
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4-roots of K1

The maximum degree, order, size, and total number of
ℓ-roots of a finite graph might be infinite.

• An ℓ-root of K1 is a forest containing exactly one ℓ-path
as a subgraph.

...............

...
...

Figure: Connected 4-roots of K1
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Constructing all ℓ-roots

Let G be the minimal graph of an ℓ-equivalence class. Then
a graph belongs to this class if and only if it can be obtained
from G as follows:
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Constructing all ℓ-roots

Let G be the minimal graph of an ℓ-equivalence class. Then
a graph belongs to this class if and only if it can be obtained
from G as follows:

• For each acyclic component T of G of diameter within
[ℓ,2ℓ− 4], and every vertex u of eccentricity s in T such
that ⌈ℓ/2⌉ 6 s 6 ℓ− 2,
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Constructing all ℓ-roots

Let G be the minimal graph of an ℓ-equivalence class. Then
a graph belongs to this class if and only if it can be obtained
from G as follows:

• For each acyclic component T of G of diameter within
[ℓ,2ℓ− 4], and every vertex u of eccentricity s in T such
that ⌈ℓ/2⌉ 6 s 6 ℓ− 2,

• paste to u the root of a rooted tree of height at most
ℓ− s − 1.
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Constructing all ℓ-roots

Let G be the minimal graph of an ℓ-equivalence class. Then
a graph belongs to this class if and only if it can be obtained
from G as follows:

• For each acyclic component T of G of diameter within
[ℓ,2ℓ− 4], and every vertex u of eccentricity s in T such
that ⌈ℓ/2⌉ 6 s 6 ℓ− 2,

• paste to u the root of a rooted tree of height at most
ℓ− s − 1.

• Add to G zero or more acyclic components of diameter
at most ℓ− 1.
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Constructing 4-roots of K1

Every ℓ-root of a finite graph H can be constructed by a
certain combination of a minimal ℓ-root of H and trees of
bounded diameter.
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Constructing 4-roots of K1

Every ℓ-root of a finite graph H can be constructed by a
certain combination of a minimal ℓ-root of H and trees of
bounded diameter.

• An ℓ-root of K1 is a forest containing exactly one ℓ-path
as a subgraph.

...
...

...

Figure: Constructing 4-roots of K1 from a 4-path



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

ℓ-roots of a 3ℓ-cycles
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ℓ-roots of a 3ℓ-cycles

• A 6-cycle has two minimal 2-roots.
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ℓ-roots of a 3ℓ-cycles

• A 6-cycle has two minimal 2-roots.

• all 2-roots can be obtained by adding to one of them
disjoint vertices or edges.
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ℓ-roots of a 4s-cycles

...... ......
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ℓ-roots of a 4s-cycles

...... ......

• A 4-cycle has two minimal 5-roots.
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ℓ-roots of a 4s-cycles

...... ......

• A 4-cycle has two minimal 5-roots.

• There are infinitely many trees of which the 5-link graph
is a 4-cycle.
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Tree-decompositions

Let G be a graph, T be a tree, and V := {Vw |w ∈ V (T )} be
a set cover of V (G) indexed by the nodes of T . The pair
(T ,V) is called a tree-decomposition of G if . . .

T is a 4-path

V

G is K1,4
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Different indexes

Even if G, V and T are given, V can be indexed by V (T ) in
different ways.

12 paths in total



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

Different T
Even if G, V are given, there may be different T .

Figure: star- VS path-decomposition: diam(T)
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Tree-diameter of ℓ-roots

Let ℓ > 0 be an integer, and H be a finite graph. Then
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Tree-diameter of ℓ-roots

Let ℓ > 0 be an integer, and H be a finite graph. Then

• the tree-width and tree-diameter of the ℓ-roots and
ℓ-path roots of H are finite and bounded by functions of
H and ℓ.
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Quasi-ordering

A quasi-ordering is a binary relation 6 that is:
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Quasi-ordering

A quasi-ordering is a binary relation 6 that is:

• reflexive: x 6 x ; and
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Quasi-ordering

A quasi-ordering is a binary relation 6 that is:

• reflexive: x 6 x ; and

• transitive: if x 6 y and y 6 z, then x 6 z.
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Well-quasi-ordering

Let 6 be a quasi-ordering on X . X is said to be
well-quasi-ordered if
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Well-quasi-ordering

Let 6 be a quasi-ordering on X . X is said to be
well-quasi-ordered if

• for any infinite sequence x1, x2, . . . , of X
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Well-quasi-ordering

Let 6 be a quasi-ordering on X . X is said to be
well-quasi-ordered if

• for any infinite sequence x1, x2, . . . , of X

• there are indices i < j such that xi 6 xj .
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Well-quasi-ordering

Let 6 be a quasi-ordering on X . X is said to be
well-quasi-ordered if

• for any infinite sequence x1, x2, . . . , of X

• there are indices i < j such that xi 6 xj .

• The indices for well-quasi-ordering are 1 < 2 < 3 < . . .
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Better-quasi-ordering: indices

| 2 | 4 | 5 | 7 |
| 4 | 5 | 7 | 8 | 9 |

| 1 | 2 | 4 | 5 | | 1 |
| 2 |

| 4 |
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Better-quasi-ordering: indices

| 2 | 4 | 5 | 7 |
| 4 | 5 | 7 | 8 | 9 |

| 1 | 2 | 4 | 5 | | 1 |
| 2 |

| 4 |

• It includes the indices for well-quasi-ordering.
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Better-quasi-ordering: indices

| 2 | 4 | 5 | 7 |
| 4 | 5 | 7 | 8 | 9 |

| 1 | 2 | 4 | 5 | | 1 |
| 2 |

| 4 |

• It includes the indices for well-quasi-ordering.

• 1 ⊳ 2 ⊳ 4 ⊳ . . ..
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Better-quasi-ordering: indices

| 2 | 4 | 5 | 7 |
| 4 | 5 | 7 | 8 | 9 |

| 1 | 2 | 4 | 5 | | 1 |
| 2 |

| 4 |

• It includes the indices for well-quasi-ordering.

• 1 ⊳ 2 ⊳ 4 ⊳ . . ..

• (1,2,4,5) ⊳ (2,4,5,7) ⊳ (4,5,7,8,9).
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Better-quasi-ordering: blocks

A block B is a set of finite increasing sequences B1,B2, . . .
such that:
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Better-quasi-ordering: blocks

A block B is a set of finite increasing sequences B1,B2, . . .
such that:

• every infinite increasing sequence with elements in
B1 ∪ B2 ∪ . . .
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Better-quasi-ordering: blocks

A block B is a set of finite increasing sequences B1,B2, . . .
such that:

• every infinite increasing sequence with elements in
B1 ∪ B2 ∪ . . .

• has an initial finite subsequence that belongs to B.
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Better-quasi-ordering: blocks

A block B is a set of finite increasing sequences B1,B2, . . .
such that:

• every infinite increasing sequence with elements in
B1 ∪ B2 ∪ . . .

• has an initial finite subsequence that belongs to B.

• {1, 2, . . . } is a block.
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Better-quasi-ordering: blocks

A block B is a set of finite increasing sequences B1,B2, . . .
such that:

• every infinite increasing sequence with elements in
B1 ∪ B2 ∪ . . .

• has an initial finite subsequence that belongs to B.

• {1, 2, . . . } is a block.

• For example, for each n > 1, the set of increasing
sequence of N with n elements is a block.
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Better-quasi-ordering

Let Q be a set quasi-ordered by 6.



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

Better-quasi-ordering

Let Q be a set quasi-ordered by 6.

• A Q-pattern is a sequence of elements from Q that is
indexed by a block B.
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Better-quasi-ordering

Let Q be a set quasi-ordered by 6.

• A Q-pattern is a sequence of elements from Q that is
indexed by a block B.

• A Q-pattern is good if there are B ⊳ C in B, such that
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Better-quasi-ordering

Let Q be a set quasi-ordered by 6.

• A Q-pattern is a sequence of elements from Q that is
indexed by a block B.

• A Q-pattern is good if there are B ⊳ C in B, such that

• qB 6 qC. Otherwise, it is bad.
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Better-quasi-ordering

Let Q be a set quasi-ordered by 6.

• A Q-pattern is a sequence of elements from Q that is
indexed by a block B.

• A Q-pattern is good if there are B ⊳ C in B, such that

• qB 6 qC. Otherwise, it is bad.

• Q is better-quasi-ordered if there is NO bad Q-pattern.
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Better-quasi-ordering: ℓ-roots

The ℓ-roots of a finite graph are better-quasi-ordered by the
induced subgraph relation.
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Better-quasi-ordering: ℓ-roots

The ℓ-roots of a finite graph are better-quasi-ordered by the
induced subgraph relation.

• The ℓ-path roots of a finite graph are
better-quasi-ordered by the subgraph relation.



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

Better-quasi-ordering: ℓ-roots

The ℓ-roots of a finite graph are better-quasi-ordered by the
induced subgraph relation.

• The ℓ-path roots of a finite graph are
better-quasi-ordered by the subgraph relation.

• The ℓ-path roots of bounded multiplicity of a finite graph
are better-quasi-ordered by the induced subgraph
relation.
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Better-quasi-ordering: ℓ-roots

The ℓ-roots of a finite graph are better-quasi-ordered by the
induced subgraph relation.

• The ℓ-path roots of a finite graph are
better-quasi-ordered by the subgraph relation.

• The ℓ-path roots of bounded multiplicity of a finite graph
are better-quasi-ordered by the induced subgraph
relation.

• Trees of bounded diameter are better-quasi-ordered by
the induced subgraph relation.
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ℓ-path-free graphs
Let H be a finite planar graph. Robertson and Seymour
(1986, 1990) proved that finite H-minor-free graphs are
well-quasi-ordered by the minor relation.
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ℓ-path-free graphs
Let H be a finite planar graph. Robertson and Seymour
(1986, 1990) proved that finite H-minor-free graphs are
well-quasi-ordered by the minor relation.

• Thomas (1989) generalised this result by showing that
H-minor-free graphs are better-quasi-ordered by the
minor relation.



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

ℓ-path-free graphs
Let H be a finite planar graph. Robertson and Seymour
(1986, 1990) proved that finite H-minor-free graphs are
well-quasi-ordered by the minor relation.

• Thomas (1989) generalised this result by showing that
H-minor-free graphs are better-quasi-ordered by the
minor relation.

• Ding (1992) proved that finite simple ℓ-path-free graphs
are well-quasi-ordered by the induced subgraph
relation.
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ℓ-path-free graphs
Let H be a finite planar graph. Robertson and Seymour
(1986, 1990) proved that finite H-minor-free graphs are
well-quasi-ordered by the minor relation.

• Thomas (1989) generalised this result by showing that
H-minor-free graphs are better-quasi-ordered by the
minor relation.

• Ding (1992) proved that finite simple ℓ-path-free graphs
are well-quasi-ordered by the induced subgraph
relation.

• Another proof, based on tree-depth was given by
Nešetřil and Ossona de Mendez (2012).
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ℓ-path-free graphs
Let H be a finite planar graph. Robertson and Seymour
(1986, 1990) proved that finite H-minor-free graphs are
well-quasi-ordered by the minor relation.

• Thomas (1989) generalised this result by showing that
H-minor-free graphs are better-quasi-ordered by the
minor relation.

• Ding (1992) proved that finite simple ℓ-path-free graphs
are well-quasi-ordered by the induced subgraph
relation.

• Another proof, based on tree-depth was given by
Nešetřil and Ossona de Mendez (2012).

• The H-minor-free graphs are better-quasi-ordered by
the subgraph relation if and only if H is a disjoint union
of paths.



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

ℓ-path-free graphs
Let H be a finite planar graph. Robertson and Seymour
(1986, 1990) proved that finite H-minor-free graphs are
well-quasi-ordered by the minor relation.

• Thomas (1989) generalised this result by showing that
H-minor-free graphs are better-quasi-ordered by the
minor relation.

• Ding (1992) proved that finite simple ℓ-path-free graphs
are well-quasi-ordered by the induced subgraph
relation.

• Another proof, based on tree-depth was given by
Nešetřil and Ossona de Mendez (2012).

• The H-minor-free graphs are better-quasi-ordered by
the subgraph relation if and only if H is a disjoint union
of paths.

• The H-minor-free graphs of bounded multiplicity are
better-quasi-ordered by the induced subgraph relation if
and only if H is a disjoint union of paths.
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Thanks

Thank You!



ℓ-link graphs

Jia and Wood

Introduction

Construction

Structure

2-link graphs

Coloring

Minors

Minimal roots

Roots

Ending

Thanks

Thank You for listening!
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