
c© Performance Engineering Laboratory SPIRE 2012, Cartagena (1)

Improved Address-Calculation

Coding of Integer Arrays

Jyrki Katajainen1,2

Amr Elmasry3, Jukka Teuhola4

1 University of Copenhagen
2 Jyrki Katajainen and Company
3 Alexandria University
4 University of Turku

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (2)

Problem formulation

Given: An array of integers

{xi | i ∈ {1,2, . . . , n}}
Wanted: Compressed represen-

tation, fast random access

Operations:

access(i): retrieve xi
insert(i, v): insert v before xi
delete(i): remove xi

Other: omitted in this talk

sum(j): retrieve
∑j
i=1 xi

search(p): find the rank of the

given prefix sum p

modify(i, v): change xi to v

Many solutions known, see the

list of references in the paper

Theoretical approaches

• O(1) worst-case-time access

• overhead of o(n) bits with

respect to some measure of

compactness

• complicated

Practical approaches

• slower access

• O(n) bits of overhead

• implementable

• fast in practice

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (3)

Measures of compactness

What is optimal?

n: # integers

x̂ = maxni=1 xi
s =

∑n
i=1 xi

Data-aware measure

Raw representation:∑n
i=1 dlg(1 + xi)e bits

Overhead: In order to support

random access we expect to

need some more bits

Data-independent measures

Compact representation:

n lg(1 + s/n) +O(n) bits

Apply Jensen’s inequality to

the raw representation and

accept a linear overhead

Lower bound1: dlg x̂ne
x̂n: The number of se-

quences of n positive integers

whose value is at most x̂

Lower bound2:
⌈
lg
(
s−1
n−1

)⌉(
s−1
n−1

)
: The number of se-

quences of n positive integers

that add up to s

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (4)

Two trivial “solutions”

Uncompressed array

a:

w: size of a machine word

Space: w · n+O(w) bits

access(i): a[i]

Access times on my computer:

n sequential random

210 0.89 1.1
215 0.74 1.4
220 0.89 7.1
225 0.74 10.9

↖ ns per operation

– no compression

+ fast

Fixed-length coding

a:

x̂ = maxni=1 xi
β = dlg(1 + x̂)e

Space: β · n+O(w) bits

access(i):

• compute the word address

• read one or two words

• mask the bits needed

– one outlier ruins the com-

pactness

+ relatively fast

Q: How would you support insert

and delete for these structures?

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (5)

Two examples

x1 = n, xi = 1 for i ∈ {2, . . . , n}

Raw representation:

n+O(lgn) bits

Fixed-length coding:

n dlg(1 + n)e bits

Lower bound1:

dn lgne bits

x1 = n2, xi = 1 for i ∈ {2, . . . , n}

Raw representation:

n+O(lgn) bits

Compact representation:

n lgn+ Θ(n) bits

Lower bound1:

d2n lgne bits

Lower bound2:

n lgn+ Θ(n) bits

N.B. All our representations are compact,

but we do not claim them to be optimal

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (6)

Our contribution

Teuhola 2011

Interpolative coding of integer

sequences supporting log-time

random access, Inform. Process.

Manag. 47,5, 742–761

Space: n lg(1 +s/n) +O(n) bits,

i.e. compact

access: O (lg(n+ s)) worst-case

time

insert, delete: not supported

This paper

Space: n lg(1 +s/n) +O(n) bits,

i.e. compact

access: O (lg lg(n+ s)) worst-

case time in the static case

and O(lgn) worst-case time

in the dynamic case

insert, delete: O(lgn+w2) worst-

case time

n: # integers (assume n ≥ w)

s: sum of the integers

w: size of a machine word

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (7)

Address-calculation coding

10101

5

2 05 2 3

5

14 7

29

4 4 1

21

01110 1001 0100 010 010 10 100

• encoding in depth-first order

• yellow nodes not stored

• skip subtrees using the formula

Space: Compact by the magical

formula

access: O(lgn) worst-case time

(assuming that the position

of the most significant one

bit in a word can be deter-

mined in O(1) time)

insert, delete: not supported

t = dlg(1 + s)e
Magical formula

B(n, s) =

 n(t− lgn+ 1) + bs(n−1)
2t−1 c − t− 1 , if s ≥ n/2

2t + bs(2− 1
2t−1)c − t− 1 + s(lgn− t) , otherwise

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (8)

Indexed address-calculation coding

c: a tuning parameter, c ≥ 1

si: sum of the numbers in the ith

chunk

chunk size: k = bc · lg(n+ s)c
chunks: t = dn/ke
root: dlg(1 + s)e bits

pointer: lgn+ lg lg(1 + s/n) +O(1) bits

chunks; address-calculation coding

index; fixed-length coding

Analysis

roots:

dn/ke·dlg(1+s)e ≤ n/c+O(w)

pointers:

dn/ke · (lgn + lg lg(1+s/n) +

O(1)) ≤ n/c+O(w)

chunks:∑t
i=1[k · lg(1+si/k)+O(k)] ≤

n lg(1 + s/n) +O(n)

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (9)

Other applications of indexing

Indexed Elias delta coding

c: a tuning parameter, c ≥ 1

chunk size: k = bc · (lgn+ lg lg s)c
chunks: t = dn/ke
pointer: lgn+ lg lg(1 + s/n) +O(1) bits

chunks; Elias delta coding

index; fixed-length coding

Space: raw + O(
∑n
i=1 lg lgxi)

access: O(lgn+lg lg s) worst-case

time

Indexed fixed-length coding

c: a tuning parameter, c ≥ 1

x̂ = maxni=1 xi

offsets; fixed-length coding

index; fixed-length coding

data; raw coding

chunk size: k = bc · (lgn+ lg lg x̂)c
chunks: t = dn/ke
pointer: lgn+ lg lg(1 + x̂) +O(1) bits

landmark + offset

Space: raw + O(n lg lg(n+ x̂))

access: O(1) worst-case time

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (10)

Dynamization

c: a tuning parameter, c ≥ 1

w: size of a machine word

chunks; address-calculation coding

index; balanced search tree

chunk size: k = cw/2..2cw
chunks: t = dn/(2cw)e..d2n/(cw)e
root: w bits

pointer: w bits

Use the zone technique:

• align chunks to word bound-

aries

• keep chunks of the same size in

separate zones

• only w zones

• maintain zones as rotated ar-

rays (one chunk may be split)

Space: Still compact

access: O(lgn) worst-case time

(n ≥ w))

insert, delete: O(lgn+w2) worst-

case time

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (11)

Experimental setup

Benchmark data:

n integers

– uniformly distributed

– exponentially distributed

Repetitions:

Each experiment repeated r

times for sufficiently large r

Reported value:

Measurement result divided

by r × n

Processor:

Intel R© Xeon R© CPU 1.8 GHz

× 2

Programming language:

C

Compiler:

gcc with optimization -O3

Source code:

Available from Jukka’s home

page

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (12)

Experimental results: Overhead

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 8 16 32 64 128 256 512 1024

B
it

s
p

er
 s

o
u

rc
e

in
te

g
er

Range size

Indexed modifiable array
Indexed static array

Basic AC-coded array
Entropy

 2

 4

 6

 8

 10

1/64 1/32 1/16 1/8 1/4 1/2 1 2 4 8

B
it

s
p

er
 s

o
u

rc
e

in
te

g
er

Lambda

Indexed modifiable array
Indexed static array

Basic AC-coded array
Entropy

– entropy of xi: expected information content of xi
– for a random floating-point number yi, yi ≥ 0, xi =

⌊
−ln(1−yi)

λ

⌋

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (13)

Experimental results: access, search, modify

0.5

1.0

1.5

2.0

1 000 10 000 100 000 1 000 000

T
im

e
p

er
 o

p
er

at
io

n
 (

m
ic

ro
se

c.
)

Number of source integers

Basic AC-coded array, access
Basic AC-coded array, search

Indexed static array, search
Indexed static array, access

1

2

3

4

5

6

1 000 10 000 100 000 1 000 000

T
im

e
p

er
 o

p
er

at
io

n
 (

m
ic

ro
se

c.
)

Number of source integers

Indexed modifiable array, modify
Indexed modifiable array, access

– uniformly-distributed integers drawn from [0..63]

c© Performance Engineering Laboratory SPIRE 2012, Cartagena (14)

Further work

Theory

• Try to understand better the

trade-off between the speed

of access and the amount of

overhead in the data-aware

case.

Applications

• Can some of you convince me

that compressed arrays are

useful—or even necessary—

in some information-retrieval

application(s)?

Practice

• As to the speed of access, we

showed that O(lg lg(n+s)) is

better than O(lg(n+s)). Can

you show that O(1) is better

than O(lg lg(n+ s))?

• Independent of the theoreti-

cal running time, can one get

the efficiency of access closer

to that provided by uncom-

pressed arrays?

To do

• A thorough experimental

comparison!

	Title page
	Problem formulation
	Measures of compactness
	Two trivial ``solutions''
	Two examples
	Our contribution
	Address-calculation coding
	Indexed address-calculation coding
	Other applications of indexing
	Dynamization
	Experimental setup
	Experimental results: Overhead
	Experimental results: Access, search, modify
	Further work

