Improved Address-Calculation Coding of Integer Arrays

Jyrki Katajainen^{1,2}

Amr Elmasry³, Jukka Teuhola⁴

- ¹ University of Copenhagen
- ² Jyrki Katajainen and Company
- ³ Alexandria University
- ⁴ University of Turku

Problem formulation

Given: An array of integers $\{x_i \mid i \in \{1, 2, ..., n\}\}$

Wanted: Compressed representation, fast random access

Operations:

access(i): retrieve x_i insert(i, v): insert v before x_i delete(i): remove x_i

Other: omitted in this talk sum(j): retrieve $\sum_{i=1}^{j} x_i$ search(p): find the rank of the given prefix sum p modify(i, v): change x_i to v

Many solutions known, see the list of references in the paper

Theoretical approaches

- O(1) worst-case-time access
- overhead of o(n) bits with respect to some measure of compactness
- complicated

Practical approaches

- slower access
- \bullet O(n) bits of overhead
- implementable
- fast in practice

Measures of compactness

What is optimal?

n: # integers

$$\hat{x} = \max_{i=1}^{n} x_i$$

$$s = \sum_{i=1}^{n} x_i$$

Data-aware measure

Raw representation:

$$\sum_{i=1}^{n} \lceil \lg(1+x_i) \rceil$$
 bits

Overhead: In order to support random access we expect to need some more bits

Data-independent measures

Compact representation:

 $n \lg(1 + s/n) + O(n)$ bits Apply Jensen's inequality to the raw representation and accept a linear overhead

Lower bound₁: $\lceil \lg \hat{x}^n \rceil$

 \widehat{x}^n : The number of sequences of n positive integers whose value is at most \widehat{x}

Lower bound₂: $\left\lceil \lg \binom{s-1}{n-1} \right\rceil$

 $\binom{s-1}{n-1}$: The number of sequences of n positive integers that add up to s

Two trivial "solutions"

Uncompressed array

w: size of a machine word

Space: $w \cdot n + O(w)$ bits

access(i): a[i]

Access times on my computer:

n	sequential	random
2 ¹⁰	0.89	1.1
2^{15}	0.74	1.4
2^{20}	0.89	7.1
2^{25}	0.74	10.9

ns per operation

- no compression
- + fast

Fixed-length coding

$$\hat{x} = \max_{i=1}^{n} x_i$$

$$\beta = \lceil \lg(1+\hat{x}) \rceil$$

Space: $\beta \cdot n + O(w)$ bits

access(i):

- compute the word address
- read one or two words
- mask the bits needed
- one outlier ruins the compactness
- + relatively fast

Q: How would you support *insert* and *delete* for these structures?

Two examples

$$x_1 = n, \ x_i = 1 \ \text{for} \ i \in \{2, \dots, n\}$$

Raw representation:
 $n + O(\lg n) \ \text{bits}$

Fixed-length coding:
 $n \lceil \lg(1+n) \rceil \ \text{bits}$

Lower bound₁:
 $\lceil n \lg n \rceil \ \text{bits}$
 $x_1 = n^2, \ x_i = 1 \ \text{for} \ i \in \{2, \dots, n\}$

Raw representation:
 $n + O(\lg n) \ \text{bits}$

Compact representation:
 $n \lg n + O(n) \ \text{bits}$

Lower bound₁:
 $\lceil 2n \lg n \rceil \ \text{bits}$

Lower bound₂:

N.B. All our representations are compact, but we do not claim them to be optimal

 $n \lg n + \Theta(n)$ bits

Our contribution

Teuhola 2011

Interpolative coding of integer sequences supporting log-time random access, *Inform. Process.*Manag. 47,5, 742–761

Space: $n \lg(1+s/n) + O(n)$ bits, i.e. compact

access: $O(\lg(n+s))$ worst-case time

insert, delete: not supported

This paper

Space: $n \lg(1+s/n) + O(n)$ bits, i.e. compact

access: $O(\lg \lg (n+s))$ worst-case time in the static case and $O(\lg n)$ worst-case time in the dynamic case

insert, delete: $O(\lg n + w^2)$ worst-case time

n: # integers (assume $n \ge w$)

s: sum of the integers

w: size of a machine word

Address-calculation coding

- encoding in depth-first order
- yellow nodes not stored
- skip subtrees using the formula

Space: Compact by the magical formula

access: $O(\lg n)$ worst-case time (assuming that the position of the most significant one bit in a word can be determined in O(1) time)

insert, delete: not supported

$$t = \lceil \lg(1+s) \rceil$$

Magical formula

$$B(n,s) = \begin{cases} n(t - \lg n + 1) + \lfloor \frac{s(n-1)}{2^{t-1}} \rfloor - t - 1 & \text{, if } s \ge n/2 \\ 2^t + \lfloor s(2 - \frac{1}{2^{t-1}}) \rfloor - t - 1 + s(\lg n - t) & \text{, otherwise} \end{cases}$$

Indexed address-calculation coding

c: a tuning parameter, $c \geq 1$ s_i : sum of the numbers in the ith chunk

index; fixed-length coding

Analysis

roots:

$$\lceil n/k \rceil \cdot \lceil \lg(1+s) \rceil \le n/c + O(w)$$

pointers:

$$\lceil n/k \rceil \cdot (\lg n + \lg \lg (1+s/n) + O(1)) \le n/c + O(w)$$

chunks:

$$\sum_{i=1}^{t} [k \cdot \lg(1 + s_i/k) + O(k)] \le n \lg(1 + s/n) + O(n)$$

Other applications of indexing

Indexed Elias delta coding

c: a tuning parameter, $c \ge 1$

index; fixed-length coding

Space: raw $+ O(\sum_{i=1}^{n} \lg \lg x_i)$ access: $O(\lg n + \lg \lg s)$ worst-case time

Indexed fixed-length coding

c: a tuning parameter, $c \ge 1$ $\hat{x} = \max_{i=1}^{n} x_i$

index; fixed-length coding

Space: raw + $O(n \lg \lg (n + \hat{x}))$

access: O(1) worst-case time

Dynamization

c: a tuning parameter, $c \ge 1$ w: size of a machine word

Use the zone technique:

- align chunks to word boundaries
- keep chunks of the same size in separate zones
- only w zones
- maintain zones as rotated arrays (one chunk may be split)

Space: Still compact

access: $O(\lg n)$ worst-case time $(n \geq w)$

insert, delete: $O(\lg n + w^2)$ worstcase time

Experimental setup

Benchmark data:

- n integers
- uniformly distributed
- exponentially distributed

Repetitions:

Each experiment repeated r times for sufficiently large r

Reported value:

Measurement result divided by $r \times n$

Processor:

Intel[®] Xeon[®] CPU 1.8 GHz \times 2

Programming language:

C

Compiler:

gcc with optimization -03

Source code:

Available from Jukka's home page

Experimental results: Overhead

- entropy of x_i : expected information content of x_i
- for a random floating-point number y_i , $y_i \geq$ 0, $x_i = \left\lfloor -\frac{\ln(1-y_i)}{\lambda} \right\rfloor$

Experimental results: access, search, modify

- uniformly-distributed integers drawn from [0..63]

Further work

Theory

 Try to understand better the trade-off between the speed of access and the amount of overhead in the data-aware case.

Applications

 Can some of you convince me that compressed arrays are useful—or even necessary in some information-retrieval application(s)?

Practice

- As to the speed of access, we showed that $O(\lg \lg (n+s))$ is better than $O(\lg (n+s))$. Can you show that O(1) is better than $O(\lg \lg (n+s))$?
- Independent of the theoretical running time, can one get the efficiency of *access* closer to that provided by uncompressed arrays?

To do

A thorough experimental comparison!