Improved Address-Calculation
Coding of Integer Arrays

Amr Elmasry3, Jukka Teuhola?

1 University of Copenhagen

2 Jyrki Katajainen and Company
3 Alexandria University

4 University of Turku

SPIRE 2012, Cartagena (1)

Problem formulation

Given: An array of integers

{x; |1 €{1,2,...,n}}
Wanted: Compressed represen-
tation, fast random access

Operations:
access(1): retrieve x;
insert(z, v): insert v before x;
delete(i): remove x;

Other: omitted in this talk
sum(j): retrieve Zgzl x;
search(p): find the rank of the
given prefix sum p
modify(i, v): change x; to v

Many solutions known, see the
list of references in the paper

T heoretical approaches

e O(1) worst-case-time access

e overhead of o(n) bits with
respect to some measure of
compactness

e complicated

Practical approaches

slower access

O(n) bits of overhead
implementable

fast in practice

SPIRE 2012, Cartagena (2)

Measures of compactness

What is optimal?

n. # integers

T = max’_;x;

s =) 1T
Data-aware measure

Raw representation:
> lg(1 + ;)] bits
Overhead: In order to support
random access we expect to
need some more bits

Data-independent measures

Compact representation:
nlg(l + s/n) + O(n) bits
Apply Jensen’s inequality to
the raw representation and
accept a linear overhead

Lower boundq: [lgZz"]

S The number of se-
quences of n positive integers
whose value is at most

Lower bound-: {Ig (?‘ijﬂ
(Z:D: The number of se-

quences of n positive integers

that add up to s

SPIRE 2012, Cartagena (3)

Two trivial

Uncompressed array
w: Size of a machine word

Space: w-n+ O(w) bits
access(1): ali]

Access times on my computer:

n sequential | random
210 0.89 1.1
215 0.74 1.4
220 0.89 7.1
225 0.74 10.9

AN NS per operation

— NO compression
+ fast

‘“‘solutions”

Fixed-length coding
T = maxi_qx;
B=119(1+2)]
Space: §-n+ O(w) bits
access(i):

e compute the word address

e read one or two words
e mask the bits needed

— one outlier ruins the com-
pactness
-+ relatively fast

Q: How would you support insert
and delete for these structures?

SPIRE 2012, Cartagena (4)

Two examples

r1=mn, r;=1fForiec{2,...,n} r1=n2? z;=1forie{2,...,n}
Raw representation: Raw representation:

n+ O(lgn) bits n + O(lgn) bits
Fixed-length coding: Compact representation:

n [1g(1 4+ n)] bits nlgn + ©(n) bits
Lower bound;: Lower bound;:

Inlgn]| bits [2nlgn| bits

Lower bounds:
nlgn + ©(n) bits

N.B. All our representations are compact,
but we do not claim them to be optimal

© Performance Engineering Laboratory SPIRE 2012, Cartagena (5)

Our contribution

Teuhola 2011

Interpolative coding of integer
sequences supporting log-time
random access, Inform. Process.
Manag. 47,5, 742—-761

Space: nlg(l+s/n)+ O(n) bits,
i.e. compact

access: O (Ig(n + s))
time
msert, delete: not supported

worst-case

This paper

Space: nlg(l+s/n)+ O(n) bits,
il.e. compact

access: O (lglg(n + s)) worst-
case time in the static case
and O(lgn) worst-case time
in the dynamic case

insert, delete: O(Ign—l—w2) worst-
case time

n: # integers (assume n > w)

s: sum of the integers
w: Size of a machine word

SPIRE 2012, Cartagena (6)

Address-calculation coding

Space: Compact by the magical
formula

access: O(lgn) worst-case time
(assuming that the position
of the most significant one

bit in a word can be deter-
e encoding in depth-first order mined in O(1) time)

e yvellow nodes not stored
e SKip subtrees using the formula

[t0101] (01110 1001 0100 010)010 10 100

msert, delete: not supported

t =[l1g(1+)]
Magical formula

n(t—Ign+1)+ S| ¢ -1 if 5> n/2

204 |s(2— 5i1)] —t—1+s(lgn—t) , otherwise

SPIRE 2012, Cartagena (7)

B(n,s) = {

Indexed address-calculation coding

c. a tuning parameter, ¢ > 1

s;. sum of the numbers in the ¢th Analysis
chunk roots:
[n/k]-119(1+5)] < n/c+0O(w)
index; fixed-length coding pointers:
| / 'n/k] - (Ign + 1g1g(1+s/n) +
P O1)) < nfe+O0(w)
root: [Ig(1 + s)] bits chunks:
pointer: Ign +1glg(1 + s/n) + J(1) bits 2:15:1[]C) |g(1 ‘|‘Sf1,/k) —|—O(k)] <
chunks; address-calculation coding n |g(1 + S/n) -+ O(n)

SPIRE 2012, Cartagena (8)

Other applications of indexing

Indexed Elias delta coding Indexed fixed-length coding

c. a tuning parameter, ¢ > 1 c. a tuning parameter, ¢ > 1

T = maxi_qx;
index; fixed-length coding

/ index; fixed-length coding

chunk size: k= |c-(lgn+1glgs)]|
chunks: t = [n/k]

. _ : hunk size: k= |c-(lgn+1glgZ
ointer: | lglg(1l Of1) bits ¢
p gn +191g(1 + s/n) + Of1) % chunks: £ = [n/k]

pointer: Ign +1glg(1 + z) + @(1) bits
offsets; fixed-length coding

chunks; Elias delta coding

Space: raw + O(X7_, lglgz;) /Lt
access: O(lgn+1glgs) worst-case data; raw coding /Admark + offset
time

Space: raw 4+ O(nlglg(n+ Z))
access: O(1) worst-case time

SPIRE 2012, Cartagena (9)

Dynamization

c. a tuning parameter, ¢ > 1 Use the zone technique:
w:. Size of a machine word e align chunks to word bound-
aries

index; balanced search tree] .
e keep chunks of the same size in

separate zones
G\ e ONnly w zones
e Mmaintain zones as rotated ar-
chunk size: k = cw/2..2cw

chunks: t = [n/(2cw)]..[20V (cw)] rays (one chunk may be split)

root: w bits
pointer: w bits

Space: Still compact

access: O(lgn) worst-case time
(n > w))

insert, delete: O(lgn 4 w?) worst-
case time

chunks; address-calculation coding

SPIRE 2012, Cartagena (10)

Experimental setup

Benchmark data: Processor:

n integers Intel® Xeon® CPU 1.8 GHz

— uniformly distributed X 2

— exponentially distributed Programming language:
Repetitions: C

Each experiment repeated » Compiler:

times for sufficiently large r gcc with optimization -03
Reported value: Source code:

Measurement result divided Available from Jukka’s home

by r X n page

SPIRE 2012, Cartagena (11)

Experimental results: Overhead

12

10

Bits per source integer
+

~ O

Indexed modifiable array

16 | Indexed static array ---->¢----]
Basic AC-coded array
14 r Entropy --- ¥ i

........... .+.

(\9] —XK 78 {- T
3 . N s,
"' . \\

4 8 16 32 64 128 256 512 1024

Range size

Bits per source integer

10 F-.,

Indexed modifiable array -+

y “ :
..‘.‘~ \\“\X" : _
- N “
.. R . ““:»
x . ‘~,.... \ _
. x ‘.. | |

Indexed static array ---->¢----
Basic AC-coded array - i
Entropy --- K-

Ss
Ss
~.

I I I I 1 ::;."*..-.. XK

/64 1/32 1/16 1/8 1/4 12 1 2 4 8

Lambda

— entropy of x;: expected information content of z;
— for a random floating-point number y;, y; > 0, z; = {_MJ

SPIRE 2012, Cartagena (12)

Experimental results: access, search, modify

Basic AC-coded array, access Indexed modifiable array, modify ---—+---
20 Basic AC-coded array, search -] Indexed modifiable array, access -----------
- Indexed static array, search ---X--- —~ 6 -
3 Indexed static array, access ----¥---- J PR 4
8 2 ;
3 5 5y -
E E
£ ERA -
s g
5 s 3 | /" .
3 X1 B .
2 3
) o 2 r 4
E £
= =
1 r -
1 000 10 000 100 000 1 000 00 1 000 10 000 100 000 1 000 00
Number of source integers Number of source integers

— uniformly-distributed integers drawn from [0..63]

SPIRE 2012, Cartagena (13)

Further work

Theory Practice
e [ry to understand better the e As to the speed of access, we
trade-off between the speed showed that O(lglg(n+s)) is
of access and the amount of better than O(lg(n+s)). Can
overhead in the data-aware you show that O(1) is better
case. than O(lglg(n+s))7?
Applications e Independent of the theoreti-

cal running time, can one get
the efficiency of access closer
to that provided by uncom-
pressed arrays?

e Can some of you convince me
that compressed arrays are
useful—or even necessary—
in some information-retrieval
application(s)? To do

e A thorough experimental
comparison!

SPIRE 2012, Cartagena (14)

	Title page
	Problem formulation
	Measures of compactness
	Two trivial ``solutions''
	Two examples
	Our contribution
	Address-calculation coding
	Indexed address-calculation coding
	Other applications of indexing
	Dynamization
	Experimental setup
	Experimental results: Overhead
	Experimental results: Access, search, modify
	Further work

