J. Koolen¹

¹Department of Mathematics POSTECH

Monash, February 15, 2012

Outline

- Graphs and Eigenvalues
 - Definitions
 - Cameron-Goethals-Seidel-Shult
 - Hoffman and others
- Moffman Graphs
 - Definitions
- (Hoffman) Graphs with given smallest eigenvalue
 - Smallest eigenvalue −2
- 4 Limit points
 - Limit points

- Graphs and Eigenvalues
 - Definitions
 - Cameron-Goethals-Seidel-Shult
 - Hoffman and others
- 2 Hoffman Graphs
 - Definitions
- (Hoffman) Graphs with given smallest eigenvalue
 - Smallest eigenvalue −2
- 4 Limit points
 - Limit points

Definitions

Defintion

Graph: G = (V, E) where V vertex set, $E \subseteq \binom{V}{2}$ edge set.

- All graphs in this talk are simple.
- $x \sim y$ if $xy \in E$.
- $x \nsim y$ if $xy \notin E$.
- d(x, y): length of a shortest path connecting x and y.
- D(G): diameter (maximum distance in G)

Definitions

Defintion

Graph: G = (V, E) where V vertex set, $E \subseteq \binom{V}{2}$ edge set.

- All graphs in this talk are simple.
- $x \sim y$ if $xy \in E$.
- $x \not\sim y$ if $xy \notin E$.
- d(x, y): length of a shortest path connecting x and y.
- D(G): diameter (maximum distance in G)
- The adjacency matrix of G is the symmetric matrix A indexed by the vertices st. $A_{xy} = 1$ if $x \sim y$, and 0 otherwise.
- The eigenvalues of A are called the eigenvalues of G.

Defintion

Graph: G = (V, E) where V vertex set, $E \subseteq \binom{V}{2}$ edge set.

- All graphs in this talk are simple.
- $x \sim y$ if $xy \in E$.
- $x \not\sim y$ if $xy \notin E$.
- d(x, y): length of a shortest path connecting x and y.
- D(G): diameter (maximum distance in G)
- The adjacency matrix of G is the symmetric matrix A indexed by the vertices st. $A_{xy} = 1$ if $x \sim y$, and 0 otherwise.
- The eigenvalues of A are called the eigenvalues of G.
- $\lambda_{\min}(G)$ denotes the smallest eigenvalue of G.

Line graphs

Graphs and Eigenvalues

000000000

Let G be a graph.

- The **line graph** of G, denoted by L(G) is the graph with vertex set E(G) and $xy \sim uv$ if $\#(xy \cap uv) = 1$.
- The eigenvalues of the line graph L(G) are at least -2.

Limit points

Let G be a graph.

- The **line graph** of G, denoted by L(G) is the graph with vertex set E(G) and $xy \sim uv$ if $\#(xy \cap uv) = 1$.
- The eigenvalues of the line graph L(G) are at least -2.
- Not all graphs with smallest eigenvalue at least −2 are line graphs: For example the Petersen graph is a graph with smallest eigenvalue -2, but clearly it is not a line graph. Why?

Let G be a graph.

- The **line graph** of G, denoted by L(G) is the graph with vertex set E(G) and $xy \sim uv$ if $\#(xy \cap uv) = 1$.
- The eigenvalues of the line graph L(G) are at least -2.
- Not all graphs with smallest eigenvalue at least -2 are line graphs: For example the Petersen graph is a graph with smallest eigenvalue -2, but clearly it is not a line graph.
 Why?
- A graph G is a line graph if and only if there are edge-disjoint complete subgraphs C_1, \ldots, C_t (for some integer t) such that for each edge xy of G there is a unique i such $xy \in C_i$ and each vertex is in at most two C_i 's.

Outline

- Graphs and Eigenvalues
 - Definitions
 - Cameron-Goethals-Seidel-Shult
 - Hoffman and others
- - Definitions
- (Hoffman) Graphs with given smallest eigenvalue
 - Smallest eigenvalue −2
- - Limit points

- Let G be a graph with smallest eigenvalue at least -2.
- Let B := A + 2I.

Graphs with smallest eigenvalue at least -2

- Let G be a graph with smallest eigenvalue at least -2.
- Let B := A + 2I.
- B is positive semidefinite. So there is a real matrix N such that $N^T N = B$.
- Let for x a vertex c_x be the column of N associated with x.

Limit points

Graphs with smallest eigenvalue at least -2

- Let G be a graph with smallest eigenvalue at least -2.
- Let B := A + 2I.
- B is positive semidefinite. So there is a real matrix N such that $N^T N = B$
- Let for x a vertex c_x be the column of N associated with x.
- Now consider the inner product (c_x, c_y) . This is 2 if x = y, 1 if $x \sim y$ and 0 otherwise.
- This means that the lattice generated by $\{c_x\}$ is a root lattice and this lattice is irreducible if G is connected.
- The irreducible root lattices are classified by Witt (1930's) and they are A_n, D_n (n = 1, 2, 3, ...) and E_6, E_7, E_8 . The lattices A_n , D_n can be embedded in \mathbf{Z}^{n+1} .

- Let G be a graph with smallest eigenvalue at least -2.
- Let B := A + 2I.
- B is positive semidefinite. So there is a real matrix N such that $N^T N = B$.
- Let for x a vertex c_x be the column of N associated with x.
- Now consider the inner product (c_x, c_y) . This is 2 if x = y, 1 if $x \sim y$ and 0 otherwise.
- This means that the lattice generated by $\{c_x\}$ is a root lattice and this lattice is irreducible if G is connected.
- The irreducible root lattices are classified by Witt (1930's) and they are A_n, D_n (n = 1, 2, 3, ...) and E_6, E_7, E_8 . The lattices A_n, D_n can be embedded in \mathbf{Z}^{n+1} .
- A graph is called a generalized line graph if there is a N with only integral coefficients. (I will give an other equivalent definition later)

This gives:

Theorem(CGSS(1976))

Let G be a connected graph. If its smallest eigenvalue is at least -2, then G is a generalized line graph or the number of vertices of G is bounded by 36.

Cameron-Goethals-Seidel-Shult

This gives:

$\mathsf{Theorem}(\mathsf{CGSS}(1976))$

Let G be a connected graph. If its smallest eigenvalue is at least -2, then G is a generalized line graph or the number of vertices of G is bounded by 36.

Note: A generalized line graph is a combination of a line graph and some Cocktail Party graphs.

Graphs and Eigenvalues

- Graphs and Eigenvalues
 - Definitions
 - Cameron-Goethals-Seidel-Shult
 - Hoffman and others
- - Definitions
- (Hoffman) Graphs with given smallest eigenvalue
 - Smallest eigenvalue −2
- - Limit points

Graphs and Eigenvalues

0000000000

Theorem (Hoffman (1977))

• Let $-1 \ge \lambda > -2$. Then there exists a k_{λ} such that any connected graph with smallest eigenvalue at least λ and minimal valency at least k_{λ} is complete.

Limit points

Theorem (Hoffman (1977))

- Let $-1 \ge \lambda > -2$. Then there exists a k_{λ} such that any connected graph with smallest eigenvalue at least λ and minimal valency at least k_{λ} is complete.
- Let $-2 \ge \lambda > -1 \sqrt{2}$. Then there exists a k_{λ} such that any connected graph with smallest eigenvalue at least λ and minimal valency at least k_{λ} is a generalized line graph.

Theorem (Hoffman (1977))

- Let $-1 > \lambda > -2$. Then there exists a k_{λ} such that any connected graph with smallest eigenvalue at least λ and minimal valency at least k_{λ} is complete.
- Let $-2 \ge \lambda > -1 \sqrt{2}$. Then there exists a k_{λ} such that any connected graph with smallest eigenvalue at least λ and minimal valency at least k_{λ} is a generalized line graph.

(Hoffman) Graphs with given smallest eigenvalue

The reason for $-1 - \sqrt{2}$ is that the Cartesian product of the path of length 2 and a complete graph has smallest eigenvalue $-1 - \sqrt{2}$

Theorem (Hoffman (1977))

- Let $-1 > \lambda > -2$. Then there exists a k_{λ} such that any connected graph with smallest eigenvalue at least λ and minimal valency at least k_{λ} is complete.
- Let $-2 \ge \lambda > -1 \sqrt{2}$. Then there exists a k_{λ} such that any connected graph with smallest eigenvalue at least λ and minimal valency at least k_{λ} is a generalized line graph.

(Hoffman) Graphs with given smallest eigenvalue

The reason for $-1 - \sqrt{2}$ is that the Cartesian product of the path of length 2 and a complete graph has smallest eigenvalue $-1 - \sqrt{2}$. By CGSS: $k_{-2} = 28$.

The second part of the last theorem can be reformulated as

Theorem (Hoffman (1977))

Let θ_k be the supremum of the smallest eigenvalue of graphs with smallest valency k and smallest eigenvalue < -2. Then $(\theta_k)_k$ forms a monotone decreasing sequence with limit $-1 - \sqrt{2}$.

The second part of the last theorem can be reformulated as

Theorem (Hoffman (1977))

Let θ_k be the supremum of the smallest eigenvalue of graphs with smallest valency k and smallest eigenvalue < -2. Then $(\theta_k)_k$ forms a monotone decreasing sequence with limit $-1 - \sqrt{2}$.

Bussemaker et al. (198?) showed θ_1 is about -2.008.

The second part of the last theorem can be reformulated as

Theorem (Hoffman (1977))

Let θ_k be the supremum of the smallest eigenvalue of graphs with smallest valency k and smallest eigenvalue < -2. Then $(\theta_k)_k$ forms a monotone decreasing sequence with limit $-1 - \sqrt{2}$.

Bussemaker et al. (198?) showed θ_1 is about -2.008. Woo and Neumaier went below $-1 - \sqrt{2}$.

Theorem (Woo and Neumaier (1995))

Let η_k be the supremum of the smallest eigenvalue of graphs with smallest valency k and smallest eigenvalue $< -1 - \sqrt{2}$. Then $(\eta_k)_k$ forms a monotone decreasing sequence with limit -2.48...

Regular graphs

Graphs and Eigenvalues

000000000

For regular graphs, Yu showed

Theorem (Yu (2012))

Let $\hat{\theta}_k$ be the supremum of the smallest eigenvalue of k-regular graphs and smallest eigenvalue <-2. Then $(\hat{\theta}_k)_k$ forms a sequence with limit $-1-\sqrt{2}$.

She also showed $\hat{\theta}_3 = 2.03...$

Limit points

Regular graphs

000000000

For regular graphs, Yu showed

Theorem (Yu (2012))

Let $\hat{\theta}_k$ be the supremum of the smallest eigenvalue of k-regular graphs and smallest eigenvalue < -2. Then $(\hat{\theta}_k)_k$ forms a sequence with limit $-1 - \sqrt{2}$.

She also showed $\hat{\theta}_3 = 2.03...$

In order to show the results of Woo-Neumaier, Yu, the best way is to use Hoffman graphs as introduced by Woo-Neumaier.

- Graphs and Eigenvalues
 - DefinitionsCameron-Goethals-Seidel-Shult
 - Hoffman and others
- 2 Hoffman Graphs
 - Definitions
- (Hoffman) Graphs with given smallest eigenvalue
 - Smallest eigenvalue −2
- 4 Limit points
 - Limit points

Hoffman Graphs 1

Hoffman Graph

- A **Hoffman Graph** $\mathfrak{G} = (G = (V, E), \ell : V \to \{f, s\})$, such that any two vertices with label f are non-adjacent. In other words, it is a graph with a distinguished independent set $F = \{v \in V \mid \ell(v) = f\}$ of vertices.
- The vertices in the independent set F, we will call fat and the rest of the vertices we will call slim.

Hoffman Graph

- A Hoffman Graph $\mathfrak{G} = (G = (V, E), \ell : V \to \{f, s\})$, such that any two vertices with label f are non-adjacent. In other words, it is a graph with a distinguished independent set $F = \{v \in V \mid \ell(v) = f\}$ of vertices.
- The vertices in the independent set F, we will call **fat** and the rest of the vertices we will call slim.
- The way to think about the fat vertices is that they behave like complete subgraphs. (We will show later a reason for this).

examples

Hoffman Graphs 2

Hoffman Graph 2

- A Hoffman graph \mathfrak{H} is called **fat** if every slim vertex has at least one fat neighbour.
- The subgraph induced on $S := \{v \in V \mid \ell(v) = s\}$ is called the slim subgraph of \mathfrak{H} .
- The way to think about Hoffman graphs is that they are just (slim) graphs with some fat vertices attached.

Hoffman Graphs 2

Hoffman Graph 2

- A Hoffman graph \mathfrak{H} is called **fat** if every slim vertex has at least one fat neighbour.
- The subgraph induced on $S := \{v \in V \mid \ell(v) = s\}$ is called the slim subgraph of \mathfrak{H} .
- The way to think about Hoffman graphs is that they are just (slim) graphs with some fat vertices attached.
- Hoffman graphs and especially fat Hoffman graphs give a good way to construct graphs with unbounded number of vertices such that the smallest eigenvalue is at least a fixed number.
- On the other hand graphs with a large minimum valency and fixed smallest eigenvalue are very close to fat Hoffman graphs. (I will try to make this more precise later)

Eigenvalues of Hoffman graphs

- Let \mathfrak{H} be a Hoffman graph with fat vertex set F and slim vertex set S.
- The adjacency matrix A of \mathfrak{H} can be written in the following form:

$$A := \left(\begin{array}{c|c} B & | & C \\ \hline C^T & | & 0 \end{array} \right) \,,$$

(Hoffman) Graphs with given smallest eigenvalue

where the block B corresponds to the adjacency matrix on the set S, and so on.

Graphs and Eigenvalues

Eigenvalues of Hoffman graphs

- Let \mathfrak{H} be a Hoffman graph with fat vertex set F and slim vertex set S.
- The adjacency matrix A of \mathfrak{H} can be written in the following form:

$$A := \left(\begin{array}{c|c} B & | & C \\ \hline C^T & | & 0 \end{array} \right) \,,$$

where the block B corresponds to the adjacency matrix on the set S, and so on.

• The eigenvalues of \mathfrak{H} are the eigenvalues of the matrix $B(\mathfrak{H}) := B - CC^{\mathsf{T}}$.

Graphs and Eigenvalues

Eigenvalues of Hoffman graphs

- Let \mathfrak{H} be a Hoffman graph with fat vertex set F and slim vertex set S.
- The adjacency matrix A of \mathfrak{H} can be written in the following form:

$$A := \left(\begin{array}{c|c} B & | & C \\ \hline C^T & | & 0 \end{array} \right) \,,$$

where the block B corresponds to the adjacency matrix on the set S, and so on.

- The eigenvalues of \mathfrak{H} are the eigenvalues of the matrix $B(\mathfrak{H}) := B - CC^T$.
- As CC^T is a positive semidefinite matrix $\lambda_{\min}(B) \geq \lambda_{\min}(\mathfrak{H})$.

Graphs and Eigenvalues

Eigenvalues of Hoffman graphs

- Let \mathfrak{H} be a Hoffman graph with fat vertex set F and slim vertex set S.
- The adjacency matrix A of \mathfrak{H} can be written in the following form:

$$A := \left(\begin{array}{c|c} B & | & C \\ \hline C^T & | & 0 \end{array} \right) \,,$$

where the block B corresponds to the adjacency matrix on the set S, and so on.

- The eigenvalues of \mathfrak{H} are the eigenvalues of the matrix $B(\mathfrak{H}) := B - CC^T$.
- As CC^T is a positive semidefinite matrix $\lambda_{\min}(B) \geq \lambda_{\min}(\mathfrak{H})$.
- Note that $B(\mathfrak{H}) \lambda_{\min}(\mathfrak{H})$ is a positive semidefinite matrix, and hence the Gram matrix of a set vectors $\{\phi_x \mid x \in F \cup S\}$, which is called the representation of \mathfrak{H} .

Replacing fat vertices by cliques

One reason for the definition of the smallest eigenvalue of a Hoffman graph is the following theorem of Hoffman and Ostrowski (1960's):

$\mathsf{Theorem}$

Let $\mathfrak H$ be a Hoffman graph. Define the graph G_n as follows: Replace the fat vertices with complete graphs $C_f(f \in F)$ with n vertices and each vertex of C_f has the same neighbours in S as f. Then $\lim_{n \to \infty} \lambda_{\min}(G_n) = \lambda_{\min}(\mathfrak H)$.

Limit points

Line graph

How to construct a fat Hoffman graph with smallest eigenvalue -2for a line graph? For each maximal clique add a fat vertex adjacent to each vertex of this clique.

Line graph

How to construct a fat Hoffman graph with smallest eigenvalue -2for a line graph? For each maximal clique add a fat vertex adjacent to each vertex of this clique. Black board

Graphs and Eigenvalues

Direct sums

Direct sums

Let $\mathfrak{H}' = (F' \cup S', E')$ and $\mathfrak{H}'' = (F'' \cup S'', E'')$ be two Hoffman graphs, such that

- $S' \cap S'' = \emptyset$:
- $s' \in S'$ and $s'' \in S''$ have at most one common fat neighbour in $F' \cap F''$.

(Hoffman) Graphs with given smallest eigenvalue

Direct sums

Let $\mathfrak{H}'=(F'\cup S',E')$ and $\mathfrak{H}''=(F''\cup S'',E'')$ be two Hoffman graphs, such that

- $S' \cap S'' = \emptyset$;
- $s' \in S'$ and $s'' \in S''$ have at most one common fat neighbour in $F' \cap F''$.
- The Hoffman graph $\mathfrak{H}' \oplus \mathfrak{H}''$ has as vertex set $S \cup F$ where $S = S' \cup S''$ and $F = F' \cup F''$.
- The induced subgraphs on $S' \cup F'$ resp. $S'' \cup F''$ are \mathcal{H}' resp. \mathcal{H}'' .
- $s' \in S'$ and $s'' \in S''$ are adjacent if and only if they have exactly one common fat neighbour.

blackboard

• $\mathfrak{H}' \oplus \mathfrak{H}''$ is called the **direct sum** of \mathfrak{H}' and \mathfrak{H}'' .

Direct sums 2

- $\mathfrak{H}' \oplus \mathfrak{H}''$ is called the **direct sum** of \mathfrak{H}' and \mathfrak{H}'' .
- If $\mathfrak{H}_1, \mathfrak{H}_2, \ldots, \mathfrak{H}_t$ are Hoffman graphs then we can define $\mathfrak{H}_1 \uplus \ldots \uplus \mathfrak{H}_t$ recursively by $((\ldots (\mathfrak{H}_1 \uplus \mathfrak{H}_2) \uplus \mathfrak{H}_3) \ldots \mathfrak{H}_t)$.

Theorem (Woo & Neumaier)

Graphs and Eigenvalues

- Let $\mathfrak{H} = \mathfrak{H}' \oplus \mathfrak{H}''$ where \mathfrak{H}' and \mathfrak{H}'' are Hoffman graphs.
- Then $\lambda_{\min}(\mathfrak{H}) = \min(\lambda_{\min}(\mathfrak{H}'), \lambda_{\min}(\mathfrak{H}'')).$

- Graphs and Eigenvalues
 - Definitions
 - Cameron-Goethals-Seidel-Shult
 - Hoffman and others
- 2 Hoffman Graphs
 - Definitions
- 3 (Hoffman) Graphs with given smallest eigenvalue
 - ullet Smallest eigenvalue -2
- 4 Limit points
 - Limit points

\mathcal{F} -line graph

Let \mathcal{F} be a family of Hoffman graphs. A graph is called \mathcal{F} -line **graph** if it is an induced subgraph of the slim subgraph of $\bigoplus_{i=1}^t \mathfrak{F}_i$ where $\mathfrak{F}_i \in \mathcal{F}$.

000

(Hoffman) Graphs with given smallest eigenvalue

Let $\mathcal F$ be a family of Hoffman graphs. A graph is called $\mathcal F$ -line graph if it is an induced subgraph of the slim subgraph of $\oplus_{i=1}^t \mathfrak F_i$ where $\mathfrak F_i \in \mathcal F$.

Examples

- A $\{\mathfrak{H}_1\}$ -line graph is exactly the same as a line graph.
- A $\{\mathfrak{H}_1,\mathfrak{H}_2\}$ -line graph is exactly the same as a generalized line graph. (You can take this as the definition)

We can reformulate the theorem of Cameron et al. as follows:

Theorem

Let G be a graph with smallest eigenvalue at least -2. Then either G is a $\{\mathfrak{H}_1,\mathfrak{H}_2\}$ -line graph, or the number of vertices is bounded by 36.

We can reformulate the theorem of Cameron et al. as follows:

Theorem

Let G be a graph with smallest eigenvalue at least -2. Then either G is a $\{\mathfrak{H}_1,\mathfrak{H}_2\}$ -line graph, or the number of vertices is bounded by 36.

Woo and Neumaier (1995) showed

$\mathsf{Theorem}$

There exists a constant C such that if G is a connected graph with smallest eigenvalue at least $-1-\sqrt{2}$ and minmal valency at least C, then G is a \mathfrak{F} -line graph, where \mathfrak{F} is a family of nine fat Hoffman graphs.

We can reformulate the theorem of Cameron et al. as follows:

Theorem

Let G be a graph with smallest eigenvalue at least -2. Then either G is a $\{\mathfrak{H}_1,\mathfrak{H}_2\}$ -line graph, or the number of vertices is bounded by 36.

Woo and Neumaier (1995) showed

Theorem

There exists a constant C such that if G is a connected graph with smallest eigenvalue at least $-1-\sqrt{2}$ and minmal valency at least C, then G is a \mathfrak{F} -line graph, where \mathfrak{F} is a family of nine fat Hoffman graphs.

In how far can these theorems be generalized? It is unlikely that such a theorem holds for -3 but maybe it is true for all $\lambda > -3$.

Outline

- Graphs and Eigenvalues
 - Definitions
 - Cameron-Goethals-Seidel-Shult
 - Hoffman and others
- 2 Hoffman Graphs
 - Definitions
- (Hoffman) Graphs with given smallest eigenvalue
 - Smallest eigenvalue −2
- 4 Limit points
 - Limit points

 Shearer showed that every value in the half-open interval $[\sqrt{2}+\sqrt{5},\infty)$ is the limit point of a sequence of the largest eigenvalues of connected graphs (trees) with increasing number of vertices.

Graphs and Eigenvalues

• Shearer showed that every value in the half-open interval $[\sqrt{2+\sqrt{5}},\infty)$ is the limit point of a sequence of the largest eigenvalues of connected graphs (trees) with increasing number of vertices.

• Doob observed: Every value in the half-open interval $(-\infty, -\sqrt{2+\sqrt{5}}]$ is the limit point of a sequence of the smallest eigenvalues of connected graphs with increasing number of vertices. This is of course an immediate consequence of Shearers result.

Limit Points 2

• Let L be the closure of $\{\lambda_{\min}(G) \mid G \text{ connected graph }\}$, that is, include its limit points as well. Then by previous slide: $(-\infty, -\sqrt{2+\sqrt{5}}] \subset L$.

Limit Points 2

- Let L be the closure of $\{\lambda_{\min}(G) \mid G \text{ connected graph }\}$, that is, include its limit points as well. Then by previous slide: $(-\infty, -\sqrt{2+\sqrt{5}}] \subset L$.
- Let $-1 > \lambda > -2$. Then Hoffman (1970's) showed $L \cap [\lambda, -1]$ contains a finite number of limit points and each of these limit points is the smallest eigenvalue of a connected Hoffman graph with exactly one fat vertex. Moreover the largest limit point is $(-1 \sqrt{5})/2$.

- Let L be the closure of $\{\lambda_{\min}(G) \mid G \text{ connected graph }\}$, that is, include its limit points as well. Then by previous slide: $(-\infty, -\sqrt{2+\sqrt{5}}] \subset L$
- Let $-1 > \lambda > -2$. Then Hoffman (1970's) showed $L \cap [\lambda, -1]$ contains a finite number of limit points and each of these limit points is the smallest eigenvalue of a connected Hoffman graph with exactly one fat vertex. Moreover the largest limit point is $(-1 - \sqrt{5})/2$.
- It is not clear what happens in the interval $(-\sqrt{2} + \sqrt{5}, -2)$.

• Let L_H be the closure of $\{\lambda_{\min}(H) \mid H \text{ connected Hoffman } \}$ graph }, that is, include its limit points as well.

- Let L_H be the closure of $\{\lambda_{\min}(H) \mid H \text{ connected Hoffman } \}$ graph \}, that is, include its limit points as well.
- If G a graph, then the Hoffman graph $\mathfrak{H}(G)$ by attaching a unique fat vertex to each vertex of G has $\lambda_{\min}(\mathfrak{H}) = -1 + \lambda_{\min}(G)$.

- Let L_H be the closure of $\{\lambda_{\min}(H) \mid H \text{ connected Hoffman graph }\}$, that is, include its limit points as well.
- If G a graph, then the Hoffman graph $\mathfrak{H}(G)$ by attaching a unique fat vertex to each vertex of G has $\lambda_{\min}(\mathfrak{H}) = -1 + \lambda_{\min}(G)$.
- Using Doobs result and the above item, we find each value in the half-open interval $(-\infty, -1 \sqrt{2 + \sqrt{5}}]$ is the limit point of a sequence of the smallest eigenvalues of connected fat Hoffman graphs with increasing number of slim vertices, that is, $(-\infty, -1 \sqrt{2 + \sqrt{5}}] \subset L_H$.

• With the same method as Hoffman one can show that for $-2 > \lambda > -3$, the set $L_H \cap [\lambda, -2]$ contains a finite number of limit points and each of these limit points is the smallest eigenvalue of a connected fat Hoffman graph with exactly one slim vertex adjacent to exactly two fat vertices. Moreover, the largest limit point is $(-3 - \sqrt{5})/2$.

- With the same method as Hoffman one can show that for $-2>\lambda>-3$, the set $L_H\cap[\lambda,-2]$ contains a finite number of limit points and each of these limit points is the smallest eigenvalue of a connected fat Hoffman graph with exactly one slim vertex adjacent to exactly two fat vertices. Moreover, the largest limit point is $(-3-\sqrt{5})/2$.
- An open question is: $L_H = \{\lambda 1 \mid \lambda \in L\}$? By the construction in second item of last slide, L_H contains $\{\lambda 1 \mid \lambda \in L\}$.

Regular graphs and limit points

Theorem (Yu and K.)

- Let G be a connected graph.
- Then there exists a sequence of k_n -regular graphs $(G_n)_n$ with $k_n \to \infty$ $(n \to \infty)$, which are $\mathfrak{H}(G)$ -line graphs. In particular $\lambda_{\min}(G_n) \to \lambda_{\min}(\mathfrak{H}(G)) \quad (n \to \infty).$

A consequence:

Theorem (Yu)

Let $\hat{\theta}_k$ be the supremum of the smallest eigenvalue of k-regular graphs and smallest eigenvalue < -2. Then $(\hat{\theta}_k)_k$ forms a sequence with limit $-1 - \sqrt{2}$.

Eigenvalue -3

With A. Munemasa and T. Taniguchi, we are determining the fat Hoffman graphs with smallest eigenvalue -3. For this classification we again need to classification of the root lattices.

Limit points

Some questions

 What are the limit points of the smallest eigenvalues of 3-regular graphs? (We expect that each value of a certain non-empty open interval in [-3, -2] is the limit point of a family of 3-regular graphs.)

Some questions

- What are the limit points of the smallest eigenvalues of 3-regular graphs? (We expect that each value of a certain non-empty open interval in [-3, -2] is the limit point of a family of 3-regular graphs.)
- Can we show a Hoffman-Woo-Neumaier-type result for all values $\lambda \in L_H \cap [-3, -2]$?

Some questions

- What are the limit points of the smallest eigenvalues of 3-regular graphs? (We expect that each value of a certain non-empty open interval in [-3, -2] is the limit point of a family of 3-regular graphs.)
- Can we show a Hoffman-Woo-Neumaier-type result for all values $\lambda \in L_H \cap [-3, -2]$?(Note that -3 may be different as there are infinitely many -3-irreducible fat Hoffman graphs.)

- What are the limit points of the smallest eigenvalues of 3-regular graphs? (We expect that each value of a certain non-empty open interval in [-3, -2] is the limit point of a family of 3-regular graphs.)
- Can we show a Hoffman-Woo-Neumaier-type result for all values $\lambda \in L_H \cap [-3, -2]$? (Note that -3 may be different as there are infinitely many -3-irreducible fat Hoffman graphs.)
- What can you say about the exceptional (not coming from fat Hoffman graph with smallest eigenvalue -3) graphs with smallest eigenvalue at least -3? (The Hoffman-Singleton graph is an example)

- What are the limit points of the smallest eigenvalues of 3-regular graphs? (We expect that each value of a certain non-empty open interval in [-3, -2] is the limit point of a family of 3-regular graphs.)
- Can we show a Hoffman-Woo-Neumaier-type result for all values $\lambda \in L_H \cap [-3, -2]$?(Note that -3 may be different as there are infinitely many -3-irreducible fat Hoffman graphs.)
- What can you say about the exceptional (not coming from fat Hoffman graph with smallest eigenvalue -3) graphs with smallest eigenvalue at least -3? (The Hoffman-Singleton graph is an example)
- Can we classify the exceptional SRG with smallest eigenvalue -3?

Graphs and Eigenvalues

(Hoffman) Graphs with given smallest eigenvalue