Analytic representations of large discrete structures

Dan Král' Masaryk University University of Warwick

8/8/2019

NETWORKS

- nodes joined by links
- cities with roads
- internet connections
- public transportation
 facebook friendships

GRAPHS

- graph is a pair (V, E)V are nodes (vertices) and $E \subseteq \binom{V}{2}$ are edges
- example: $V = \{a, b, c, d\}$ and $E = \{ab, ac, ad, cd\}$
- algorithmic graph theory shortest path, travelling salesperson problem, etc.

LARGE GRAPHS

- The story starts in Microsoft Research around 2005...
- How can we represent and analyze large networks?

Borgs

Chayes

Lovász

WHAT IS THE GOAL?

- representation of a large graph
 mathematical object "having" the same key parameters
- sampling generate a graph with the same key parameters
- robustness of the model
 the key parameters mutually interplay
 suitable to infer unobserved properties

SPARSE VS. DENSE REGIME

- tools different depending on the density
- sparse graphs
 constant number of edges per node (on average)
 computer science most real world networks
- dense graphs
 positive proportion of node pairs are edges
 mathematics extremal graph theory

SPARSE REGIME

- poor local vs. global interaction
- Benjamini-Schramm convergence
- right convergence
- partition convergence
- local-global convergence
- large deviation convergence

Dense regime

- Why should we care? extremal graph theory
- Mantel's Theorem (1907):
 maximum number of edges in a triangle-free graph
 important and difficult generalizations

Edge vs. Triangle Problem

- Minimum density of K_3 for a specific edge-density
- determined by Razborov (2008), $K_{\alpha n,...,\alpha n,(1-k\alpha)n}$
- extensions by Nikiforov (2011) and Reiher (2016) for K_{ℓ}
- Pikhurko and Razborov (2017) gave extremal examples generally not unique, can be made unique by $\overline{K_{2,1}} = 0$

More General Phenomenon?

- Conjecture (Lovász 2008, Lovász and Szegedy 2011) Every finite feasible set $H_i = d_i$, i = 1, ..., k, can be extended to a finite feasible set with an asymptotically unique structure.
- Theorem (Grzesik, K., Lovász Jr.): FALSE

Convergent graph sequence

- d(H,G) = probability |H| -vertex subgraph of G is H
- a sequence $(G_n)_{n\in\mathbb{N}}$ of graphs is convergent if $d(H, G_n)$ converges for every H
- examples: K_n , $K_{\alpha n,n}$, blow ups $G[K_n]$ Erdős-Rényi random graphs $G_{n,p}$, planar graphs
- extendable to other discrete structures

REGULARITY METHOD

- developed by Endré Szemerédi Abel Prize 2012
- Regularity Decompositions
 every graph can be split into finitely
 many quasirandom pieces
- interplay between local and global
- property testing algorithms
- existence of arithmetic progressions in dense subsets of integers

GRAPHONS

- a graph can be described by the adjacency matrix rows/columns \approx nodes, $0/1 \approx$ adjacencies
- take a "continuous" adjacency matrix regularity decompositions, martingale convergence
- (local) graph densities \Rightarrow global structure
- in general, all graph densities required

QUASIRANDOM GRAPHS

- Thomason, and Chung, Graham and Wilson (1980's) When does a graph look like a random graph? Erdős-Rényi model $G_{n,p}$: include each edge with prob. p
- a sequence G_i is quasirandom if $d(H, G_i) \approx d(H, G_{n,p})$ $\Leftrightarrow G_i$ converges to the constant graphon W_p \Leftrightarrow uniform edge density, cut sizes, spectral properties $\Leftrightarrow h(K_2, G_i) \to p$ and $h(C_4, G_i) \to p^4$

QUASIRANDOM PERMUTATIONS

- When does a permutation look random?
- *n*-point permutation: ordering of numbers $1, \ldots, n$ pattern: $4\underline{53}21\underline{6} \rightarrow 213$ $4\underline{53}21\underline{6} \rightarrow 321$
- Question (Graham): The same finite phenomenon? Theorem (K., Pikhurko, 2013): yes, 4-point patterns
- Theorem (Chan, K., Noel, Pehova, Sharifzadeh, Volec) quasirandom \Leftrightarrow minimizer of pattern sum classification of all such sets of 4-point permutations

FINITELY FORCIBLE GRAPHONS

- finitely forcible graphon
 determined by densities of finitely many graphs
- edge density = 1/2 and triangle density = 0 quasirandom graphon, step graphons
- every finitely forcible graphon is a unique solution of an extremal graph theory problem

Extremal combinatorics

- Conjecture (Lovász and Szegedy, 2011): Every extremal graph theory problem has a finitely forcible optimal solution.
- extremal graph theory problem →
 finitely forcible optimal solution →
 "simple structure" gives new bounds on old problems

Complex finite graphons

- Conjectures (Lovász and Szegedy): The space T(W) of a finitely forcible W is compact. The space T(W) has finite dimension.
- disproved and stronger results in a series of papers coauthored by Cooper, Glebov, Kaiser, Klimošová, Noel and Volec

Universal constructions

- Theorem (Cooper, K., Martins) For every graphon W, there exists a finitely forcibly graphon W_0 such that $W_0(x/13, y/13) = W(x, y)$ for every $(x, y) \in [0, 1]^2$.
- Theorem (K., Lovász Jr., Noel, Sosnovec) 1/13 can be replaced by 1ε .

No finitely forcible optima

- Theorem (Grzesik, K., Lovász Jr.)

 There are extremal graph problems
 with no finitely forcible optimal solution.
- extensions to other parameters possible

- blackbox universal construction
- variable parts of graphon
- analysis of densities
- Implicit function theorem

WHAT NEXT?

bridge dense and sparse settings
 Backhausz and Szegedy 2018

• sampling in the sparse setting
Aldous-Lyons conjecture, soficity of groups

• relation between approaches in the sparse setting

Thank you for your attention!