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Networks

• nodes joined by links

• cities with roads

• public transportation

• internet connections

• facebook friendships
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Graphs

• graph is a pair (V,E)

V are nodes (vertices) and E ⊆
(

V
2

)

are edges

• example: V = {a, b, c, d} and E = {ab, ac, ad, cd}

• algorithmic graph theory

shortest path, travelling salesperson problem, etc.
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Large graphs

• The story starts in Microsoft Research around 2005. . .

• How can we represent and analyze large networks?

Borgs Chayes Lovász
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What is the goal?

• representation of a large graph

mathematical object “having” the same key parameters

• sampling

generate a graph with the same key parameters

• robustness of the model

the key parameters mutually interplay

suitable to infer unobserved properties
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Sparse vs. dense regime

• tools different depending on the density

• sparse graphs

constant number of edges per node (on average)

computer science – most real world networks

• dense graphs

positive proportion of node pairs are edges

mathematics – extremal graph theory
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Sparse regime

• poor local vs. global interaction

• Benjamini-Schramm convergence

• right convergence

• partition convergence

• local-global convergence

• large deviation convergence
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Dense regime

• Why should we care?

extremal graph theory

• Mantel’s Theorem (1907):

maximum number of edges in a triangle-free graph

important and difficult generalizations
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Edge vs. Triangle Problem

• Minimum density of K3 for a specific edge-density

• determined by Razborov (2008), Kαn,...,αn,(1−kα)n

• extensions by Nikiforov (2011) and Reiher (2016) for Kℓ

• Pikhurko and Razborov (2017) gave extremal examples

generally not unique, can be made unique by K2,1 = 0
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More general phenomenon?

• Conjecture (Lovász 2008, Lovász and Szegedy 2011)

Every finite feasible set Hi = di, i = 1, . . . , k,

can be extended to a finite feasible set

with an asymptotically unique structure.

• Theorem (Grzesik, K., Lovász Jr.): FALSE
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Convergent graph sequence

• d(H,G) = probability |H |-vertex subgraph of G is H

• a sequence (Gn)n∈N of graphs is convergent

if d(H,Gn) converges for every H

• examples: Kn, Kαn,n, blow ups G[Kn]

Erdős-Rényi random graphs Gn,p, planar graphs

• extendable to other discrete structures
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Regularity method

• developed by Endré Szemerédi

Abel Prize 2012

• Regularity Decompositions

every graph can be split into finitely

many quasirandom pieces

• interplay between local and global

• property testing algorithms

• existence of arithmetic progressions

in dense subsets of integers
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Graphons

• a graph can be described by the adjacency matrix

rows/columns ≈ nodes, 0/1 ≈ adjacencies

• take a “continuous” adjacency matrix

regularity decompositions, martingale convergence

• (local) graph densities ⇒ global structure

• in general, all graph densities required

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

1

1

0

0

0

1

0

0

1

13



Quasirandom graphs

• Thomason, and Chung, Graham and Wilson (1980’s)

When does a graph look like a random graph?

Erdős-Rényi model Gn,p: include each edge with prob. p

• a sequence Gi is quasirandom if d(H,Gi) ≈ d(H,Gn,p)

⇔ Gi converges to the constant graphon Wp

⇔ uniform edge density, cut sizes, spectral properties

⇔ h(K2, Gi) → p and h(C4, Gi) → p4
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Quasirandom permutations

• When does a permutation look random?

• n-point permutation: ordering of numbers 1, . . . , n

pattern: 453216 → 213 453216 → 321

• Question (Graham): The same finite phenomenon?

Theorem (K., Pikhurko, 2013): yes, 4-point patterns

• Theorem (Chan, K., Noel, Pehova, Sharifzadeh, Volec)

quasirandom ⇔ minimizer of pattern sum

classification of all such sets of 4-point permutations
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Finitely forcible graphons

• finitely forcible graphon

determined by densities of finitely many graphs

• edge density = 1/2 and triangle density = 0

quasirandom graphon, step graphons

• every finitely forcible graphon is a unique solution of

an extremal graph theory problem
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Extremal combinatorics

• Conjecture (Lovász and Szegedy, 2011):

Every extremal graph theory problem

has a finitely forcible optimal solution.

• extremal graph theory problem →

finitely forcible optimal solution →

“simple structure” gives new bounds on old problems
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Complex finite graphons

• Conjectures (Lovász and Szegedy):

The space T (W ) of a finitely forcible W is compact.

The space T (W ) has finite dimension.

• disproved and stronger results in a series of papers

coauthored by Cooper, Glebov, Kaiser, Klimošová,

Noel and Volec
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Universal constructions

• Theorem (Cooper, K., Martins)

For every graphon W , there exists

a finitely forcibly graphon W0 such that

W0(x/13, y/13) = W (x, y) for every (x, y) ∈ [0, 1]2.

• Theorem (K., Lovász Jr., Noel, Sosnovec)

1/13 can be replaced by 1− ε.

A B C D E F G P Q R

A

B

C

D

E

F

G

P

Q

R

WF

1− ε ε/4 ε/2 ε/4

W s
⊗A

B
C
D
E
F

G1

G2

19



No finitely forcible optima

• Theorem (Grzesik, K., Lovász Jr.)

There are extremal graph problems

with no finitely forcible optimal solution.

• extensions to other parameters possible
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• blackbox universal construction

• variable parts of graphon

• analysis of densities

• Implicit function theorem
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What next?

• bridge dense and sparse settings

Backhausz and Szegedy 2018

• sampling in the sparse setting

Aldous-Lyons conjecture, soficity of groups

• relation between approaches in the sparse setting
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Thank you for your attention!
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