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NETWORKS

nodes joined by links

cities with roads e internet connections

public transportation e facebook friendships




(zRAPHS

graph is a pair (V, F)

V' are nodes (vertices) and F C (‘2/) are edges

example: V ={a,b,c,d} and E = {ab, ac, ad, cd}

algorithmic graph theory

shortest path, travelling salesperson problem, etc.




[LARGE GRAPHS

e The story starts in Microsoft Research around 2005. ..

e How can we represent and analyze large networks?




WHAT IS THE GOAL?

e representation of a large graph

mathematical object “having” the same key parameters

e sampling

generate a graph with the same key parameters

e robustness of the model
the key parameters mutually interplay

suitable to infer unobserved properties




SPARSE VS. DENSE REGIME

e tools different depending on the density

e sparse graphs
constant number of edges per node (on average)

computer science — most real world networks

e dense graphs
positive proportion of node pairs are edges

mathematics — extremal graph theory




SPARSE REGIME

poor local vs. global interaction
Benjamini-Schramm convergence
right convergence

partition convergence
local-global convergence

large deviation convergence



DENSE REGIME

e Why should we care?
extremal graph theory

e Mantel’s Theorem (1907):
maximum number of edges in a triangle-free graph

important and difficult generalizations




EDGE vS. TRIANGLE PROBLEM

Minimum density of K3 for a specific edge-density

determined by Razborov (2008), Kup,. . an.(1—ka)n

extensions by Nikiforov (2011) and Reiher (2016) for K

Pikhurko and Razborov (2017) gave extremal examples

generally not unique, can be made unique by Ky 1 =0




MORE GENERAL PHENOMENON?

e Conjecture (Lovasz 2008, Lovasz and Szegedy 2011)
Every finite feasible set H; = d;, 1 = 1,... k,
can be extended to a finite feasible set

with an asymptotically unique structure.

e Theorem (Grzesik, K., Lovasz Jr.): FALSE
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CONVERGENT GRAPH SEQUENCE

d(H,G) = probability |H |-vertex subgraph of G is H

a sequence (G,,)nen of graphs is convergent

if d(H,G,,) converges for every H

examples: K, Kon n, blow ups G|K,]
Erdds-Rényi random graphs G, ,, planar graphs

extendable to other discrete structures
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REGULARITY METHOD

developed by Endré Szemerédi
Abel Prize 2012

Regularity Decompositions
every graph can be split into finitely

many quasirandom pieces
interplay between local and global
property testing algorithms

existence of arithmetic progressions

in dense subsets of integers
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(FRAPHONS

a graph can be described by the adjacency matrix
rows/columns ~ nodes, 0/1 ~ adjacencies

take a “continuous” adjacency matrix

regularity decompositions, martingale convergence
(local) graph densities = global structure

in general, all graph densities required

1w M
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(QUASIRANDOM GRAPHS

e Thomason, and Chung, Graham and Wilson (1980’s)
When does a graph look like a random graph?
Erdds-Rényi model G, ,: include each edge with prob. p

e a sequence (G; is quasirandom if d(H,G;) ~ d(H, Gy, )
& G, converges to the constant graphon W,
< uniform edge density, cut sizes, spectral properties

S h(KQ, Gz) — D and h(04, Gz) — p4
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(QUASIRANDOM PERMUTATIONS

When does a permutation look random?

n-point permutation: ordering of numbers 1,...,n
pattern: 453216 — 213 453216 — 321

Question (Graham): The same finite phenomenon?
Theorem (K., Pikhurko, 2013): yes, 4-point patterns

Theorem (Chan, K., Noel, Pehova, Sharifzadeh, Volec)
quasirandom < minimizer of pattern sum

classification of all such sets of 4-point permutations
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FINITELY FORCIBLE GRAPHONS

e finitely forcible graphon
determined by densities of finitely many graphs

e edge density = 1/2 and triangle density = 0
quasirandom graphon, step graphons

e every finitely forcible graphon is a unique solution of
an extremal graph theory problem

m e A4
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EXTREMAL COMBINATORICS

e Conjecture (Lovasz and Szegedy, 2011):

Every extremal graph theory problem

has a finitely forcible optimal solution.

e cxtremal graph theory problem —
finitely forcible optimal solution —
“simple structure” gives new bounds on old problems

m e 44
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COMPLEX FINITE GRAPHONS

e Conjectures (Lovész and Szegedy):
The space T (W) of a finitely forcible W is compact.
The space T'(W) has finite dimension.

e disproved and stronger results in a series of papers
coauthored by Cooper, Glebov, Kaiser, KlimosSova,
Noel and Volec
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UNIVERSAL CONSTRUCTIONS

e Theorem (Cooper, K., Martins)
For every graphon W, there exists
a finitely forcibly graphon W, such that
Wo(x/13,y/13) = W (x,y) for every (z,y) € [0, 1]%.

e Theorem (K., Lovasz Jr., Noel, Sosnovec)
1/13 can be replaced by 1 — ¢.
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NO FINITELY FORCIBLE OPTIMA

Theorem (Grzesik, K., Lovasz Jr.)
There are extremal graph problems

with no finitely forcible optimal solution.

extensions to other parameters possible

e blackbox universal construction

e variable parts of graphon

e analysis of densities

e Implicit function theorem
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WHAT NEXT?

e bridge dense and sparse settings
Backhausz and Szegedy 2018

e sampling in the sparse setting

Aldous-Lyons conjecture, soficity of groups

e relation between approaches in the sparse setting
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Thank you for your attention!
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