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Theorem. Checking whether a graph is Hamiltonian is
NP-complete
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Dirac's Theorem

Theorem (Dirac 1952). Let G be a graph with n > 3 vertices and
minimum degree at least %n. Then G is Hamiltonian.

Remark. % is tight; consider K, 2_1 5241

e “Dense” will always refer to high minimum degree
e Theorem also holds for directed graphs (Ghouila-Houri 1960)
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Random Graphs

Definition. Let G(n, m) be the uniform distribution on m-edge
graphs on the vertex set [n] = {1,...,n}.

Definition. We say that some property P holds for G(n, m(n))
almost surely if

lim P(P holds for G(n,m(n))) =1.

n—yeo
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Hamiltonicity in random graphs

Theorem (Pésa 1976, Korshunov 1976). If m > cnlogn for large ¢
then G(n, m) is Hamiltonian almost surely.

In particular, for any o > 0, most graphs with degrees about an
are Hamiltonian
(because o(5) > nlogn).

e Theorem is also true for directed graphs (McDiarmid 1980)
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Randomly perturbed graphs

In order to guarantee a graph is Hamiltonian, it must be very dense
But, most graphs are Hamiltonian at a much lower density

Analogy. Worst-case analysis vs average-case analysis in computer
science

Question. How can we bridge the gap?

Answer. Consider randomly perturbed graphs.
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Randomly perturbed graphs: a model

Definition. For a fixed graph G, define the random graph model
G(G, m) by adding m random edges to G.

e There are lots of other models of random perturbation, which
are for most purposes equivalent.

e This model naturally extends G(n,m): let G be the n-vertex
graph with no edges.
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Motivation: smoothed analysis

There is an analogous concept in computer science: smoothed
analysis involves studying the performance of algorithms given
randomly perturbed inputs.

This was introduced by Spielman and Teng, and was effective for
explaining why the simplex algorithm is efficient in practice.
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Hamiltonicity in randomly perturbed dense graphs

Theorem (Bohman, Frieze, Martin 2003). “Every dense graph is
almost Hamiltonian”

If G is an n-vertex graph with minimum degree at least an
and if m > cn for large ¢ = c()
then G(G,m) is almost surely Hamiltonian.

e We cannot do better than m = ©(n); consider Ky, (1-q)n
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Expansion and Hamiltonicity

Theorem (Krivelevich, K., Sudakov). “Dense graphs with good
expansion properties are Hamiltonian”

Let G be a graph on n vertices with minimum degree at least 2k.

Suppose for every pair of disjoint sets A, B C V(G) with
|A| = |B| > k, there is an edge from A to B.

Then G is Hamiltonian.

Corollary (Krivelevich, K., Sudakov). A dense graph plus linearly
many random edges is almost surely Hamiltonian.



Expansion and pancyclicity

Theorem (Krivelevich, K., Sudakov). “Dense digraphs with good
expansion properties are Hamiltonian”

Let D be a digraph on n vertices with minimum degree at least 4k.

Suppose for every pair of disjoint sets A, B C V(D) with
|A| = |B| > k, there is an edge from A to B.

Then D is Hamiltonian.

Corollary (Krivelevich, K., Sudakov). A dense digraph plus linearly
many random edges is almost surely Hamiltonian.



Expansion and pancyclicity

Theorem (Krivelevich, K., Sudakov). “Dense digraphs with good
expansion properties are Hamiltonian”

Let D be a digraph on n vertices with minimum degree at least 8k.

Suppose for every pair of disjoint sets A, B C V(D) with
|A| = |B| > k, there is an edge from A to B.

Then D is pancyclic (has cycles of every possible length).

Corollary (Krivelevich, K., Sudakov). A dense digraph plus linearly
many random edges is almost surely pancyclic.
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Embedding Hamilton cycles: Rotation-Extension

e |f we cannot greedily extend a path,
then the neighbours of the endpoints must lie back on the
path.

e We can make some kind of “rotation” to a different longest
path and try to extend the path from there.

; >,

e Continue rotating and extending until we reach a Hamilton
path, then close into a Hamilton cycle with a similar “rotation”
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Generalization

We generalize in two directions:

e More general kinds of spanning subgraphs than Hamilton
cycles
e hypergraphs

The rotation-extension idea fails in both these cases. We need to
take a more “global” approach.
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Bounded-degree spanning trees

Theorem (Koml6s, Sarkozy, Szemerédi 1995). For any €, A and
large enough n:

Let T be an n-vertex tree with maximum degree at most A;

Let G be an n-vertex graph with minimum degree at least (3 +¢€)n.
Then G contains a copy of T.

Theorem (Montgomery). For any A:

Let T be an n-vertex tree with maximum degree at most A.
If m> An(logn)® for large ¢ then G(n, m) contains T almost
surely.



Spanning trees in randomly perturbed graphs

Theorem (Krivelevich, K., Sudakov). Let G be an n-vertex graph
with minimum degree at least an;

Let T be an n-vertex tree with maximum degree at most A.

If m> cn for large ¢ = c(a,A) then G(G, m) contains T almost
surely.



Proof ingredients and ideas
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G(n,cn), for large c.
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Proof ingredients and ideas

Theorem (Alon, Krivelevich, Sudakov). “We can almost surely find
bounded-degree almost-spanning trees in G(n, O(n))".

Lemma (Krivelevich, K., Sudakov). “We can decompose a dense
graph into O(1) super-regular pairs of comparable sizes".

Blow-up Lemma (Komlés, Sarkdzy, Szemerédi). “It's easy to embed
bounded-degree graphs into super-regular pairs’.

Proof Sketch. We have a dense graph G and random edges
R € G(n,O(n)). We want to find a spanning tree T in GUR.

e Decompose G into super-regular pairs.

e Embed “most” of T, mainly using R, in a way that is
compatible with the decomposition of G.

e Finish the embedding using the super-regular pairs in G.



Decomposing into super-regular pairs (for experts)
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Dirac-type theorem for spanning trees.
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If G has minimum degree (%+£)n then we can obtain a
decomposition into super-regular pairs by finding a perfect matching
of the cluster graph obtained by Szemerédi's regularity lemma.

This idea was used by Komlés, Sarkdzy and Szemerédi to prove a
Dirac-type theorem for spanning trees.
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If G has minimum degree an for small o, we can instead find a
cover of the cluster graph by small stars (with up to 1/a leaves),
then “merge” those stars into pairs.

The clusters will not be the same size, but the variation in their
sizes will depend only on o.
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If G has minimum degree an for small o, we can instead find a
cover of the cluster graph by small stars (with up to 1/a leaves),
then “merge” those stars into pairs.

The clusters will not be the same size, but the variation in their
sizes will depend only on o.



A structural dichotomy for trees

Definition. A bare path is a path in a graph where every vertex
has degree 2.

Theorem (Krivelevich 2010). Let T be a tree on n vertices with at
most ¢ leaves. Then T contains a collection of about n/k —2¢
vertex-disjoint bare paths of length k.

In particular, all spanning trees either have Q(n) leaves, or they are
almost entirely composed of bare paths.

If we want to embed most of T, a convenient choice is to embed T
without some leaves, or T without some bare paths
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Cycles and density in k-uniform hypergraphs

Definition. In a loose cycle, consecutive edges intersect in one
vertex. In a tight cycle, they intersect in k — 1 vertices.

[ [ ] [ ] [ ]

([ (] [ (] [ ) (]
[ J [ J [ J [ J [ J [ J
matching loose cycle tight cycle

Definition. The degree of a set of vertices is the number of edges
that includes that set. The minimum g-degree is the minimum
degree among sets of size g

e If g > r, high g-degree implies high r-degree
e Usually consider (k —1)-degree



Randomly perturbed dense hypergraphs

Theorem (Krivelevich, K., Sudakov). Consider a k-uniform
hypergraph with minimum (k — 1)-degree at least an, and add cn
random edges (for large ¢ = c()). Then

(a) We almost surely get a loose Hamilton cycle



Randomly perturbed dense hypergraphs

Theorem (Krivelevich, K., Sudakov). Consider a k-uniform
hypergraph with minimum (k — 1)-degree at least an, and add cn
random edges (for large ¢ = c()). Then

(a) We almost surely get a loose Hamilton cycle

(b) We almost surely get a perfect matching
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e Greedily find almost all of a perfect matching or Hamilton
cycle using only the linearly many random edges

e Use this partial structure to define a map from hypergraphs to
bipartite graphs
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Proof sketch of hypergraph theorems

e Greedily find almost all of a perfect matching or Hamilton
cycle using only the linearly many random edges

e Use this partial structure to define a map from hypergraphs to
bipartite graphs
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Key Lemma

Key Lemma. “A dense bipartite graph plus a random almost-perfect
bipartite matching gives a perfect matching”

Let G be a bipartite graph with parts A, B of equal size n and
minimum degree at least fBn.

Let M be a uniformly random matching between A and B with

(1—&)n edges, for small £ =&E(B).
Then GUM almost surely has a perfect matching.

Theorem (Hall 1935). Let G be a bipartite graph with parts A and
B of equal size n. If each subset W C A has at least |W/|
neighbours (in B) then G has a perfect matching.

e To prove the key lemma, prove that every subset “expands”
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Key lemma: proof attempt

Goal. G is a dense bipartite graph on AU B;
M is a random large matching (|M| = (1—&)n);
Want to prove every subset W C A “expands™ Ngum(W) > |W/|.

o If |W|<Bnor |W|>(1-)nthen |[Ng(W)| > |W|.
Otherwise:
E[Nuue(W)| =E[Nu(W)|  +E[Ng(W)\Nu (W)
> |W[—0(&n) +B(1—B)n
o Concentration inequalities give |Nyug(W)| > |W| almost
surely.

But P(|Npuc(W)| < |W[) > 27", so we cannot use the union
bound.



Szemerédi's regularity lemma

Idea. Use a bipartite version of szemeredi's regularity lemma to
“classify” the subsets.

7/

\? p
SR
>,
g
>

A W\
\ N
\\\?
)

N
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Szemerédi's regularity lemma

Idea. Use a bipartite version of szemeredi's regularity lemma to
“classify” the subsets.

B 1 —1 —1 —1 [—_1

A—1 ——1 ——1 ——1 1

e a non-negligible subset of a cluster has roughly the same
adjacencies as the whole cluster.
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Sketch proof of key lemma

|dea. G is a dense bipartite graph on AU B;
M is a random large matching (|M| = (1—&)n);
Want to prove every subset W C A “expands™ Ngum(W) > |W/|.

|dea. After applying the regularity lemma, only show expansion for
the “full” subsets W* C A which are the union of complete clusters.
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Want to prove every subset W C A “expands™ Ngum(W) > |W/|.

|dea. After applying the regularity lemma, only show expansion for
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e Union bound: for full W* we have Ngum(W*) = |[W*|+Q(n)
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Sketch proof of key lemma

|dea. G is a dense bipartite graph on AU B;
M is a random large matching (|M| = (1—&)n);
Want to prove every subset W C A “expands™ Ngum(W) > |W/|.

|dea. After applying the regularity lemma, only show expansion for
the “full” subsets W* C A which are the union of complete clusters.

There are O(1) full subsets so we can use the union bound. Then
approximate the expansion of each W by expansion of some W*.

e Union bound: for full W* we have Ngum(W*) = |[W*|+Q(n)
(equivalently, Ng(W*)\Nn(W*) = Q(n))
e For each W, there is full W* with Ng(W) ~ Ng(W™*);
INeum(W)| = [Nmu(W)[  +[Ne(W)\Nu (W)
~ |W[=0(&n) +|Ne(WN\Nu(W)| = |W|
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Now we almost surely have a Hamilton cycle.
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Randomly perturbed tournaments

Definition. A tournament is a complete graph with an orientation
on each edge

Theorem. Almost all tournaments have a Hamilton cycle

Theorem (Krivelevich, K., Sudakov). Let T be an n-vertex
tournament with in- and out- degrees at least d.
Randomly change @(n/(d + 1)) random edges of T.

Now we almost surely have g edge-disjoint Hamilton cycles, for
qg=0(1).
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e There are more general Dirac-type theorems for e.g.
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Open questions

e More general types of spanning subgraphs
e There are more general Dirac-type theorems for e.g.
r-chromatic graphs with bounded bandwidth
(Bottcher, Schacht, Taraz 2007)

e Universality: do we almost surely have every bounded-degree

spanning tree at once?
e Maybe one can “derandomize” the spanning trees theorem, as
with Hamilton cycles.

e We can ask for different types of hypergraph Hamilton cycles,
in particular tight cycles.
And we can inpose weaker hypergraph density conditions
(minimum 1-degree?)



