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Our main result

Not quantum GapSVP in dimension y/n

A classical reduction from a worst-case lattice problem to

the Learning with Errors problem with small modulus.

Lnmeriston o Polynomial in n
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Outline

1. Lattices: definitions and problems

2. Lattice-based cryptography:
LWE and a public-key encryption

3. Our main result:
classical hardness of LWE for polynomial modulus

4. Other results on LWE.
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Lattices and problems
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Lattice

L(B) ={>1_, a;b;,a; € Z}, where the (b;)1<i<s’s, linearly
independent vectors, are a basis of £(B).
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Lattices and problems
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Lattices and problems

Definitions:

» 1st minimum;

° » 2nd minimum.
Problems :
° » Shortest Vector Pbm.

(computational or
decisional version)

° » Shortest Independent
Vectors Pbm.

» Approximation
factor: ~.
Conjecture

There is no polynomial time algorithm that approximates these
lattice problems to within polynomial factors.
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GapSVP

Gap Shortest Vector Problem (GapSVP,)

Input : a basis B of a lattice A and a number d,

Output : e YES: there is z € A non-zero such that ||z| < d,
e NO: for all non-zero vectors z € A: ||z|| > d.

n log log n
( logn )

Best known algorithm: complexity 2
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Input : a basis B of a lattice A and a number d,

Output : e YES: there is z € A non-zero such that ||z| < d,
e NO: for all non-zero vectors z € A: ||z]| > ~d.
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Hardness of GapSVP,,

Cost 20 2 poly(n)

1 n poly(n) 200
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Conjecture

There is no polynomial time algorithm that approximates this
lattice problems to within polynomial factors.
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LWE-based cryptography

From basic to very advanced primitives

» Public key encryption
[Regev 2005, ...J;

> Identity-based encryption
|Gentry, Peikert and Vaikuntanathan 2008, ...|;

» Fully homomorphic encryption
[Brakerski and Vaikuntanathan 2011, ...].

Advantages of LWE-based primitives
» Efficient, especially when the modulus is polynomial;
» Security proofs from the hardness of LWE;

» Likely to resist attacks from quantum computers.

Adeline Langlois Hardness of LWE August 12, 2013

7/ 18



The Learning With Errors problem [Regev0s]

LWE?
Given " A. , A. + find °

> (A Uz ™),

» s < U(Zy), et T T
> B ~ Dzm g with a = o(1).

Discrete Gaussian error
Decision version: Distinguish from (A, b) with b uniform.
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Public key Encryption

» An user A has two keys:

» one public pka
» one secret sk

» To encrypt a message M, anyone can use pk4.
» To decrypt a ciphertext C, only A can do it using ska4.
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An example of Public-Key Encryptionregev 2005]

» Parameters: n,m,q € Z, o € R,

> Keys: sk= s andpk:(A,E),withE: A s +@ mod g

where s < U(Zy), A < U(Z3*"

), . <~ Dzmﬁaq.

» Encryption (M € {0,1}): Let r « U({0,1}™),

T = A

Cr 7]
+la/21-
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An example of Public-Key Encryptionregev 2005]

» Parameters: n,m,q € Z, o € R,

» Keys: sk = s and pk = (A ,E),Withmz A s +@ mod g
where s < U(Zy), A < U(Zy*"), B < Dzm aq-

» Encryption (M € {0,1}): Let r < U({0,1}"™),

uT: A , U= 1y +[q/2]-M

» Decryption of (u,v): compute v — uTs
L~ ] ]
A lg/2]-M— A = small + |¢/2]-M

v uls

If close from 0: return 0, if close from |g/2]: return 1.
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An example of Public-Key Encryptionregev 2005]

>

>

Parameters: n,m,q € Z, o € R,

Keys: sk = s and pk = (A ,E),Withmz A s +@ mod g
where s < U(Zy), A < U(Zy*"), B < Dzm aq-

Encryption (M € {0,1}): Let r < U({0,1}™),

uT: A , U= 1y +[q/2]-M

Decryptlon of (u ’U : compute v — uTS
= ] ]
A lg/2]-M— A = small + |¢/2]-M

v uls

LWE hard = Regev’s scheme is "secure".
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Reminders

» Hard problem on lattices: GapSVP.

» Lattice-based cryptography:
Security proof based on reduction from GapSVP to a
problem (= a protocol attacker).

» Learning With Errors problem:
Distinguish between (A, b) uniform and (A, As + e mod q),
where A < U(Z;"*"), s <= U(Zy) is secret, and e Gaussian.

» Public-key encryption: security based on hardness of LWE.
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Prior reductions from worst-case lattice problems to LWE

» [Regev05]

» A quantum reduction;

Quantum computer?
» with ¢ polynomial.

» [Peikert09]

» A classical reduction;

» with ¢ exponential . .
4 exp ’ Inefficient primitives

» [Peikert09]

» A classical reduction;

» based on a non-standard \_/—\

lattice problem;
» with ¢ polynomial. Hardness?
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Prior reductions from worst-case lattice problems to LWE
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» A quantum reduction;

» with ¢ polynomial. .
Our main result

> [Peikert09]

» A classical reduction;

» A classical reduction,

» from a standard worst-case

» with ¢ exponential, lattice problem
b

» [Peikert09] » with ¢ polynomial.

» A classical reduction;

» based on a non-standard
lattice problem;

» with ¢ polynomial.
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Main component in the proof: a self reduction

> Recall that [Peikert09] already showed hardness of LWE
with ¢ exponential.

How do we obtain a hardness proof for ¢ polynomial?
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Main component in the proof: a self reduction

> Recall that [Peikert09] already showed hardness of LWE
with ¢ exponential.

How do we obtain a hardness proof for ¢ polynomial?

» All we have to do is show the following reduction:

in dimension n
From LWE . k
with modulus ¢",
in dimension nk
to LWE .
with modulus q.
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Modulus Switching

A reduction from LWE with modulus ¢ to LWE with modulus p.

How to map (A, As +e) mod g to (A’,A’s+€') mod p?
» Transform A < U(ZZ@X”) to A/ < U(Zg””);
First idea: A’ = L%A]?
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Modulus Switching

A reduction from LWE with modulus ¢ to LWE with modulus p.

How to map (A, As +e) mod g to (A’,A’s+€') mod p?
» Transform A <= U(Z™") to A" <> U(Z*™);
First idea: A’ = [EAT?
» Two main problems:
1. The distribution is not uniform:

‘ solutlon i

A naive rounding introduces Add a Gaussian rounding
to smooth the distribution:
artefacts.
A= gA +R.

2. In A’s + €, the rounding errors gets multiplied by the
secret s (which is uniform is Zj).
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From large to small secret

From LWE with arbitrary secret to LWE with binary secret.

» Inspired by ideas from cryptography (prior reduction by
|Goldwasser, Kalai, Peikert and Vaikuntanathan 2010]) ;
but different and stronger techniques.

» Definition of LWE:

mA,AH+ @H

n

» From s uniform in Zj to s uniform in {0,1}".

» Consequence: this reduction expands the dimension from
n to nloggq.
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Summary of our new hardness proof of LWE

Our main result

A classical reduction from GapSVP in dimension /n to LWE in
dimension n with poly(n) modulus.

Reductions of the proof:

Adeline Langlois

Hardness of LWE

Problem | Dimension | Modulus | Secret
GapSVP vn
4o [Peikert09]
LWE NG large | Zy"
31 New
LWE n large small
42 New
LWE n poly(n) | in Z

August 12, 2013
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Other main contributions

Hardness of LWE:

» Shrinking modulus / Expanding dimension:
A reduction from LWEZk to LWEZk.

» Expanding modulus / Shrinking dimension:

A reduction from LWEZ to LWETL/ k

a
= The hardness of LWEZ is a function of nlogq.

Consequences:

» Hardness of LWEL, (Hidden Number Problem).

» The Ring-LWE problem in dimension n with exponential
modulus is hard under hardness of general lattices
(not ideal lattices).
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Conclusion

Our main result

A classical reduction from GapSVP in dimension v/n
to LWE in dimension n with poly(n) modulus.

Open problems:

Is there a classical reduction as good as the one in [Regev05]?
1. We lose a quadratic term in the dimension;
2. We only get GapSVP and not SIVP.
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Conclusion

Our main result

A classical reduction from GapSVP in dimension /n
to LWE in dimension n with poly(n) modulus.

Open problems:
Is there a classical reduction as good as the one in [Regev05]?

1. We lose a quadratic term in the dimension;

Recall that the [Peikert09] reduction is from GapSVP in
dimension y/n to LWE with dimension X log(modulus) = n.

Is this reduction sharp?
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Conclusion

Our main result

A classical reduction from GapSVP in dimension /n
to LWE in dimension n with poly(n) modulus.

Open problems:
Is there a classical reduction as good as the one in [Regev05]?
1. We lose a quadratic term in the dimension;
2. We only get GapSVP and not SIVP.
In (quantum) [Regev05] the worst-case lattice problem is SIVP.
SIVP feels like a harder problem than GapSVP
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